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Abstract: We introduce a simple approach to account for the ATP consumption and production
in the case of mass action models of metabolic pathways including protein turnover. Under some
simplifying assumptions, the method makes it possible to characterize the optimal rate of enzyme
synthesis if the substrate concentrations and other rate constants are known. Furthermore we
demonstrate that the proposed approach is capable of the comparison of the efficiency of different
feedback laws in dynamic environment, considering time-varying substrate concentration.

1. INTRODUCTION

Reaction kinetic systems are widely used for biochemical
process modeling both on macroscopic and microscopic
scale [Érdi and Tóth, 1989]. In the case of molecular
biology applications [Kitano, 2002, Stelling, 2004, Tyson
et al., 2003], which are more in the focus of today’s re-
search trends, two main (not necessarily disjoint) appli-
cation fields can be identified. In the incredibly complex
system of a cell, signaling pathways are responsible for
efficient transmission and processing of information, while
metabolic pathways manage the energy consumption and
storage of the organism. For the modelling of signalling
pathways usually the systems biology approach is used
[Babu et al., 2006, Bhalla and Iyengar, 1999, Soyer et al.,
2005, Weng et al., 1999]. On the other hand, in the mod-
elling of metabolic pathways, both systems biology related
methods, and approaches originating from biotechnology
are used [Bailey, 1998, 2001, Gombert and Nielsen, 2000,
Llaneras and Picó, 2008, Llaneras, 2010, Nielsen and Vil-
ladsen, 1992, Schilling et al., 1999].

As reviewed by Llaneras [2010], the methods used for the
analysis of metabolic pathways usually assume steady-
state for the intracellular concentrations, and are looking
for the solutions of the general equation Nv = 0 where N
is the stochiometric matrix, which describes the structure
of the metabolic network, and v is the vector of reaction
rates or fluxes.

Since these approaches focus on the flux of metabolites in
the cell, these models in general do not explicitly consider
the concentration of enzymes which are converting the
metabolites, only the resulting rate of conversion speed,
which makes the inclusion and analysis of regulation
mechanisms difficult in this representation.

Mass action kinetics [Horn and Jackson, 1972, Feinberg,
1979], dominantly used in systems biological approaches
assume that the reaction rates are can be described as

vj = kj

m
∏

i=1

[Xi]
αij = kj

m
∏

i=1

x
αij

i , j = 1, ..., r (1)

where [Xi] = xi is the concentration of the component
Xi (also called specie), αij is the so-called stoichiomet-
ric coefficient of component Xi in the jth reaction, and
kj > 0 is the reaction rate constant of the jth reaction,
that is always positive. Even with such strict constraints
on reaction rates (and without any quasi steady-state
assumption), mass action systems have been shown to be
still capable of producing complex dynamical phenomena
like multistability. Thus, several conditions and methods
have been formulated corresponding to the analysis of
this property [Conradi and Flockerzi, 2012, Craciun and
Feinberg, 2006]. As emphasized in [Sorribas et al., 2010],
mass action and generalized mass action models do not
necessary use steady state assumptions, and so are able
to describe both transient and steady-state responses of
metabolites and fluxes to changes in the environment of
the model, and provide a more accurate description of pro-
cesses than techniques based merely on the stochiometric
matrix, like Flux Balance Analysis [Orth et al., 2010].

In addition, in contrast to metabolic network models,
which are focusing on metabolic fluxes, mass action sys-
tems are fully capable to include the explicit description
of enzyme concentrations, which influence the conversion
speed of metabolic substrates. If one would like to analyze,
what is the optimal concentration of an enzyme in a
reaction system under certain assumptions, this capability
may bring a significant benefit. Furthermore, if some of
the analyzed pathway’s substrates enter the cell via ac-
tive transport, the enzymatic reaction may also reflect

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48294369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the activity of the transport protein which converts the
extracellular compound to an intracellular one.

Regarding the thermodynamic aspects of biochemical pro-
cesses [Alberty, 2002], it can be said [Nath, 1998] that the
fundamental bioenergetic processes of life are all nonequi-
librium processes. The energy acquired by living cells
is stored in useful form mainly as molecules of adeno-
sine triphosphate (ATP). ATP, in converting to adenosine
diphosphate (ADP) releases the stored energy and supplies
it to the organism for the performance of vital functions.
The mathematical machinery of the classic thermodynam-
ics, however, mainly applies to systems in equilibrium. The
paper of Qian and Beard [2005] introduces thermodynamic
formalism for the study of metabolic biochemical reaction
networks in both time-dependent and time-independent
nonequilibrium states and generalizes classical concepts
in equilibrium thermodynamics (enthalpy, entropy, and
Gibbs free energy of biochemical reaction systems) to
nonequilibrium settings.

Nonequilibrium thermodynamics is used in [Qian and Re-
luga, 2005] to describe the dynamics of a cellular signaling
switch. Thermodynamics of ATP hydrolysis is addressed
in articles [Alberty, 1969, Foot and Rechnitz, 1974, Gajew-
ski et al., 1986], while the thermodynamics of enzymatic
regeneration of ATP from AMP and ADP is discussed in
[Gardner et al., 1974].

In the context of the two detailed systematic frameworks,
not surprisingly, the analysis of energetic/thermodynamic
aspects of the analyzed pathways appears dominantly in
the metabolic approach. Regarding the description de-
tailed in Llaneras [2010], as the kernel of N in the general
equation may contain infinitely many vectors which satisfy
the general equation, various constraints may be added
to the problem to define the feasible set of flux vectors.
These constraints lead to various models and methods, e.g.
flux balance analysis [Kauffman et al., 2003, Orth et al.,
2010], where various optimality constraints are considered
as well. A thermodynamics based metabolic flux analysis
is proposed by Henry et al. [2007]. Optimality of metabolic
networks is further studied in [Segré et al., 2002]. The
constraints to take into account may include energetic con-
siderations, as taking into account the chemical potential
of the reactants [Beard et al., 2002] or assuming that the
feasible flux vector(s) maximize the ATP production (see
eg. Ramakrishna et al. [2001]).

If we would like to analyze the energetic aspects in
the case of mass action reaction kinetic models, several
questions arise. The most straightforward approach for
the characterization of energetic aspects in biochemical
systems is probably the quantitative analysis of energy
storing molecules (ATP, NADH, FADH etc.) produced
or consumed during the reactions. Although we usually
have some information about these properties in the case
of metabolic reactions, the explicit inclusion of these
molecules in the mass action model can be problematic.
In the case of explicit inclusion of eg. ATP in the model,
the concentration of ATP would appear in the rate of every
reaction which consumes ATP in the system. Since mass
action computational models are typically made for the
description of single pathways or networks, but the ATP
concentration is affected by multiple additional pathways

and factors in the cell, it is generally not possible to
derive an equation for the description of the change of
ATP concentration. Assuming a quasi-steady state for
ATP to eliminate the dependence on its concentration in
the equations on the other hand would contradict to our
aim, which is the analysis of energetic aspects and so the
concentration change of ATP.

A possible approach is to neglect the ATP concentration
dependence of reactions that consume ATP, but still
take into account the consumption and production rates
which affect the concentration of ATP corresponding to the
analyzed pathway. This way, as we will see, the optimality
analysis of a single pathway can be done under these
simplifying assumptions.

Frameworks, in which the optimality of ATP production
in mass action models can be analyzed have been defined
(see eg. [Sorribas et al., 2010]), but these models usually
assume constant enzyme concentrations, and neglect the
turnover of enzymatic proteins and account for synthesis
processes in an indirect way.

The aim of this article is propose a simple intuitive method
to consider the ATP consumption/production of reactions,
which can be used in mass action systems as well, and
can be utilized for optimization and parameter estimation
purposes.

2. MATERIALS AND METHODS

Our approach will be the following. If we are interested
in the effect of a certain pathway on ATP concentration,
we identify the reactions of the mass action model that
directly or indirectly consume or produce ATP moldecules
(e.g. active transport reactions, enzyme synthesis etc.).
Based on the quantity of produced/consumed ATP, we
define an energy factor ǫi for reaction i.

Regarding the concentration change corresponding to the

analyzed pathway d[ATP ]
dt

we may write

d[ATP ]

dt
=

r
∑

i=1

ǫivi (2)

where vi is the reaction rate of the i-th reaction. ǫi is
negative for the reactions where ATP is consumed, and
positive for those where ATP is generated. Furthermore, as
it was previously described, we neglect the ATP consuming
reaction’s rate dependence on ATP concentration.

2.1 Example 1

Let us consider the following model

0
k1

GGGGGGA A
k2

GGGGGGA 0 0
k3

GGGGGGA

ǫ1
E

k4
GGGGGGA 0

A+ E
k5

GGGGGGA C1

k6
GGGGGGA

ǫ2
B + E B

k7
GGGGGGA

ǫ3
0

A corresponds to a substrate which enters the cell at rate
k1, and is degraded at rate k2. We assume that the organ-
ism is able to synthetize an enzyme E, but the synthesis



process requires ATP (ǫ1). We denote the variable rate
of synthesis by k3. The enzyme is degraded at rate k4,
while k5 and k6 denote the rate of reactions (also energy
consuming), in which the enzyme transforms the substrate
A into B. We assume that B then enters into a metabolic
process at rate k7, in which it is degraded/transformed
and produces ǫ3 number of ATP molecules per molecule.

A different interpretation may be that A denotes the
extracellular concentration of a certain metabolite, while
B corresponds to the intracellular value. In this case E
can be regarded as the membrane transport protein, which
transports the compound to the intracellular space via
active transport (at the cost of ǫ2).

The concentration of the species A,E,C1 and B may
be described with the standard mass kinetic equations
obeying the mass action law (suppressing the use of
brackets for denoting concentrations)

dA

dt
= k1 − k2A− k5AE

dE

dt
= k3 − k4E − k5AE + k6C1

dC1

dt
= k5AE − k6C1

dB

dt
= k6C1 − k7B (3)

In addition, we may assume that the total ATP change
corresponding to the modeled pathway can be described
as

dATP

dt
= ǫ1k3 + ǫ2k6C1 + ǫ3k7B. (4)

According to these equations, and assuming that every
rate constant except k3 is predetermined and known, it
makes sense to analyze, what is the rate of E-synthesis,
which maximizes the energy production in steady state.

Equation (3) gives the following steady-state values

Ā =
k1k4

k2k4 + k3k5
, B̄ =

k1k3k5k6
k2k4k6k7 + k3k5k6k7

,

C̄1 =
k1k3k5

k2k4k6 + k3k5k6
, Ē =

k3
k4

which implies that the energy production of the pathway
in steady-state is

(

dATP

dt

)

ss

= ǫ1k3 + ǫ2k6
k1k3k5

k2k4k6 + k3k5k6

+ǫ3k7
k1k3k5k6

k2k4k6k7 + k3k5k6k7

the necessary condition of the optimum is that

∂ dATP
dt

∂k3
= 0

which yields

0 = ǫ1 +
(ǫ2k1k5k6)(k2k4k6 + k3k5k6)− (k5k6)(ǫ2k1k3k5k6)

(k2k4k6 + k3k5k6)2
+

+ǫ3
(k1k5k6k7)(k2k4k6k7 + k3k5k6k7) − k5k6k7(k1k3k5k6k7)

(k2k4k6k7 + k3k5k6k7)2

One may observe, that the above expression leads to a
fourth order polynomial equation in k3. For the numerical
analysis, let us use the parameter set

k1 = 5, k2 = 0.2, k4 = 0.2, k5 = 2.1, k6 = 1.6, k7 = 0.3,

ǫ1 = −5, ǫ2 = −1, ǫ3 = 3.

The roots of the polynomial showing possible local ex-
trema are [−0.21, 0.18, − 0.02] where -0.02 has a
multiplicity of 2. The value of the second derivative at 0.18
is -1.15, showing a local maximum. Fig. 1 depicts dATP

dt
as

a function of the enzyme synthesis rate k3 with the above
parameters.
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Fig. 1. dATP
dt

as the function of k3 in the case of example
1.

2.2 Example 2

In our second example, we have two substrates: A and B.
E1 is able to transform A into B, while E2 transforms
B into C, which is the source of energy. In this case, we
have to determine the synthesis rate of E1 and E2. The
reactions are as follows.

0
k1

GGGGGGA A
k2

GGGGGGA 0 0
k3

GGGGGGA B
k4

GGGGGGA 0

0
k5

GGGGGGA

ǫ1
E1

k6
GGGGGGA 0 0

k7
GGGGGGA

ǫ2
E2

k8
GGGGGGA 0

A+ E1

k9
GGGGGGA C1

k10
GGGGGGGA

ǫ3
B + E1

B + E2

k11
GGGGGGGA C2

k12
GGGGGGGA

ǫ4
C + E2 C

k13
GGGGGGGA

ǫ5
0



The change of ATP in steady-state can be described by
the following equation
(

dATP

dt

)

ss

= ǫ1k5 + ǫ1k7 + ǫ3k10C̄1 + ǫ4k12C̄2 + ǫ5k13C̄

Again, we analyze the energy production in steady state.
The steady state values of the compounds will be as
follows.

Ā =
k1k6

k2k6 + k5k9
, Ē1 =

k5

k6
, C̄1 =

k1k5k9

k2k6k10 + k5k9k10
, Ē2 =

k7

k8
,

B̄ =
k2k3k6k8 + k3k5k8k9 + k1k5k8k9

k2k4k6k8 + k2k6k7k11 + k4k5k8k9 + k5k7k9k11
,

C̄2 =
k2k3k6k7k8k11 + k3k5k7k8k9k11 + k1k5k7k8k9k11

k2k6k12(k4k28 + k7k8k11) + k5k9k12(k4k28 + k7k8k11)
,

C̄ =
k2k3k6k7k8k11k12 + k3k5k7k8k9k11k12 + k1k5k7k8k9k11k12

k12k13(k2k6k8(k4k8 + k7k11) + k5k8k9(k4k8 + k7k11))

Let us use the following parameter values

k1 = 3, k2 = 0.7, k3 = 1, k4 = 0.5, k6 = 1.1, k8 = 0.6,

k9 = 1.3, k10 = 1, k11 = 1.4, k12 = 1.5, k13 = 1.9

ǫ1 = ǫ2 = −5, ǫ3 = −1, ǫ4 = −2 , ǫ5 = 10

The resulting
(

dATP
dt

)

ss
as a function of k5 and k7 is

depicted in Fig. 2. The optimum is at [k5 k7]=[0.77 0.75],
where the value of the Hessian matrix is

(

−7.23 1.67
1.67 −10.27

)

,

which is negative definite, justifying the local maximum.
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Fig. 2.
(

dATP
dt

)

ss
as a function of k5 and k7 in the case of

example 2. The maximum is at [k5 k7]=[0.77 0.75].

2.3 Example 3

Now we analyze the dynamic behavior of the system
defined in 2.1 under a perturbation. We assume a sig-
nificant fluctuation of the substrate A around its former
steady state. We model this fluctuation by an additional
1.8sin(2πt/30) term in the kinetic equation of A. The
following three cases are compared.

• The value of k3 is constant, and it is equal to its
former value (0.18).

• A very simple linear feedback applied. In this case, k3
depends on the actual concentration of A as follows:
k3 = 0.072A. It is easy to check that this feedback
law provides the optimal k3 if A is in steady state as
in section 2.1.

• The well-known enzymatical regulation mechanism
of product inhibition is assumed. In addition to the
reactions described in section 2.1, the reaction

B + E
k8

E GGGGGGGGGGGGC

k9
C2

is assumed, which inhibits the enzymatic catalysis
at higher product concentrations, and also stabilizes
the enzyme. We assume k8 = k9 = 0.7. As it can
be seen after some simple calculation, this additional
regulation mechanism does not affect the steady state
values of A,E,C1 and B, which means that the
optimal value of k3 is still equal to 0.18.

We compare the ATP production in the case of substrate
fluctuation for the above three cases. The resulting ATP
production is depicted in Fig. 3.
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Fig. 3. ATP production in the case of constant and
adaptive enzyme synthesis in the case of example 1.

It can be seen in the figure, that as time elapses, the
difference between the static and the dynamic cases grows.
Even the simple linear feedback law is able to increase the
ATP production corresponding to the analyzed pathway.
Further questions may arise if we take into account that to
implement such a feedback in biological systems requires
some kind of sensory mechanism. The synthesis of e.g.
proteins which are capable to play this role may require
further ATP, which in turn also affects the resulting ATP
production.

It also turns out from Fig. 3 that the mechanism of
product inhibition gives the best performance regarding
the resulting ATP balance.

3. CONCLUSIONS

In this paper, a simple approach was introduced to account
for the ATP consumption and production of mass action
pathway models. The elements of the computation were



shown through illustrative examples. The approach allows
us to characterize the optimal rate of enzyme synthesis
if other rate constants and parameters describing ATP
need or production are known. Taking into account the
ATP need/production of reactions and assuming ATP-
optimality (as it is often done in literature), the method
has the potential to support parameter estimation in the
form of additional constraints. Furthermore, as demon-
strated, the presened approach is suitable for the com-
parison of the efficiency of different feedbacks even in a
dynamic environment, considering changes in substrate
concentration.
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