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Abstract

Mobile phone datasets allow for the analysis of human behan an unprecedented scale. The social network,
temporal dynamics and mobile behavior of mobile phone usave often been analyzed independently from each
other using mobile phone datasets. In this article, we erpioe connections between various features of human
behavior extracted from a large mobile phone dataset. Osgrobtions are based on the analysis of communication
data of 100000 anonymized and randomly chosen individuadsdataset of communications in Portugal. We show
that clustering and principal component analysis allowdasignificant dimension reduction with limited loss of
information. The most important features are related toggaguhical location. In particular, we observe that most
people spend most of their time at only a few locations. Withtelp of clustering methods, we then robustly identify
home and fiice locations and compare the results wiffiatal census data. Finally, we analyze the geographic spread
of users’ frequent locations and show that commuting destarcan be reasonably well explained by a gravity model.
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Abstract of users’ frequent locations and show that commuting

distances can be reasonably well explained by a gravity
Mobile phone datasets allow for the analysis of hu- model.

man behavior on an unprecedented scale. The social

network, temporal dynamics and mobile behavior of

mobile phone users have often been analyzed indepen- . |ntroduction
dently from each other using mobile phone datasets. In
this article, we explore the connections between various
features of human behavior extracted from a large mo-
bile phone dataset. We show that clustering and princi-
pal component analysis allows for a significant dimen-
sion reduction with limited loss of information. The
most important features are related to geographical lo-
cation. In particular, we observe that most people spend
most of their time at only a few locations. With the help
of clustering methods, we then robustly identify home
and dfice locations and compare the results witihodal
census data. Finally, we analyze the geographic sprea

Information and communication technologies have
always been important sources of data and inspiration in
sociology, especially in recent decades. These technolo-
gies influence the behavior of people, which is a subject
of study in itself (e.g.[1-3]), but they also provide mas-
sive amounts of data that can be used to analyze various
aspects of human behavior.

Telephone and mobile phone data have already been
used to study social networks, sometimes in conjunc-
dtion with features such as gender and age [4]. More

recently, the mobile phone data available to researchers
have been enriched with geographical information. This
“Corresponding Author allows to analyze regularities, or even laws[5-7], gov-
Email addressvincent . traag@uclouvain.be (V.A. Traag) erning the highly predictable mobility|[8] in everyday
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life. These insights can be vital in emergency situa- ing on previous location inference wark[26], we con-
tions [9], or in (preventing) spreading of diseases [10— struct a method for rigorously determining the type of
12] or mobile viruses [13]. Furthermore, users’ mobility locations. It had already been observed that people have
and their social network are intertwined: the one could only a few top locations [6], but it remained unclear
be used to predict the other [14,/15], and the proba- what type of locations they represent. Although it is
bility of two people calling over a distance follows a often (tacitly) assumed they represent home affite
gravity like model [16-19]. Research has also shown ([6, |€]), this had never been rigorously analyzed. We
there are geographical clusters of highly connected an- confirm this hypothesis, and also conclude that these are
tennas|[20] (e.g. resembling provinces) as well as clus- the only type of locations that are robustly detectable in
ters in the social network consisting of groups of well the data.

connected people[21-23], although the connections be-

tween the two are not yet fully understood![24]. Similar o _

results have also been obtained in a virtual mobility set- 2 DataMining and Feature Analysis

ting [25].

In this paper, we analyze anonymized communica- In this section, we analyze the calling and geographic

tion data from a telecom operator in Portugal. The data behavior_s of mobile phoqe users based on features that
cover a period of 15 months and the following informa- StMmmarize these behawors._ These features alloyv us
tion is available for each communication: the times of © investigate mterqlependenu_es between charactsns'qc

such as call durations, the distances of calls, the dis-
¢ tances of movements and the frequency of calls. This
can be achieved, for example, by analyzing correlations
between these features. In this section we also use prin-
cipal component analysis and cluster analysis to better
understand these interdependencies.

initiation and termination, the users involved, and the
transmitting and receiving antennas (at the beginning o
the communication). In addition, we also know the lo-
cations (longitude and latitude) of all antennas.

We first present a statistical analysis of the data. We
define a set of 50 general features that we compute
for each user, and using principal component analysis
and clustering methods, we show that these features are2.1. Preprocessing

highly redundant: they can all pe recovered, with aloss  pgefore proceeding with the analysis, some prepro-
of accuracy of less than 5%, using a reduced set of only cessing of the raw data was necessary. The most impor-

five meta-features. _ tant preprocessing step was the application of a moving
Observing that the most important features are geo- yejghted average filter on the calling positions of the

graphical, we then pay specific attention to the most |jgers.

common locations of each user. By developing a pro-  Thjs filtering was crucial because the position of the
cedure to extract these frequent positions, we observeantenna does not always accurately reflect the actual po-
that people spend most of their time in only a few loca-  sjtion of the user. Moreover, due to noise (such as that
tions. We then cluster theféierent calling patterns for  jntroduced by reflection and scattering in urban environ-
each user and each location, and from this, we observements), the closest antenna is not always the one serv-
that only two types of locations are clearly identifiable, jnq the call. Without proper filtering, these inaccuracies

namely home and work. We compare our results to Cen- tend to accumulate, particularly for measures such as
sus data obtained from the Portuguese National Institute ihe total distance traveled.

of Statistics. . _ _ The filtering was computed as follows. The posi-
Finally, we analyze in more detail the behavior of {jong were smoothed independently for all users. As-
users who have exactly one home location and one of- gyme that a user made calls at timés, ... ., t(n) and

fice location. This allows us to predict the number of ¢ coordinates of the antennas that served the calls are
commuters betweenfiiérent regions of the country us- X(1),...,x(n). The smoothed positions of the user, de-

ing a gravity model. More precisely, we observe that ,5teq byy(1),...,y(n), can be calculated as
two different regimes exist, the first involving distances

smaller than 150 !(_m (which is half the dl_stanC(_a between y(i) = ZW(J-) x(j) (1)

the two largest cities) and the second involving larger iB.00)

distances. In the latter case, only the numberfiites

in the destination region is statistically significant. with Bs(i) = { ] : [t(j) — t(i)| < 6} whereB;(i) denotes
The fundamental contribution of this paper is that we the indices of those calls that were initiated or received

improve the understanding of frequent locations. Build- within a maximum intervab from the current time of
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A)

(o) gyration or standard deviation: the mean Table 1: Selected Results of Correlation Analysis

square error from the average location of
the user (i.e., the center of the circle).

(b) diameter of the convex hull: the maximal

e e s s s e e | Feature A FeatureB | Cor. LogCor |
ot e et et hesom o e No Calls No Callers 91 .90
e e e Diam Conv Hull - No Antennasy .55 .20
Avg Duration Avg Distance| .31 .64
No Antennas No Calls .60 .68
Figure 1: (a) The distribution of the average locations of | Diam Conv Hull ~ Avg Duration| .05 .18
the users. Brighter colors indicate areas in which higher | Line Segm Len  No Antennas .45 75
numbers of users have their average locations. (b) Three| Gyration Std Dev Dist| .60 40

methods of measuring customer movements: (1) gyra-
tion, (2) diameter of the convex hull and (3) total line

segment length. . ]
g g In addition to a measure referred to as gyration [6],

we propose two additional measures of customer move-
the filtering. We used = 30min for the dataset. Posi- Mments: the diameter of the convex hull and the total line
tions that were further distant from the current time of Segmentlength. All three of these measures rely on the

the decision had proportionally smaller weights: positions of the user during calls to give some indication
of how much or how far he has traveled. We take into
[t() — t@)I

w(j)=1- ) account both incoming (received) and outgoing (initi-
1) ’ ated) calls. The sequence of the positions (calls) is not
wherei denotes the current index of the call that should important for the first two measures, but it is significant
be smoothed. for determining line segment length. This is illustrated
In addition to filtering, we took into account those in the right panel of Fid.11.
customers who had made dodreceived at least 10 Gyration [6] measures the deviation (mean square-
calls during the period analyzed (15 months). More- error) of each of the user’s positions from his average
over, for Compression and cluster ana]ysiS, we normal- location. The diameter of the convex hull measures the
ized (scaled) and centered the data. Most of the analy-maximum distance between any two positions of the
sis was performed on 100 000 randomly (uniformly) se- User during a given period. The total line segmentlength
lected users. We performed Student’s t-tests to examinesums all of the distances between each pair of consec-

the statistical significance of the results. utive positions of the user. Note that the filtering pro-
cedure explained earlier can have a large impact on this
2.2. Features final measure.

We defined 50 features to summarize users’ behavior.
Each feature represents one particular aspect of users
behavior as a single number, such as the number of in-  After computing the values of each feature for each
coming or outgoing calls, the number of people who user, we analyzed the interdependencies between these
called or were being called by the user, the position (co- features using a correlation analysis. As mentioned ear-
ordinates) of the user (mean and deviation), the coor- lier, we considered 100000 randomly selected users.
dinates of the two most frequently used antennas, the We used t-statistics to confirm that our results are also
durations of incoming or outgoing calls (mean and de- valid for the complete dataset. In some cases, the cor-
viation), the distances of the incoming or outgoing calls relations are better analyzed on a logarithmic scale, and
(mean and deviation), the directions of the incoming or we have therefore also analyzed the logarithmic corre-
outgoing calls (mean and deviation) and various move- lations.
ment measures. Table 1 shows some of the correlations for the

Individual features themselves can contain consider- 100 000 randomly selected users. The data in this ta-
able information. For example, by analyzing the aver- ble shows that movement-related features are correlated
age locations of the users, we obtained information on with some but not all of the other features. Some pairs of
the distribution of users across the country, and large features there, such as the number of calls and the num-
cities can be recognized as bright spots in the left panel ber of callers, are highly correlated as expected. Other
of Fig.[. pairs of features, such as the diameter of the convex

2.3. Correlation Analysis
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The vectomw; points toward the direction in which the
Figure 2: lllustration of the basic concept behind (a) sample variance of the data is maximized. This is of
principal component analysis and (b) cluster analysis. course an approximation of what we would get using

the full (unknown) distribution ofX. Having defined

the firstk — 1 vectors, thé-th is determined as
hull and the average duration of a call, exhibit weaker

correlations. Note that the correlation measures only IR k1 T 0

the linear dependencies between two features, and more Whe = a‘rl\g,;wlrjlaxﬁ Z (W (X‘ - Z WiW; X'))
detailed relationships might be uncovered using more =t =1

complex methods. We do not pursue this further here, ~ argmax Var [WTX], (4)
but instead turn to an analysis of the redundancy of the Iwl=1, wL (W)}

data.

which is thus chosen to achieve the highest variance
possible while being orthogonal ] to the previous
2.4. Principal Component Analysis choices. The vectorsx/v()f':l can be #iciently com-
puted from the (estimate of the) covariance malrix

We now analyze the interdependencies between fea-E [ X XT|, since vectow;, i € {1,...,d}, is an eigenvec-
tures using another approach. To what extent are the an-or of the sample covariance matrix corresponding to its
alyzed features redundant? In other words, how much j_th |argest eigenvalue. The basic concept behind PCA
of the information represented by one feature can be ex-is jljustrated in Fig[R.
pressed by (a combination of) other features? To ad- Qur PCA analysis revealed high redundancy among
dress this question, we used principal component anal-the features analyzed. Talle 2 shows the results of this
ysis (PCA), which is widely used in various disciplines. analysis. It can be seen that if we allow a 1% (mean
The basic goal of PCA is to reduce the dimensions of the square) error in the variance, the number of features can
data. It can be proven that PCA provides an optimal lin- pe reduced by more than 50 % (from 50 to 24). If the
ear transformation for mean-square-based dimensional-a|lowed error is raised to 5 %, we can further reduce the
ity reduction [27]. number of features to 5, which represents a compres-

The core idea of PCA is as follow. Leg,...,X, € sion rate of 90%. In other words, we can build five
R? be (independent) realizations of a random vedtpr  components using a linear combination of the original
where we assume th&@X] = 0 (which can be guar-  features, and using only the values of these five com-
anteed, for example, by substracting the sample meanponents, we can determine the values of any of the 50

from the measurements). In our case, the vectq) { original features with a 5 % mean-square error. This im-
represent users, while each entry corresponds to a feaplies that the features have many interdependencies and
ture. are highly redundant.

We aim at findingorthonormalvectorswi, ..., wy € In order to identify which features are most relevant,

RY, called the principal components, with the property we determined their importance as follows. PCA pro-
that for allk € {1,...,d}, the linearly transformed vec-  duces a set of orthogonal vectorm)ezl, which point

tor Y = W] X, whereW is [wi,..., W], explains the  toward the directions of maximum variance. As noted
maximum possible variance of In other words, if we earlier they are eigenvectors corresponding to eigenval-
transform our datasdd = [xy, ..., %] by Sk = WkTD, ues of the sample covariance matrix. Furthermore, the
then we can reconstruct the matiixe R™" from the i-th eigenvalue;, equals to the (sample) variance of
matrix S, € R®" (usingW) with the smallest possible s = w!'D. Then, each original feature can be identi-
mean square error. Note that sometimes the rov&pof  fied by an element of the canonical basis. For example,
i.e.,s5 = WD are called the principal components and feature 1 can be identified by = (1,0,...,0)". The
thew;’s are referred to as loadings or ¢heients. importance of featurecan then be defined as the max-

A recursive formulation of PCA can be given as fol- norm of the projected vecta on the basis defined by
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Table 2: Compression of Features by Principal ComponenlyAisa

| Variance Kept| Mean Square Err]| Dimen. Required Compress. Rate

99% 1% 24 52%
98% 2% 13 74%
95% 5% 5 90%

(vvi//li)id:l. The basis was thus scaled to produce larger can explain the dataset with minimal mean square er-
coordinates in directions of higher variances. Note that ror. Clustering, however, concentrates on local simi-
we have also scaled the scores such that the most impordarities, and tries to find clusters in which the feature
tant feature has a relative importance of 1. vectors are “close” to each other. Nevertheless, various

Fig.[3 presents a list of the features in order of impor- geographical features have key importance according to
tance. The most important features, such as the averagéoth orderings. The most notablefdrence concerns
position of the user and the coordinates of the two most the diameter of the convex hull, which has a very high
often used antennas, are geographic features. This in-importance in clustering, while it has a relatively low
dicates that the locations of the users and their calls areimportance in PCA. From the PCA analysis this implies
among the most important characteristics. that the variance in the diameter of the convex hullis not
important for explaining a large part of the data. From
the cluster analysis, theftiérences in the diameter of
the convex hull are important, even though the variance
might not contribute that much. This suggests an inter-
esting défect of the diameter of the convex hull. Besides
the obvious importance of theposition when cluster-
ing people, the diameter of the convex hull separates
people that share similgrpositions. In conclusion, the
features that are important for clustering people are: (1)
firstantenna; (2) second antenna; (3) diameter of convex
hull; and (4) average position.

2.5. Cluster Analysis

After analyzing the data using PCA, we performed
cluster analysis, to identify typical user classes based
on calling behaviors. We used the subtractive cluster-
ing method|[28] illustrated in Fig2, which is a variant
of the classical mountain method. An advantage of the
subtractive clustering method is that it can identify the
number of clusters required.

The application of subtractive clustering to the nor-
malized data for 100 000 uniformly selected customers
resulted in 5 clusters. Each of these clusters is identi-
fied by its central element (a vector of feature values) 3. Frequent Locations
and its range of influence. As with the PCA, we wished
to identify the main constituent features of these clus-  In the previous section, we analyzed several features
ters. We therefore performed a similar analysis as for and concluded that the most important ones are related
the PCA, using the vectors of the cluster centers as theto geography. Additionally, we observed that most peo-
basis for the dominant feature subspace. The results ofple spend most of their time in only a few locations.
this ordering, presented in F[g. 4, indicate that location- In this section, we focus on characterizing these fre-
and movement-related features are important character-quent locations for each user by analyzing weekly call-
istics, similar to PCA. ing patterns. Once these frequent locations are charac-

Note that both PCA and cluster analysis reveal clear terized, we analyze them in greater depth. A related,
differences in importance between thandy coordi- although dfferent, concept of habitals [29] was recently
nates. This can be expected for an elongated countryintroduced, where habitats are clusters of the associated
such as Portugal and is probably aggravated by the factMarkov mobility network. However, a single habitat
that most people live along the coast. might contain several frequent locations.

Although the features concerning tigecoordinates As explained in Section 2.1, the data are noisy, and
have a similar importance in both the PCA and cluster often, any one of multiple antennas can be used to make
analysis, there are some cleaffdiences as well. In a call from a given position. Because this can be true
general, an explanation of this could be that PCA fo- for frequent locations such as home and tffiéce, we
cuses on global characteristics, it tries to build compo- first develop a method for estimating which antennas are
nents (by linear combination of feature vectors) which relevant for characterizing such locations.
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Feature Name Importance Feature Name Importance

1| Avg.PosY 1,0000 26 | Dev.In.Direction.Y 0,5580
2 1st.AntennaY 0,9866 27 | Dev.Out.Duration 0,5463
3 2nd.AntennaY 0,9795 28| SVD.Sigma.2 0,5447
4 1st.Antenna.X 0,8131 29| Avg.Pos.Angle 0,5445
5 Avg.Pos.X 0,7979 30 Dev.In.Distance 0,5332
6| Avg.In.DirectionY 0,7824 31| Dev.Out.Dir.Angle 0,5332
7| 2nd.Antenna.X 0,7682 32| Diam.Conv.Hull 0,5297
8| No.Antennas 0,6943 33| Avg.In.Distance 0,5185
9| Avg.In.Dir.Angle 0,6694 34| Avg.Out.Dir.Angle 0,5185
10 | No.Contacts 0,6316 35| Avg.Out.Distance 0,4906
11| Dev.Out.Direction.Y 0,6298 36| Avg.Pos.Length 0,4906
12| No.In(coming).Calls 0,6207 37| No.Antennas.50% 0,4791
13 | Dev.Out.Distance 0,6169 38| Dev.Out.Direction.X 0,4611
14 | Dev.Pos.Length 0,6169 39| Dev.Pos.X 0,4388
15| No.In.Callers 0,6168 40| Avg.InTimeP 0,4351
16 | No.Antennas.90% 0,6041 41| Dev.In.Direction.X 0,4311
17 | Avg.In.Duration 0,5926 42 | Dev.In.Dir.Angle 0,4210
18| No.Out(going).Calls 0,5922 43| Line.Segm.Length 0,3911
19| Dev.PosY 0,5866 44| Avg.Out.TimeP 0,3774
20| Avg.Out.Direction.X 0,5812 45| SVD.Sigma.l 0,3763
21| Avg.Out.Duration 0,5777 46| Dev.In.TimeP 0,3743
22| Dev.In.Duration 0,5771 47 | No.Out.Callers 0,3664
23| Avg.Out.Direction.Y 0,5764 48 | Dev.Out.TimeP 0,3575
24 | Avg.In.Direction.X 0,5657 49| Distance.1st.2nd.Ant 0,2852
25| No.Antennas.75% 0,5582 50| Dev.Pos.Angle 0,2842

Figure 3: The relative importance of each feature accortdirRCA, defined as the max-norm of the projection of the
feature basis on the principal components.



1 1st.Antenna.Y 1,0000 26 | Avg.Out.Dir.Angle 0,1547
2| 2nd.Antenna.Y 1,0000 27 | Avg.In.Distance 0,1547
3| Diam.Conv.Hull 1,0000 28 | Dev.In.Duration 0,1407
4| Avg.Pos.Y 1,0000 29| Avg.Pos.Length 0,1393
5| Avg.In.Dir.Angle 0,4914 30 | Avg.Out.Distance 0,1393
6 | Dev.In.Distance 0,4729 31| Avg.In.TimeP 0,1369
7 | Dev.Out.Dir. Angle 0,4729 32| Dev.Out.TimeP 0,1126
8| 1st.Antenna.X 0,4620 33| No.Contacts 0,111
9| 2nd.Antenna.X 0,4597 34 | Dev.Out.Duration 0,1034
10| Avg.Pos.X 0,4381 35| No.In.Callers 0,0966
11 Dev.Out.Distance 0,3616 36 | Distance.1st.2nd.Ant 0,0959
12 | Dev.Pos.Length 0,3616 37| No.Antennas.90% 0,0872
13 | Dev.In.Direction.Y 0,3548 38 | No.Antennas 0,0829
14 | Dev.Out.Direction.X 0,3296 39 | Avg.In.Duration 0,0679
15| Dev.In.TimeP 0,3210 40| No.In(coming).Calls 0,0669
16 | Dev.Out.Direction.Y 0,3184 41| No.Antennas.75% 0,0648
17 | Dev.Pos.X 0,3181 42| Avg.Out.Duration 0,0560
18 | Dev.In.Direction.X 0,3147 43| Avg.In.Direction.Y 0,0502
19 | Avg.Pos.Angle 0,3050 44 | No.Antennas.50% 0,0391
20| Dev.Pos.Y 0,2706 45| Avg.In.Direction.X 0,0388
21| Dev.In.Dir.Angle 0,2659 46 | Avg.Out.Direction.Y 0,0233
22| SVD.Sigma.1 0,2440 47| Line.Segm.Length 0,0164
23| Dev.Pos.Angle 0,2334 48| Avg.Out.Direction.X 0,0158
24 | Avg.Out.TimeP 0,2051 49 | No.Out(going).Calls 0,0155
25| SVD.Sigma.2 0,1771 50| No.Out.Callers 0,0017

Figure 4: The relative importance of each feature accorttimjuster analysis.

After extracting the frequent locations for each user, requires a certain regularity of users, and excludes users
we estimate these positions more precisely using a max-with highly bursty behavior|6]. From this selection, we
imum likelihood approach. We then present various selected a random sample of 100 000 users.
statistics using these estimated positions. In particular  For detecting frequent locations, it is appropriate to
we estimate the amount of time people spend at work pegin by identifying the most frequently used antenna
and home, characterizeffiirent combinations of fre-  (MFA). However, as stated earlier, the same antenna is
quent locations (multiple ‘homes’ or fices’), estimate  not always used for calls made from a given position
the geographical density of homes arffiaes, compare  (due to load balancing or thefects of noise on the sig-
our estimates to independent statistics and, finaIIy, an- na|)_ Hence, other antennas located near the MFA may
alyze distances between home arfice (commuting  also be used to serve the frequent location. We must

distances). therefore consider sets of antennas that are relatively
close together.
3.1. Detection of Frequent Locations We first performed a Voronoi tessellation, which par-

Detecting the most common locations of a user is titions the space into cells based on the distance between
only possible if enough calls involving that user are each point and the closest antenna. Each Voronoi cell
recordell. For users who make only a few calls, no includes the set of points that are closer to the antenna
locations can be called “frequent” with any certainty. located in that cell than to any other antenna. Based on
We therefore selected only users who make at least onethe Voronoi tessellation, a graph can be created in which
call a day on average and who make consecutive callsnodes are neighbors if their associated Voronoi cells are
within 24 hours 80% of the time. The latter constraint adjacent. Each node corresponds to an antenna, and its

neighbors are called the Delaunay neighbors.

1n this section, we include both calls and text messagesuseca We next grouped antennas around the MFA based

we want to maximize the information on antenna usage; we tefe 0N Delaunay neig_hborsh|p. More precisely, we defined
both as “calls”. the Delaunay radius of each antenna to be the largest
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the workweek, with dierent behavior on weekends as
compared to work days.

We collected all of the calls made using antennas as-
sociated with each frequent location. Because we have
the time stamps (beginning and end) of each call, we
know the times at which each frequent location is used.
L AU PR AL The description of this usage at the weekly scale seems

to be especially suitable for further analysis. We there-
fore divided the week into 168 hours and aggregated
Figure 5: Histogram of the number of frequent locations the usage pattern of the whole period. This resulted in a
per user 168-dimensional vector per frequent location with the
calling frequency for one hour in each entry.

) ) Based on the aggregated call vectors for all frequent
distance between an antenna and any of its Dela””aylocations, we performed k-means clustering. We ran
ng_ighbors (this _is later used in thg estimat.ion of the po- this clustering fork = {2,...,10} to investigate what
sition; see Sectidn 3.3.2 for more information). We then patterns of usage could be distinguished. We found that
merged all antennas around the MFA that are within ,gingk = 3 yielded clear results, as displayed in fig. 6.
twice this radgEand assigned them one “location”, the - The first cluster clearly represents a pattern related to
position of which will be defined later. work. During the weekdays, an increase in the usage of

After identifying the first MFA and merging the sur-  hese antennas occurs during the morning, followed by
rounding antennas, we moved on to the remaining an- 3 small dip around noon, and a decrease in usage from
tennas, selecting the most frequently used of those and;qund 6 p.m. on. During the weekend, these anten-
repeating the procedure described above. We continuedn s are used far less. This pattern is in excellent agree-
iterating until we identified a set of antennas that repre- ment with independent statistics from the Portuguese
sented less than 5% of a user's calls. We repeated thisyational Institute of Statistics (INE) in terms of time
for each user in our §election and thus obtained a nUM-ghent at work, as shown in FIg. 6. The second cluster re-
ber of frequent locations for all users. flects a pattern of usage that appears to be more closely

The results of this procedure are summarized inlfig. 5 555ociated with a home position. The usage of these
a_md indicate that the average number of frequent loca- gntennas is lower during the day, and the maximum us-
tions per user is approximatelyl and that 95% of the 546 occurs during the evening. These antennas are also
users have fewer than 4 frequent Io_cations. T_his implies ,sed more during the weekend than are the antennas in
that the 3 or 4 most common locations ardfisient to the first cluster. Finally, the third cluster appears simply
predict the position of user, most of the time [8]. A sub- 5 contain locations that do not follow the dynamics of
stantial number of users have only one single frequent ihe previous two clusters. This cluster follows the more
location, which is usually anfbice or a home location general dynamic displayed in FIg. 6.

(as we will see later on). This could reflect the pos- e observed that when more than three clusters are
session of separate business and private phones, one ofgnsidered, they tend to yield results very similar to
which is (almost) exclusively used at work and the other i9se shown here. We expected that we would be able
only at home. to identify additional patterns of usage, such as those
i i of calls made by students with afiirent rhythm from
3.2. Clustering of Weekly Calling Patterns working people or calls made from weekend houses that

The data show two clearly identifiable periodic dy- show no activity during the week, but we did not ob-
namics in mobile phone use: a daily cycle and a weekly serve these patterns. Such patterns certainly do exist,
cycle, as illustrated in Fig.]6. The daily cycle largely but they appear to be marginal when compared to the
follows the human circadian rhythm, with a clear drop established home andfe routine. Hence, there ap-
in activity during the night, a gradual increase in the pears to be no identifiable patterns of usage other than
morning and a decrease in the evening, with a small dip the home and fiice patterns described above. How-
around lunch time. The weekly dynamic is related to ever, using only two clusters obfuscates this result, and
the separation between home affiidoe positions is less

2We observe that taking twice the Delaunay radius yields gor er clear in this case. . .
of less than % for estimating positions. See Seciion 3.3.2 for more Th? top 10 mOSt frequent Comb|nat|0n§ of frequent
information. locations are displayed in Talile 3. Approximately 32%
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of the users have either a single home location or a sin-
Figure 6: Weekly dynamics on average (a) and for gle dfice location alone, whereas only 3.5% have only a
the three clusters (b) detected using k-means C|uster-3ing|e unidentified location. For users with two frequent
ing: home, dice and the remainder, shown along with locations, the most common combination is one home
independent time usage statistics from the Portugueselocation and one unidentified location. Only 6.6% of all
National Institute of Statistics (INE) [30]. Using more users have the combination of one home location, one
clusters yields similar results. The dotted lines indicate office location and no unidentified locations. Approxi-
noon of each day. mately 85% of the users have at most one homeand

one dfice location, and approximately 12% of the users

have exactly one home and on@ce location (and pos-

sibly multiple unidentified locations).

Of all frequent locations, approximately 60% ca be
classified as “home” or “fice” (as in the first two
columns of Tablé]3). We observed that users tend to

#Home # Office # Unidentified % have no more than two identifiable positions, as de-
1 168 picted in Fig[¥. The majority of users have only one
1 165 identifiable location, which is by definition either home
1 1 9.1 or office. For users with two identifiable locations, over
1 1 6.6 50% have both a home and affice, and the rest has
1 1 6.0 either two homes or twoffices.
1 2 5.0
1 3.5 3.3. Estimating the Position of Frequent Locations
L L ; 2451 3.3.1. Basic model
1 2 27 We propose a model to estimate the position of the

home, the ffice and other frequent locations. We con-

Table 3: The 10 most frequent combinations of frequent Sider a simplified version of the model proposed.in [26],
locations. Each combination is composed of the num- Which was also used in[31]. The underlying idea is that
ber of homes, fiices and unidentified locations a user US€rs connect to the antenna that has the highest signal
has. Each row indicates such a combination. The empty Strength, which is not necessarily the closest antenna.
entries indicate no such type of location is presentin a  We begin by estimating the total signal strength of an
combination. The last column contains the percentage antennd at a certain positiox. We assume, similarly
of how often such a combination occurs. to [26], that the total signal strength consists of three
components: the power of the antennas, the loss of sig-
nal strength over distance and some stochastic fading of
the signal due to scattering and reflection in the environ-
ment. Specifically, we use the following parameters.



e The position of antenniais denoted byx;.

e The power is denoted by, and we assume this
to be constant and equal for all antennas because
we have no information regarding the power of the
antennas. Thereforg, = p for all i.

e Theloss of signal at positiaxfor antennais mod-

eled as
1

X = XillF” ®)

whereg is a parameter indicating how quickly the
signal decays.

Li(x) =

e The so-called Rayleigh fading of the signal from
antenna can be modeled by a unit mean exponen-
tial random variabldR, [32], for which the cumu-
lative distribution function (cdf) is

PrR<r)=F(r)=1-¢€". (6)
Furthermore, we assume &lto be independent.

The total signal strengt;(x) of antenna at locationx
is then modeled as

Si(¥) = pLI(XR, (7)

and we model the probability that a user at position
connects to antennaPr@ = i|x), as the probability that
the signal strength of antennés larger than that of any
other antenna:

Pr@=ilx) = PrSi(x) > Sj(x), Vvj) Figure 8: Probability density Pa(= i|x) (represented
_ l—l PrSi(%) > Sj(x). 8) by top‘ograp_hic cu_rves) fpra particular ant?m,(n-:entral
j black ‘X’), with neighboring antennas (red ‘X’s) and the
local Voronoi tessellation (dark lines) also shown. The
This probability density is displayed in F{g. 8. probability density can be seen as a smoothed Voronoi
This probability can be seen as a smoothed Voronoi tessellation in which there is a small probability of con-
tessellation, in which a user will always connect to the nection to antennawhen the user is in another Voronoi
closest antenna, by taking the limit 8f —» oo. In cell.
that case, we are essentially considering the situation
in which the path loss is dominant over the Rayleigh
fading. Hence, little noise is involved, and whenever a
closer antenna exists, it will be used.

3.3.2. Antenna neighborhoods

As mentioned in the previous section, the probability
that a user will connect to a specific antenna depends
on the position of other nearby antennas. The relevant
set of antenna& can be rather large, which can slow
down the computation of the probabilities. Using a lo-
cal approximation might accelerate this process without
affecting the results.
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The idea of using a local approximation is tied to the
decreased probability that a call will be linked to an an-

3.3.3. Maximum Likelihood Estimation
We use the model explained above to more accurately

tennathatis far away. Only some of the antennas aroundestimate the position of each frequent location. For each

a given position are in fact relevant. It therefore seems

such location, we know the number of caflsnmade us-

natural to construct local neighborhoods of antennas soing antenna. The probability thak; calls were made

as to make the method moréieient without introduc-
ing any significant error.

We define the neighborhod( and the domaitD; of
antenna to consist of the smallest circle enclosing at
least all of the Delaunay neighbors (and possibly more).
As mentioned previously, the Delaunay neighbors are
those antennas located in adjacent Voronoi cells.

using antenna given positionx is then Pré = i|x)X.
Hence, the log likelihood of observing call frequencies
k for the antennas iX¢, wheref is the MFA of a fre-
guent location, for a certain positionis

log L(XK) = " ki log Pr@a = ilx).

ieX¢

(13)

« For each antenna, we select all Delaunay neighbors The maximum likelihood estimate (MLEJof the posi-
and then select the maximum distance between thetion of a frequent location is then given by

focal antenna and any of these neighbors:

pi = maxd(X, Xj)|j Delaunay neigh. of}, (9)
whered(X;, X;) is the distance between anterina
andj.

We then define the domain

D; = (X1 - Xill < 5pi} (10)
as the region within radiugp;, wheres is a scaling
factor. We observe that choosiag= 2 leads to
an error of less than.0% in the computation of
Pr@=i|x) compareﬁ to using the entire seX.

Finally, the set of Delaunay neigthris taken as
all antennas within this region:

Xi ={j|Xj EZ)i fij GX}. (11)

Note that this set contains at least all of the Delau-
nay neighbors and may also contain other anten-
nas.

Finally, using equatiori{8), we approximate the prob-
ability as

Pr@=i|x) ~ [_] Pr(Si(x) > Sj(3)).

jeXi

(12)

leading to a large reduction in the computational time
required.

Saverage error based on 1000 random points

4To deal with antennas near the border of the country (for whic
the Delaunay neighbors can be far away), we take this border i
account, and create a slightlyfidirent neighbor set.

11

X = arg r’rla>dog L(XK). (14)

To find the MLE, we employ a derivative-free op-
timization scheme because the gradient of the likeli-
hood function is costly to evaluate. In particular, we
use the Nelder-Mead algorithm|33], initialized with the
weighted average position of the antennas associated
with the frequent location. The distance between the
average position of the antennas and the MLETskin
on average and reaches a maximum of approximately
35 km. This shows that although using the average po-
sition provides a reasonable approximation, it is not al-
ways accurate.

3.4. Results

We now analyze the results of the position estimation.
First, we present our results concerning the geographi-
cal distribution of frequent locations around the country
and compare these results to independent statistics. We
then analyze commuting distances, i.e., the distances of
travel between home andfae, and develop a model of
thgﬁnumber of commuters between each pair of coun-
tie

3.4.1. Population density estimation

The position estimates of all frequent locations can
be used to analyze the population distribution through-
out the country. Using the county level data, we counted
the number of home locations for each county. We then
compared these results to population density data ob-
tained from thdnstituto Nacional de EstatistiB{INE).

5We used the NUTS-3 data defined by Eurostat, which, in the case
of Portugal, consists of groups of municipalities; we reéethese as
“counties” for simplicity.

Shttp;/www.ine.pt



Figure 9: (a) Population sizes per county throughout thettgi{based on statistics from INE), (b) estimated number
of homes per county, and (c) the distribution of all frequenations. Lighter colors indicate higher values.

As shown in Fig[ D, there is a strong correspondence
between the INE population data for each county and
our estimate. The correlation between the two is 0.92.
This indicates that we can accurately estimate popula-
tion size based on the mobile phone data. A more ac-
curate density plot of the frequent locations is shown
in Fig.[d, which illustrate that these locations are con-

centrated in the cities. A comparison of Hig. 9 to the

distribution of the average positions of users over the
entire period (Fig.11), shows that the distribution of fre-

guent locations is more pronounced. Average positions
are likely to be distorted by commutes and to interpolate
between home andiice.

3.4.2. Commuting distances

The home andffice positions determined above can
be used to estimate commuting distances. For individu-
als who have more than one home or offeee, multiple
commuting distances could be calculated, but it would
be unclear which distance is the “correct” one. There-
fore, for this analysis, we considered only the 12% of
users who have exactly one home and offee (and
possibly some unidentified frequent locations). This
means that each user considered has exactly one com-
muting distance. These commutes are plotted in[Eig. 10,
with smaller distances indicated in brighter colors. Two
things stand out on this map. First, the two largest cities Figure 10: Commute map for our sample of users.
in Portugal, Porto and_ I__|sbon, are clearly dls_cernlble. Brighter colors indicate smaller commuting distances.
Second, most of the cities appear to predominantly at- \y,¢t of the commutes cover only small distances, al-
tract people living in the immediate surroundings. though some commutes span half the country. The num-

The distribution of commuting distances depicted in o of commutes decays approximately log-normally
Fig.[11 appears to befacted by the location of Porto with distance.

and Lisbon. Two dferent regimes can be discerned:
12
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Figure 11: The distribution of commuting distances re-

vealed by the analysis of mobile phone data. These dis-

tances exhibit a log-normal distribution fdr< 150 km
(blue line). The full distribution is shown, with the line
at 150 km separating the twoftérent regimes. These

two distinct regimes probably arise because almost all

of continental Portugal is within 150 km of either Porto
or Lisbon.

v to be estimated from the data.

Here, we formulate the gravity model in terms of the
number of trips (commutes) made between couaiyd
countyj. Instead of simply considering the population
size asP; andP;, we can take into account our previous
calculations of the distributions of both home positions
and dfice positions. The probability of a trip frofin
to j can then be formulated in terms of the number of
home locations at the origif; and the number offtice
locations at the destinatid;.

Again, we discern two regimes: a close-range regime
with di; < 150 km and a long-distance regime with
dij > 150 km. Fitting both the power law decay and
the exponential decay, we find that the power law decay
provides a slightly better fit. The results are displayed
in Fig.[12 and in Tabl€l4. Interestingly, the decay dis-
tance parametey for large distances is not significant,
suggesting that for distancely > 150 km, the num-
ber of trips no longer depends on the actual distance. In
fact, the only cofficient that is significant for large dis-
tances is the cdicient of the number of fices at the
destination. Thus, for larger distances, only the number
of work opportunities at the destination appears to be
important.

The fit of the model is better when the numbers of
home and fiice locations per county are used than when
the population sizes are used. As shown in Table 4, the

one regime reflecting commuting distances of less than values ofRR? for the two regimes are.52 and 026, re-
150 km and the other reflecting larger distances. This spectively, when the numbers of home arffice loca-

coincides with the distance between Lisbon and Porto,

which is approximately 300 km. In fact, most of Por-
tugal is within 150 km of one of these two cities. This

tions are used, compared tet@ and 024, respectively,
when population sizes are used. Hence, it is worth tak-
ing into account the numbers offces and homes when

suggests that most people tend to work no further away modeling commuting distances instead of simply using

than the closest largest city, i.e., it is unlikely that pleop
living near Porto work in Lisbon. The set of commuting

population size as an approximation for both. In the
present case, the model slightly overestimates the num-

distances that are less than 150 km can be reasonablyper of shorter commutes, indicating that there is room

well fitted using a log-normal distribution with parame-
tersu = 2.35 ando- = 0.94, as displayed in Fig.11.

A common model for analyzing commuting distance
is the gravity model [11, 34], although recently another
parameterless model has been suggested [35].
model formulates the number of tripg; made between
two locationsi and j as proportional to the population
sizes at the origi®; and at the destinatidd;, with some
decay, depending on the distangie betweeni and j.
More precisely, the model is formulated as

PIP]
Wij ~ , 15

1) f(d”) ( )
where f(d;j) is usually taken as either a power Iad?y

or an exponential decaydi, with parameters, 8 and
13

for improvement. This deviation might be due to the
aggregation of information at a small resolution. On the
other hand, this might also be due to a refé¢et: dis-
tances below some threshold have ffee. In this case,

Thistrips under about 2 km should be almost fieated by

distance. Higher resolution data is needed to investigate
this in more detail.

4, Conclusion

In this study, we analyzed the behavior of mobile
phone customers based on their calling habits. We first
sampled 100 000 customers randomly and filtered their
locations, as these are based on associated antenna lo-
cations, which are subject to disturbances. We then de-
fined and computed 50 features that describe the call-



Codficient Variable dij <150 km  d;j > 150 km

a Number of homes at origin .07 +0.013 0018+0.013
B Number of dfices at destination .P1** + 0.013 Q030 +0.012
vy Distance ®B7*+£0.018 Q013+0.11

R? 0.52 026

R? (exponential fit) o6 026

Table 4: Fitted parameters afd of the gravity model withf(d;;) = d;j?, with standard errors reported. We also
reportR? for the exponential fif (cij) = €%, which is slightly worse:* p < 0.001,* p < 0.05.
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Figure 12: Plots of the prediction ratm; /wij for commuting distance af < 150 km (left panels) and;j > 150 km
(right panels) for (a) the power law decdiyd;;) = dﬁ and (b) the exponential decdydi;) = €%. Red squares
indicate mean values, and blue circles indicate medians.
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ing behaviors of the customers. We performed a cor- had no role in study design, data collection and analysis,
relation analysis on these features, which showed thatdecision to publish, or preparation of the manuscript.

movement- and location-related features are correlated
with many other features. We then analyzed the data us-

ing principal component analysis (PCA). This showed References

that the original features are highly redundant and can
be dficiently compressed if some reconstruction error
(e.g., 5%) is allowed. We also performed a cluster anal-
ysis and that revealed a small number of typical user |5
classes. We computed the relative importance of each
feature in the PCA and the cluster analysis and found
that location- and movement-related features are espe-
cially important in both cases. We therefore analyzed
the users’ most common locations.

We clustered these frequent locations based on
weekly calling patterns and found that only home and
office locations could be clearly identified. Other pat-
terns of usage (such as use from weekend houses) are
surely present in the data, but these are marginal when [6]
compared to the clear pattern of use from home and of- 7]
fice locations. We characterized the number of frequent
locations for each user and the most common combi-
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account.

The present study represents an exploratory analy-[13]
sis of the data. Further research into the frequent lo-
cations and associated user behavior should be under-14]
taken. This data set contains both geographical data and[
social network data, and it would be interesting to fur-
ther analyze the interaction between the two.
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