
Combining Lift-and-Project and Reduce-and-Split

Egon Balas∗

Tepper School of Business, Carnegie Mellon University, PA

Email: eb17@andrew.cmu.edu

Gérard Cornuéjols†

Tepper School of Business, Carnegie Mellon University, PA

Email: gc0v@andrew.cmu.edu

Tamás Kis‡

Computer and Automation Research Institute,

Hungarian Academy of Sciences, Hungary

Email: tamas.kis@sztaki.hu

Giacomo Nannicini§

Tepper School of Business, Carnegie Mellon University, PA

Email: nannicin@andrew.cmu.edu

January 24, 2012

Abstract

Split cuts constitute a class of cutting planes that has been successfully em-
ployed by the majority of Branch-and-Cut solvers for Mixed Integer Linear Pro-
grams. Given a basis of the LP relaxation and a split disjunction, the correspond-
ing split cut can be computed with a closed form expression. In this paper, we
use the Lift-and-Project framework [11] to provide the basis, and the Reduce-and-
Split algorithm [19] to compute the split disjunction. We propose a cut generation
algorithm that starts from a Gomory Mixed Integer cut and alternates between
Lift-and-Project and Reduce-and-Split in order to strengthen it. This paper has
two main contributions. First, we extend the Balas and Perregaard procedure for
strengthening cuts arising from split disjunctions involving one variable, to split dis-
junctions on multiple variables. Second, we apply the Reduce-and-Split algorithm
to non-optimal bases of the LP relaxation. We provide detailed computational test-
ing of the proposed methods.
Keywords: Integer Programming, Computational Analysis, Branch-and-Cut, Lift-
and-Project.

∗Supported by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
†Supported by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
‡Supported by the Hungarian Research Fund OTKA K76810.
§Supported by an IBM Fellowship.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48294182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION 2

1 Introduction

Mixed Integer Linear Programs (MILPs), i.e. mathematical programs with linear ob-
jective and constraints and both continuous and integer variables, arise in a number of
real-world applications, and their solution is therefore of great practical interest. The
most successful softwares for solving general MILPs utilize a Branch-and-Cut algorithm,
which combines cutting planes and Branch-and-Bound. Several classes of cutting planes
used by these softwares, such as Gomory Mixed Integer (GMI) cuts [20], Mixed Integer
Rounding (MIR) cuts [23] and Lift-and-Project cuts [8], fall into the category of split
cuts [18], that is, disjunctive cuts derived from two parallel hyperplanes. It was shown
in [4] that every split cut can be generated as an intersection cut [5] from an appropriate
choice of a basis of the LP relaxation and a split disjunction. The advantage of generating
split cuts as intersection cuts is that we can use closed form expressions, without having
to resort to disjunctive programming [6]. In this paper, we propose a split cut gener-
ation procedure that is based on Lift-and-Project [9, 11] and Reduce-and-Split [3, 19].
In particular, we use the former to select a basis of the LP relaxation, and the latter to
compute a split disjunction.

Lift-and-Project (L&P) cuts have been successfully used in the Branch-and-Cut frame-
work since the 90s [9]. A significant improvement in their practical performance came
a few years later, when a procedure to generate L&P cuts without solving the higher-
dimensional Cut Generating Linear Program (CGLP) was introduced by Balas and Per-
regaard [11]. This procedure starts with a split cut arising from a violated two-term
disjunction involving a single variable and the optimal basis of the LP relaxation (in
other words, a GMI cut), and mimicks the solution of the CGLP by performing pivots
in the original simplex tableau. The procedure yields a new (possibly infeasible) basis,
from which a stronger cut than the initial GMI cut can be generated. This procedure
has been incorporated into commercial solvers like Xpress-MP [24], MOPS [25], and sev-
eral versions of it have been implemented in the open source project COIN-OR Cgl [16].
One of the main contributions of this paper consists in an extension of this procedure to
split cuts arising from general split disjunctions, i.e. any violated two-term disjunction
involving an integral linear combination of integer variables. This yields a procedure
that, given any split disjunction and any basis, produces a different basis that gives rise
to a stronger cut.

In order to apply this extended L&P procedure, we need a method for generating an
initial split disjunction. We use the Reduce-and-Split (R&S) algorithm for this purpose.
R&S, first introduced in [3] and then revisited in [19], is a cut generation algorithm that
starts from an optimal LP basis and a split disjunction on one variable, and computes
a split disjunction involving several variables that (heuristically) yields a better cut.
Therefore, we have an algorithm to produce split disjunctions, which can be used to
initialize the L&P procedure.

Another contribution of this paper is that we apply R&S on non-optimal, possibly
infeasible, tableaux. As a consequence, we have a procedure that, given any split dis-
junction and any basis, produces a new, often better split disjunction for cut generation.
Thus, we can alternate between the two procedures introduced in this paper, and itera-
tively change both the basis and the split disjunction from which a split cut is generated.

We perform extensive computational experiments on a set of benchmark MILPs to
assess the effectiveness of our ideas. Our computational results show that, within a
Cut-and-Branch framework, the combination of the two cut generation algorithms yields
stronger cutting planes than L&P or R&S alone. We obtain the best results by alternating
between the two more than once.

2 NOTATION AND PRELIMINARIES 3

The rest of this paper is organized as follows. In Section 2 we introduce our notation
and provide the necessary theoretical background. In Section 3 we review in more detail
the Lift-and-Project procedure introduced in [11], and extend it to general split disjunc-
tions. Section 4 reviews the Reduce-and-Split method, and discusses its application on
non-optimal bases of the LP relaxation. In Section 5 we describe our cut generation
algorithm, which alternates between the Lift-and-Project and the Reduce-and-Split pro-
cedures. Section 6 presents an extensive computational evaluation. Section 7 concludes
the paper. Detailed tables of results can be found in the Appendix.

2 Notation and preliminaries

We are considering a MILP of the form:

min c⊤x
Ax ≥ b
x ≥ 0

∀j ∈ NI xj ∈ Z,















(MILP)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, N := {1, . . . , n}, NI := {1, . . . , p} with p ≤ n, and

where upper bounding constraints are subsumed by Ax ≥ b. In the sequel (LP) will
stand for the linear programming relaxation of (MILP). A split cut for (MILP) is a valid
inequality derived from a disjunction of the form

πx ≤ π0 ∨ πx ≥ π0 + 1, (1)

where πj is integer for j ∈ NI , πj = 0 for j ∈ N \NI , and π0 is an integer whose value
depends on the fractional point we want to cut off. For a given fractional point x̄, π0 is
chosen so as to have

π0 < πx̄ < π0 + 1, (2)

which yields π0 = ⌊πx̄⌋. If x̄ is a basic solution to (LP) such that x̄k is fractional and
k ∈ NI , then

xk ≤ ⌊x̄k⌋ ∨ xk ≥ ⌊x̄k⌋+ 1 (3)

is an elementary disjunction and it is a special case of (1).
A GMI cut from (1) (or from (3)) can be derived as follows. Rewrite (LP) in standard

form:
min c⊤x

(A,−I)x = b
x ≥ 0







(LP)s

where x ∈ R
n+m and the last m components are surplus variables. Let x̄ be a basic

solution, B(x̄) the set of indices of basic variables, and J(x̄) = N \ B(x̄) the set of
nonbasic variables. Then, the corresponding simplex tableau can be written as:

xi = x̄i −
∑

j∈J(x̄)

āijxj ∀i ∈ B(x̄). (4)

Let BI(x̄) = B(x̄) ∩ NI , JI(x̄) = J(x̄) ∩ NI , JC(x̄) = J(x̄) \ NI be the sets of integer
basic variables, integer nonbasic variables and continuous nonbasic variables, respectively.
Consider a linear combination with integer coefficients πi of those rows of (4) where

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 4

i ∈ BI(x̄):
∑

i∈BI(x̄)

πixi = x̂−
∑

j∈J(x̄)

âjxj , (5)

where
x̂ =

∑

i∈BI(x̄)
πix̄i

âj =
∑

i∈BI(x̄)
πiāij for j ∈ J(x̄).

(6)

Let π0 = ⌊x̂⌋, and define f0 = x̂−π0, fj = âj −⌊âj⌋ for all j ∈ J . If x̂ 6∈ Z, we can derive
from (5) the following valid inequality for (MILP):

∑

j∈JI(x̄):fj≤f0

fj
f0

xj +
∑

j∈JI(x̄):fj>f0

1− fj
1− f0

xj +

∑

j∈JC(x̄):âj≥0

âj
f0

xj −
∑

j∈JC(x̄):âj<0

âj
1− f0

xj ≥ 1.

(7)

This inequality is the GMI cut associated with the equation obtained through the row
multipliers πi; its validity is shown in [20]. Choosing πk = 1, πi = 0 ∀i 6= k yields the
GMI cut from row k of (4).

The derivation of (7) from (5) proceeds as follows. Consider the disjunction obtained
by substituting the right hand side of (5) into (1):

x̂−
∑

j∈J(x̄)

âjxj ≤ π0 ∨ x̂−
∑

j∈J(x̄)

âjxj ≥ π0 + 1.

Rewriting this gives

∑

j∈J(x̄)

âjxj ≥ f0 ∨
∑

j∈J(x̄)

(−âj)xj ≥ 1− f0.

The disjunctive cut obtained from the latter disjunction is

∑

j∈J(x̄):âj≥0

âj
f0

xj −
∑

j∈J(x̄):âj<0

âj
1− f0

xj ≥ 1. (8)

By applying the integer modularization procedure of Balas [6] and Balas and Jeroslow [7]
to (8), we obtain (7). Alternatively, (7) is the disjunctive cut from the following general
disjunction, obtained from π by strengthening the coefficients on the nonbasic integer
variables:

π̂i =



















πi if i ∈ BI(x̄)

⌊âi⌋ if i ∈ JI(x̄) and fi ≤ f0

⌈âi⌉ if i ∈ JI(x̄) and fi > f0

0 otherwise.

(9)

3 Lift-and-Project on general disjunctions

We start this section by reviewing the original Lift-and-Project procedure, then we in-
troduce one of the main contributions of this paper, namely the extension of the Lift-

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 5

and-Project procedure on the original simplex tableau to general two-term disjunctions.

3.1 Review of Lift-and-Project

Lift-and-Project cuts were introduced in [8], and [9]. These are cuts obtained from a
two-term disjunction of the form





Ax ≥ b
x ≥ 0

−xk ≥ 0



 ∨





Ax ≥ b
x ≥ 0
xk ≥ 1





where 1 ≤ k ≤ p with 0 < x̄k < 1. A lift-and-project cut from this disjunction is derived
by solving the so-called cut generating linear program (CGLP)k:

min αx̄ − β
α − uA + u0ek ≥ 0
α − − vA − v0ek ≥ 0

β − ub = 0
β − vb − v0 = 0

∑m
i=1 ui + u0 +

∑m
i=1 vi + v0 = 1

u, u0, v, v0 ≥ 0.

Here, ek is the k-th unit vector. The objective function maximizes the violation of the
cut αx ≥ β in point x̄. The last equation is a normalization constraint which ensures
that (CGLP)k always has a finite optimum.

Balas and Perregard observed that (CGLP)k can be solved to optimality in the original
simplex tableau [11]. In fact, they describe the precise correspondence between the
feasible bases of (CGLP)k and the bases of (LP)s. Notice that in this correspondence,
the bases of (LP)s are generally infeasible, i.e., in the corresponding LP solution, x may
have negative coordinates.

The L&P procedure is illustrated in Fig. 1, where the basic solution x̄ is to be cut
off, but the corresponding cut αx ≥ α0 is weaker than the one that can be derived after
pivoting to x̄′ and deriving the cut α′x ≥ α′

0 from that (infeasible) basic solution. The
rays ri for i = 1, 2 correspond to the non-basic columns of the simplex tableau in the
basic solution x̄, whereas r1 and r3 are those in the basis corresponding to x̄′.

3.2 Lift-and-Project applied to general split disjunctions

For the sake of compact notation, we define (Ã, b̃) as

(

Ã, b̃
)

:=

(

A b
I 0

)

,

where I is the n×n identity matrix. In order to apply the Lift-and-Project procedure to
a disjunction of the form (1), one could simply formulate the (CGLP) corresponding to

(

Ãx ≥ b̃
−πx ≥ −π0

)

∨

(

Ãx ≥ b̃
πx ≥ π0 + 1

)

. (10)

However, in order to take full advantage of the correspondence between the (CGLP) and
the (LP) established in [11], it will be preferable to introduce a new integer variable

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 6

r
2

x̄

r
1

r
3

x̄
′

α
′
x = α

′
0

αx = α0

xk ≤ ⌊x̄k⌋ xk ≥ ⌊x̄k⌋ + 1

Figure 1: Illustration of the Lift-and-Project procedure.

xn+m+1 to represent the difference between πx and π0:

πx− xn+m+1 = π0 (11)

Notice that, since πx is integer in any feasible solution of (MILP) and π0 is integer,
xn+m+1 has to be integer as well. Moreover, if xn+m+1 ≤ 0, then πx ≤ π0, while if
xn+m+1 ≥ 1, then πx ≥ π0 + 1, as desired. Using the new variable, we can rewrite (10):





Ãx ≥ b̃
πx− xn+m+1 = π0

xn+m+1 ≤ 0





∨





Ãx ≥ b̃
πx− xn+m+1 = π0

xn+m+1 ≥ 1



 . (12)

The important difference from the previous applications of the Lift-and-Project pro-
cedure to single rows (4) of the simplex tableau is the following. The equation (11) is
constructed in order to derive a cut from it. Once the cut is derived, the equation is
no longer needed and therefore it is discarded, along with the variable xn+m+1. On the
other hand, the variable xn+m+1, and its expression in terms of the current nonbasic
variables, is needed throughout the pivoting process carried out in order to (implicitly)
optimize the CGLP. Thus, we have to add a new row to the optimal (LP) tableau and
keep it until the cut is optimized. This could be done by simply adding the equation
πx − xn+m+1 = π0 to the constraint set of (MILP), and then computing the amended
simplex tableau corresponding to the current basis. Instead, one can derive the new row
as a closed form expression.

3.1 Proposition

Let (AB , AJ) be the partition of (A,−I) into basic and nonbasic columns. Then the

expression for xn+m+1 = πx− π0 in terms of the nonbasic variables is

xn+m+1 + (πBA
−1
B AJ − πJ)xJ = (πBA

−1
B)b− π0 (13)

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 7

Proof. The simplex tableau corresponding to the basis indexed by B is

xB +A−1
B AJxJ = A−1

B b.

If π = (πB , πJ) and πj = 0 for all j ∈ N \NI , then πx−xn+m+1 = π0 can be written
as

−xn+m+1 + πBxB + πJxJ = π0.

Appending this equation to (AB , AJ)x = b gives

ABxB + AJxJ = b
πBxB − xn+m+1 + πJxJ = π0.

(14)

The inverse of the (m+ 1)× (m+ 1) matrix

(

AB 0
πB −1

)

is

(

A−1
B 0

πBA
−1
B −1

)

.

Multiplying (14) with this augmented basis inverse gives

xB + (A−1
B AJ)xJ = A−1

B b
xn+m+1 + (πBA

−1
B AJ − πJ)xJ = πBA

−1
B b− π0

✷

The new source row (13) could of course be used to directly generate a generalized
GMI cut; instead, we apply to it the L&P procedure of [11], or one of its variants discussed
in [12] in order to obtain a stronger cut. Such a cut will be valid throughout the search
tree in case of a mixed 0-1 program, but only at the descendants of the current search
tree node for a general mixed integer program (see [10]).

3.3 Implementation of the generalized Lift-and-project proce-

dure

It is not too difficult to modify any implementation of the L&P cut generation procedure
that works on the simplex tableau and strengthens cuts derived from a disjunction (3), so
that it can strengthen split cuts derived from a more general split disjunction (1). Namely,
the L&P procedure must have a subroutine to extract the source row from the simplex
tableau before pivoting and after each pivot. This is usually done by using the basis
inverse, which is typically readily available: most Branch-and-Cut (or Cut-and-Branch)
solvers use the revised dual simplex method, which maintains the basis inverse rather
than the full simplex tableau. It suffices to modify this subroutine so that it computes
the source row using (13). This can be implemented rather efficiently using the standard
Ftran or Btran subroutines, available in many commercial and free state-of-the-art LP
solvers.

4 Reduce-and-Split from non-optimal bases

As in Section 3, we first recall the basic concepts of Reduce-and-Split, then we discuss
our contribution: the application of Reduce-and-Split on non-optimal bases.

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 8

4.1 Review of Reduce-and-Split

The idea of looking for a linear combination (5) of rows of the simplex tableau (4) to
generate strong cutting planes is not new in the integer programming literature: see
e.g. [3, 14, 19]. As discussed in Section 2, every equation (5) such that

∑

i∈BI(x̄)
πix̄i

is fractional yields a valid GMI cut. Here, x̄ need not be an optimal solution to (LP);
however, this is the only case that is typically studied in the literature. In the next
section we consider the case where x̄ is basic but not optimal for (LP). In particular,
our discussion focuses on the case where x̄ is a basic solution for a L&P tableau, i.e. a
(possibly primal infeasible) tableau obtained by pivoting following the L&P procedure.

We now review the R&S algorithm, as given in [19]. Let x̄ be the optimal solution
to (LP). R&S first determines a working set of continuous nonbasic columns JW ⊂
JC(x̄), then generates an integral combination (5) of the rows of the simplex tableau
corresponding to the basic variables in BI(x̄) by minimizing:

min
π∈Z

|BI (x̄)|
‖(âj)j∈JW

‖2, (15)

where âj is defined as in (6). Observe that the linear combination (5) can involve rows
with an integer valued basic variable, as long as

∑

i∈BI(x̄)
πix̄i is fractional. The min-

imization problem (15) yields row multipliers πi from which we derive (7). As can be
seen from (7), small âj on continuous nonbasic columns should yield good (i.e. small)
cut coefficients on the corresponding variables. Note that our aim is to improve the cut
coefficients on continuous variables only. The reason for focusing on continuous variables
only is that the cut coefficients on integer variables are much more difficult to control,
because of the modular arithmetic involved in their expression (see (7)). (15) is solved
by relaxing integrality on π, determining the optimal continuous multipliers (imposing
an additional normalization constraint to avoid the all zero solution), then rounding the
fractional components π to the nearest integer. In [19] it is experimentally shown that
variables with small reduced cost are good candidates for the set JW , as they yield cuts
which close a larger integrality gap in practice. Furthermore, instead of considering all
rows whose corresponding basic variable is in BI(x̄), it is shown that better results can be
obtained by considering only a subset of carefully chosen rows. Since we are interested in
finding a linear combination that yields small coefficients, the chosen rows should ideally
be linearly dependent or almost.

In its default configuration, the Reduce-and-Split cut generation algorithm proceeds
as follows: for each row r of the simplex tableau with an integer basic variable xk, a
subset of columns JW ⊂ JC(x̄) and a subset of rows other than r with a basic integer
variable is chosen. Then, a linear combination of these rows is sought using the procedure
outlined above. The normalization condition to avoid the all zero solution to (15) consists
in requiring πk = 1. This loop is iterated several times using different strategies to select
JW and the set of rows. This is the basic variant of the Reduce-and-Split algorithm: we
refer to [19] for a thorough discussion.

The geometric interpretation is as follows. R&S keeps the basis B(x̄) fixed, and tries
to modify the split disjunction (1) in order to obtain a cut with stronger coefficients. This
is exemplified in Figure 2: the elementary disjunction xk ≤ ⌊x̄k⌋ ∨ xk ≥ ⌊x̄k⌋+ 1, which
yields the cut αx ≥ α0, is modified to obtain a stronger cut α′x ≥ α′

0 (from disjunction
πx ≤ π0 ∨ πx ≥ π0 + 1). Again, the rays r1 and r2 correspond to the non-basic columns
of the simplex tableau with basic solution x̄. In terms of (9), R&S acts on the coefficients
πi of the disjunction on the basic integer variables.

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 9

x̄

r
2r

1

α
′
x = α

′
0

xk ≥ ⌊x̄k⌋ + 1

αx = α0

xk ≤ ⌊x̄k⌋

πx ≥ π0 + 1πx ≤ π0

Figure 2: Illustration of the Reduce-and-Split procedure.

4.2 Modifications to Reduce-and-Split

In Section 3 we proposed a method to start with any split disjunction, and modify the
basis via L&P to obtain a stronger cut. What we want to do now is to use the basis
computed by L&P, and modify (“tilt”) the split disjunction to derive a better cut.

A problem arises: a cut derived from a non-optimal basis of (LP) will certainly be
valid, but how do we make sure that it will be violated by the point that we want to cut
off? To show why such a cut might not be violated, we need to introduce some notation.
Let x̄ be the optimal solution to (LP), where the corresponding optimal tableau Ā has
elements āij . Let x̄

′ be the basic solution associated with the tableau Ā′ (with elements
ā′ij) obtained by applying L&P starting from x̄. A GMI obtained from tableau Ā has the
form

∑

j∈J(x̄)

αjxj ≥ α0,

with αj ≥ 0, α0 > 0. Since x̄j = 0 ∀j ∈ J(x̄), this cut is violated by x̄. On the other
hand, a split cut obtained as a GMI cut from tableau Ā′ has the form:

∑

j∈J(x̄′)

α′
jxj ≥ α′

0,

and cuts off x̄′ but is not necessarily violated by x̄. Indeed, x̄j = 0 ∀j ∈ J(x̄′)∩ J(x̄) but
x̄j ≥ 0 ∀j ∈ J(x̄′) ∩ B(x̄), therefore the left hand side may be > 0 at x̄. The cut will
be violated if and only if

∑

j∈J(x̄′)∩B(x̄) α
′
j x̄j < α′

0. This suggests that we should aim for

small (hopefully zero) cut coefficients on the columns with indices in J(x̄′) ∩ B(x̄). In
Figure 3, we picture an example of a non violated cut: the L&P cut obtained from the
new basic solution x̄′ and the initial disjunction xk ≤ ⌊x̄k⌋ ∨ xk ≥ ⌊x̄k⌋+ 1 cuts off x̄ by
construction, but as soon as the disjunction is modified, we are only guaranteed to cut
off x̄′ (as shown by the cut α′x ≥ α′

0).
In order to generate cuts from Ā′ that are likely to cut off x̄, we modify the R&S

algorithm as follows. Let B∗ = J(x̄′) ∩ B(x̄) be the set of variables which are basic
in the optimal LP tableau but are nonbasic in the L&P tableau on which we apply

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 10

x̄
′

x̄

xk ≥ ⌊x̄k⌋ + 1xk ≤ ⌊x̄k⌋

r
2

r
1

r
3

α
′
x = α

′
0

πx ≥ π0 + 1

πx ≤ π0

Figure 3: A Reduce-and-Split cut from the disjunction πx ≤ π0 ∨ πx ≥ π0 + 1, obtained
from the tableau associated with the basic solution x̄′, that does not cut off the point x̄.

R&S. Given JW ⊂ JC(x̄
′) (e.g. using one of the techniques described in [19]) and scalars

σj > 0 ∀j ∈ JW ∪B∗, we compute:

min
π∈Z

|BI (x̄′)|
‖

∑

i∈BI(x̄′)

πid
′
i‖2, (16)

where d′i = (σj ā
′
ij)j∈JW∪B∗ ; in other words, d′i are rows of a submatrix of Ā′ (correspond-

ing to the set of columns JW ∪ B∗), where each column is rescaled with multipliers σj .
The effect of these multipliers is to modify the importance of the columns when deter-
mining π that minimizes the norm in (16), by increasing it (if σj is large) or decreasing
it (if σj is small). Observe from (16) that we try to reduce the coefficients of (7) on all
columns with indices in B∗: for continuous variables in B∗, this should yield a reduction
on the resulting cut coefficient; for integer variables, the end result is not so clear because
of the integer modularization (cf. end of Section 2), but âj = 0 always results in a zero cut
coefficient in the corresponding column. Since we want to reduce the coefficients relative
to B∗ as much as possible, we set σj = 2 ∀j ∈ {i ∈ B∗ : x̄i > 0}, and σj = 1 otherwise.
This prioritizes the reduction of the source row coefficients on the variables with indices
B∗ such that the corresponding component in x̄ is nonzero. We experimentally tried
other strategies to choose σj , but this simple idea turned out to work well in practice. A
discussion is given in Section 6. The rest of the R&S algorithm is unmodified.

Note that this method offers no guarantee of finding a violated cut, nor does it
guarantee to increase the cut violation with respect to the cut associated with the original
source row. However, R&S has proven to generate strong cuts in practice, therefore we
are interested in testing whether it is equally effective if applied to non-optimal bases of
(LP), and in particular those generated by L&P.

5 COMBINING LIFT-AND-PROJECT AND REDUCE-AND-SPLIT 11

5 Combining Lift-and-Project and Reduce-and-Split

We combined the methods described in Section 3 and Section 4 into a single cut generation
algorithm, that alternates between the L&P and the R&S cut improvement procedures.

Our cut generation algorithm always starts with determining the set of basic integer
variables that have a fractional value (at least 10−2 away from an integer) in the current
solution to the LP relaxation; the corresponding (elementary) disjunctions are processed
by nonincreasing violation (i.e. those with a violation closest to 0.5 are processed first),
until a given maximum number of cuts M is generated, or there are no more violated
disjunctions available. In this paper, we always use M = 50. This method for processing
elementary disjunction is taken from [12]. Recall that these disjunctions give rise to
the traditional GMI cuts. Then, we iteratively modify each GMI cut, changing either
the underlying disjunction (through R&S), or the underlying basis of the LP relaxation
(through L&P). One parameter of our cut generation algorithm is the maximum number
η of cut improvement steps that we want to perform, i.e. the number of times that we
alternate between L&P and R&S. When η = 0, we use the initial GMI cuts. Another
parameter start is whether to apply L&P or R&S at the first cut modification step.
For instance, if start = L&P and η = 3, the GMI cuts are strengthened by L&P, then
the underlying disjunction is modified by R&S (using the simplex tableau computed by
L&P), finally we change the basis again (using the new disjunction) with L&P. After each
cut improvement step, we check the outcome of the routine (L&P or R&S). If the routine
fails, either because it could not improve the cut (i.e. L&P could not perform improving
pivots, or R&S could not find a disjunction that improves the cut coefficients) or because
numerical problems were detected, then the improvement procedure for that particular
cut is stopped, and we generate the cut computed at the previous iteration. For instance,
for start = L&P and η = 3, if the R&S algorithm at step 2 fails, we generate the L&P
cut obtained at step 1. If the cut computed at the previous iteration does not satisfy
the numerical requirements, then the cut is discarded and we restart the process with
another elementary disjunction. Note that if the first improvement step fails, then we
simply generate the initial GMI cut. In all cases, we apply formula (7) to generate the
cuts, i.e. we always generate the strengthened disjunctive cuts (7) instead of the simple
disjunctive cuts (8).

This method is designed to be balanced between L&P and R&S: since we always
start with the same M elementary disjunction, we can compare the effects of starting
with L&P or with R&S. Note that this method is based on simple GMI cuts, which have
proved to be one of the most effective and reliable general-purpose classes of cutting
planes: our method tries to improve on the GMI cuts, but in case of failure, we revert
back to the GMI cuts.

6 Computational experiments

The cut generation algorithms presented in this paper were implemented in C++ within
the COIN-OR Cgl [16] framework. Our L&P generator is a modification of the exist-
ing CglLandP generator [12]; likewise, the R&S implementation is based on the existing
CglRedSplit2 generator [19]. The CglLandP generator employs advanced simplex algo-
rithm functions, and for this reason it only works with the COIN-OR Clp [17] LP solver.
Traditional GMI cuts were generated using the CglLandP generator, setting the maxi-
mum number of pivots to zero. We used Cplex 12.1 [21] to perform instance preprocessing
and Branch-and-Bound. More details on the interaction between Clp and Cplex are given

6 COMPUTATIONAL EXPERIMENTS 12

in Section 6.1.
Our set of test instances is a subset of the mixed-integer instances in the union

of MIPLIB3 [13], MIPLIB2003 [2] and the set of test instances of the University of
Bologna available from http://plato.asu.edu/ftp/unibo/. We selected all mixed-
integer instances such that the LP has fewer than 500 000 nonzero elements, and such
that we were able to generate 10 rounds of cutting planes with the original CglLandP
generator in less than 20 minutes. The instance bell5 was not selected because of its
poor numerical properties, which made computational experiments give erratic results,
thus producing noise in the data instead of useful information. We divide the instances in
three difficulty classes, depending on the performance of our Cut-and-Branch algorithm
(see Section 6.1) with cutting planes generated by the original CglLandP. Instances are
labeled Easy if they can be solved requiring less than one minute of CPU time and 1000
nodes; they are labeled Medium if they are not Easy but can be solved in less than 2
hours; they are Hard if they cannot be solved in 2 hours of total CPU time. A list of
instances is given in Table 1. In all tests reported in this section, the value of the optimal
solution is given to the solver as a cutoff value so that the time of discovery of integer
solutions does not affect the size of the enumeration tree.

Easy Medium Hard
10teams aflow30a a1c1s1

blend2 arki001 aflow40b

dcmulti bell3a b1c1s1

dsbmip gesa2 b2c1s1

egout gesa2 o bg512142

fiber glass4 dano3mip

fixnet6 mas74 danoint

flugpl mas76 dg012142

gen misc07 mkc

gesa3 mod011 momentum1

gesa3 o modglob momentum2

khb05250 noswot nsrand-ipx

misc06 pk1 opt1217

qnet1 pp08aCUTS roll3000

qnet1 o pp08a set1ch

rentacar qiu swath

rgn timtab1

rout timtab2

vpm1 tr12-30

vpm2

Table 1: List of test instances.

6.1 Cut-and-Branch

To assess the effectiveness of our cut generation procedure, and compare our cut generator
to the traditional L&P and R&S cuts, we implemented a Cut-and-Branch algorithm on
top of Cplex [21] and Clp [17]. Recall that the L&P cut generator requires a simplex
tableau in Clp format. However, we decided to employ Cplex instead of COIN-OR Cbc as
Cut-and-Branch code because of its better reliability. Therefore, we proceed as follows:

6 COMPUTATIONAL EXPERIMENTS 13

each problem instance is read and preprocessed by Cplex with default settings. The
presolved reduced problem is then loaded with Clp, and cutting planes are generated for
a maximum of 10 rounds or 20 minutes of CPU time. At each round of cut generation,
we perform this sequence of operations. First, we generate at most 50 cuts, and add all
of them to the LP formulation. Then, we check if any of the cutting planes generated
at previous rounds (and subsequently removed from the LP) is violated by the current
fractional point; if so, we add all such cuts to the LP. Finally, the LP is reoptimized, and
all inactive cutting planes are removed. The LP formulation obtained after 10 rounds
is loaded into Cplex, where another pass of presolve is executed before switching to
Branch-and-Bound. To simulate a bare Branch-and-Bound algorithm within the Cplex
environment, we apply the following settings:

• Cutting planes are disabled (cutsfactor = 0, and all cut generation algorithms
manually disabled);

• Emphasis on proving optimality (mipemphasis = bestbound);

• Heuristics are disabled (heurfreq = -1, and all heuristics manually disabled);

• Absolute and relative integrality gap for optimality set to zero (epgap = 0, epagap
= 0).

Constraint and integrality precision were set to 10−7. All other parameters are left to
their default value.

6.2 Parameters for cut generation

Our cut generation algorithm is described in Section 5, and has two main parameters:
the maximum number η of cut improvement steps that we want to perform, and whether
to apply L&P or R&S at the first cut modification step. Additionally, both the L&P
and the R&S cut generators require some parameters to perform each improvement step.
For L&P, the pivot selection rule is set to “most negative reduced cost”, the maximum
number of pivots is set to 10, and we do not apply the iterative modularization technique
discussed in [12]. For R&S, the maximum support of the disjunction is set to 5, the
maximum 1-norm of the disjunction is set to 10, the column selection strategy (i.e. the
choice of the set JW) is set to “first 1/3 of the columns with smallest reduced cost”,
and the row selection strategy is set to “rows with smallest angle with respect to the
source row in the space JW ∪JI” (the latter two parameters correspond to the strategies
CS1, R&S8 in [19]). These parameters were chosen for their performance based on the
computational experiences reported in [12, 19]. Even though other values for the L&P
and R&S cut generators were tested, for space reason we only report results with this
set of values. Our configuration of the L&P generator is very similar to the default
parameters discussed in [12], whereas the R&S configuration is different than in [19]
because in that paper a large number of cuts is generated at each round, but here we
want to generate at most 50 cuts per round to facilitate comparisons.

For the combined cut generation algorithm, we tested up to 6 cut improvement iter-
ations, starting either with L&P or with R&S. Each combination of parameters yields a
different cut generator, which we label as L&P-η if L&P is applied first and we perform
up to η improvement steps alternating between R&S and L&P, or as R&S-η if R&S is
applied first and we perform up to η improvement steps alternating between L&P and
R&S. Note that L&P-1 and R&S-1 correspond to simple L&P and R&S cuts respectively.

6 COMPUTATIONAL EXPERIMENTS 14

We remark that we performed tests to compare L&P-1 and R&S-1 with the implemen-
tations described in [12] and [19]. Computational experiments showed that our L&P-1
has very similar performance to the original implementation of [12], hence we do not
report results with the latter. On the other hand, we found difficult to compare R&S-1
with the implementation of [19], because of the significant differences in the experimental
setup (number of cuts and generation of GMI cuts from the initial tableau). For this
reason, we omit a comparison with the results in [19].

6.3 Results with Cut-and-Branch

We now report and discuss the results obtained within the framework presented in this
section, for several cut generators. For each cut generator and each instance, we report:
the amount of integrality gap closed at the root after 10 rounds of cut generation (root
gap %), the CPU time required for cut generation which includes the running of the
separation procedures as well as the repeated solutions of the node LPs (cut time), the
number of generated cuts (#cuts), the amount of integrality gap closed at the end of the
Cut-and-Branch algorithm (100% if optimality is proven within the time limit, < 100% if
the two hours limit is hit) (final gap %), the number of enumerated nodes (#nodes), and
the total CPU time required by Cut-and-Branch (total time). All times are measured in
seconds. Detailed results can be found in Tables 6 through 11, whereas averages are given
in Table 2. The average integrality gap and number of cuts are computed as arithmetic
averages; the average CPU time and number of nodes are geometric averages (to deal with
zero values, we added one to each value before computing the average, and subtracted
one from the result). For comparison, we also report, in Tables 3 and 12, results obtained
within the same framework using traditional GMI cuts from the optimal tableau.

Table 2: Average values for Tables 6 through 11.
L&P R&S

root cut #cuts final #nodes total root cut #cuts final #nodes total
η instances gap % time gap % time gap % time gap % time

1
Easy 66.69 1.88 242.81 100.00 66.73 2.34 62.70 1.48 177.12 100.00 84.81 1.87
Medium 42.82 1.47 283.05 100.00 36783.44 27.97 40.89 0.88 247.45 100.00 27401.35 25.64
Hard 31.67 17.73 362.95 63.99 491855.55 7200.02 27.07 9.02 328.26 65.86 529225.83 7200.03

2
Easy 70.18 2.97 239.94 100.00 58.13 3.36 71.07 2.45 219.50 100.00 61.68 2.99
Medium 45.10 1.92 281.70 100.00 22605.34 25.17 45.34 1.67 275.60 100.00 22631.97 28.96
Hard 30.17 29.68 368.58 64.76 488767.55 7200.03 28.76 17.71 334.21 63.17 527506.47 7200.03

3
Easy 72.41 2.93 229.75 100.00 55.04 3.32 70.13 3.49 217.19 100.00 51.24 3.92
Medium 45.38 2.12 276.95 100.00 20928.22 26.49 46.98 1.99 266.55 100.00 25529.14 30.80
Hard 30.53 33.18 371.89 65.42 505878.43 7151.24 30.42 27.89 334.95 63.16 511616.51 7200.03

4
Easy 72.54 3.00 225.25 100.00 49.87 3.32 70.33 3.28 215.88 100.00 49.71 3.81
Medium 46.99 2.14 272.35 100.00 18443.68 26.46 47.13 2.03 267.80 100.00 21863.21 29.03
Hard 31.32 34.45 368.53 65.59 488861.77 7080.50 30.30 29.63 332.11 63.14 489310.36 7200.04

5
Easy 72.46 3.27 234.50 100.00 55.67 3.72 71.22 3.43 219.75 100.00 47.71 3.94
Medium 45.99 2.21 279.20 100.00 23520.81 29.86 47.06 2.08 268.65 100.00 22320.37 28.25
Hard 31.12 38.10 362.42 65.85 501422.54 7200.03 29.40 29.93 335.42 63.48 520554.34 7200.04

6
Easy 72.82 3.34 234.25 100.00 50.10 3.64 72.06 3.24 219.12 100.00 48.37 3.77
Medium 45.04 2.22 280.15 100.00 24948.13 30.80 46.88 2.10 268.60 100.00 23022.37 27.81
Hard 32.06 37.66 369.74 65.29 468780.03 7200.04 29.99 29.76 329.26 62.84 482300.74 7200.03

Table 3: Average values for Table 12.
GMI

root cut #cuts final #nodes total
instances gap % time gap % time
Easy 52.38 0.31 197.81 100.00 104.12 0.76
Medium 36.51 0.30 256.50 100.00 47544.46 27.02
Hard 26.45 1.86 328.63 64.33 571427.50 7200.03

6 COMPUTATIONAL EXPERIMENTS 15

In the integer programming community it is known that comparing the strength of
different cut generators is a difficult task, especially when we are interested in the per-
formance of Cut-and-Branch, and average values alone can be misleading. [22] proposes
a framework for statistical tests. In this paper, in addition to reporting average values,
we opted for a simple pairwise comparison between the 13 cut generators tested; in each
comparison, we count the number of instances on which the first method is superior to
the second one. The comparison is carried out on Medium and Hard instances, because
on Easy instance we expect simple GMI cuts to outperform more powerful but time-
consuming cut generation methods. Our comparison criteria are as follows: method A is
superior to method B on a given instance if:

• Medium instance: A solves the instance in 10% less CPU time than B and the
difference is at least 2 seconds, or A and B take approximately the same CPU time
(±5% or a difference of less than 2 seconds) and A requires 20% fewer nodes.

• Hard instance: A closes at least ρ = 1% more integrality gap than B in the two
hours, or A solves the instance within the time limit whereas B does not solve it
and has more than 5% integrality gap left.

On Medium instances, we require a difference of at least 2 seconds of CPU time, because
for small values the fluctuations may be due to other factors than the strength of the
cutting planes. If no method is superior to the other, then the 2 methods have comparable
strength on that instance. We can see from Table 4 that there seem to be an improvement
in L&P-η for increasing η. There is also an improvement in R&S-η for increasing η, but
only for η > 2. From R&S-1 to R&S-2, there is a big drop in performance (more on this
below). Similarly, on Hard instances, the performance of L&P-η improves as η increases
from 1 to 5. In fact, the number of times L&P-η outperforms the other cut generators
increases from 75 to 118, whereas the number of occasions L&P-η is inferior to other
methods decreases from 81 to 34. However, L&P-6 is inferior to L&P-5. In Table 5 we
report results on Hard instances. We verified that as long as a “reasonable” value for ρ
is used (ρ ∈ [1, 10]), the conclusions that can be drawn are essentially the same.

We have observed that the number of generated cuts is very similar for all methods,
except on Easy instances: for Easy instances, R&S-1 and GMI generate fewer cuts than
other methods. However, our analysis focuses on Medium and Hard instances, and on
these two problem classes all algorithms generate a similar number of cuts (the difference
can be ±10%). Therefore, we can compare the cut generators on equal footing.

We can see (Tables 2 and 3) that all proposed methods appear to be stronger than
simple GMI cuts in terms of average gap closed at the root node, and in terms of number
of nodes for Easy and Medium instances. On Hard instances, the gap closed by GMI cuts
after Branch-and-Bound is comparable to some of the other tested method, even though
GMI cuts appear to be weaker at the root. However, the number of nodes processed
in two hours is larger for GMI cuts, which explains why the amount of gap closed after
Branch-and-Bound is similar. GMI cuts are also the fastest method for Easy instances
on average, and one of the fastest methods for Medium instances. Table 4 shows that
GMI cuts perform well on Medium instances, being “superior” to other methods (but at
the same time “inferior”) a large number of times. On some hard problems, like danoint
and opt1217, GMI cuts are still a good choice (see Table 12), due to a larger number
of enumerated nodes within the time limit. This is to be expected: on some problems,
investing CPU time in more expensive cut generation techniques does not pay off and
GMI cuts come out as the winner, but in other cases, there is a large advantage to be
gained by heavy cut generation.

6 COMPUTATIONAL EXPERIMENTS 16

Table 4: Pairwise comparison of cut generators on Medium instances: number of instances
on which the cut generation algorithm on the row is superior to the one on the column.
Comparison with 10% decrease of CPU time or 20% decrease of number of nodes if CPU
time is comparable (±5%).

L
&
P
-1

L
&
P
-2

L
&
P
-3

L
&
P
-4

L
&
P
-5

L
&
P
-6

R
&
S
-1

R
&
S
-2

R
&
S
-3

R
&
S
-4

R
&
S
-5

R
&
S
-6

G
M
I

S
u
m

S
u
p
.

L&P-1 - 4 5 3 6 6 6 6 7 5 5 6 7 66
L&P-2 7 - 4 4 5 5 8 6 6 5 3 3 7 63
L&P-3 6 5 - 3 9 9 5 6 7 4 4 5 8 71
L&P-4 5 7 6 - 7 6 7 9 8 6 7 7 8 83
L&P-5 9 7 4 7 - 3 8 7 6 5 6 4 8 74
L&P-6 6 7 5 5 1 - 7 6 4 4 4 5 7 61
R&S-1 9 6 8 8 7 8 - 8 8 8 7 7 6 90
R&S-2 6 3 4 2 6 6 6 - 4 3 1 2 6 49
R&S-3 7 5 4 4 4 5 5 5 - 2 2 2 6 51
R&S-4 7 4 5 5 9 8 5 5 5 - 3 4 6 66
R&S-5 6 6 7 4 7 6 6 5 4 6 - 3 6 66
R&S-6 6 9 7 4 7 7 6 5 6 5 4 - 6 72
GMI 8 7 8 7 6 6 5 7 7 8 5 6 - 80

Sum Inf. 82 70 67 56 74 75 74 75 72 61 51 54 81

Table 5: Pairwise comparison of cut generators on Hard instances: number of instances
on which the cut generation algorithm on the row is superior to the one on the column.
Comparison with 1% absolute difference in final gap closed.

L
&
P
-1

L
&
P
-2

L
&
P
-3

L
&
P
-4

L
&
P
-5

L
&
P
-6

R
&
S
-1

R
&
S
-2

R
&
S
-3

R
&
S
-4

R
&
S
-5

R
&
S
-6

G
M
I

S
u
m

S
u
p
.

L&P-1 - 4 3 3 2 5 6 8 12 7 9 9 7 75
L&P-2 6 - 4 4 2 4 7 8 8 9 10 8 7 77
L&P-3 10 7 - 6 4 5 8 11 10 9 9 10 10 99
L&P-4 9 9 7 - 4 5 7 13 10 10 10 12 9 105
L&P-5 9 9 7 6 - 8 8 11 13 11 14 13 9 118
L&P-6 9 9 6 5 2 - 8 12 13 11 12 14 10 111
R&S-1 6 4 4 6 6 6 - 9 7 9 8 8 9 82
R&S-2 6 4 3 2 1 3 4 - 7 7 6 8 8 59
R&S-3 3 6 4 4 1 3 5 6 - 5 6 5 6 54
R&S-4 7 5 4 1 2 2 6 8 7 - 8 5 8 63
R&S-5 5 5 3 3 3 2 6 9 7 6 - 6 9 64
R&S-6 5 4 3 1 2 3 5 6 6 5 5 - 7 52
GMI 6 7 5 4 5 5 5 7 6 7 8 8 - 73

Sum Inf. 81 73 53 45 34 51 75 108 106 96 105 106 99

6 COMPUTATIONAL EXPERIMENTS 17

We also observe that R&S-1 performs very well on average on Medium and especially
Hard instances, and appears to be stronger than L&P-1 by looking at Table 2 only; a
more detailed analysis of the results reveals that its good average behaviour depends on
some Hard and Medium instances on which R&S-1 is considerably stronger than other
cut generators (examples are bell3a, danoint, dg012412, opt1217, vpm1), but on several
other instances R&S-1 is clearly weaker. This is well indicated by Tables 4 and 5: R&S-1
is always “inferior” and “superior” a large number of times. We remark that the results
in [3] and [19] already showed that reducing cut coefficients with the R&S algorithm is
very strong on some particular instances (e.g. the bell and vpm instances), therefore this
is not surprising. It is possible that in these instances, continuous variables play a very
important role in terms of the objective function value, which is the ideal setting for R&S-
1. R&S-η for η > 1 do not perform equally well as R&S-1 on the few instances where
R&S-1 really dominates. On average η > 1 yields better results on the Easy and Medium
instances in terms of nodes, but not in terms of CPU time, while being comparable on
the Hard problems; the gap closed at the root node increases significantly on all problem
classes.

The benefits for combining L&P and R&S are much clearer when improving L&P
cuts. Looking at Table 2, L&P-η with η > 1 is superior to L&P-1 in almost all respects:
gap closed at the root (except on Hard instances for some values of η, for which we
observe a slight decrease), number of nodes on the Easy and Medium instances, and
gap closed after Branch-and-Bound on the Hard instances. On Medium instances, CPU
times for L&P-2, L&P-3 and L&P-4 are better than for L&P-1, and Table 4 also shows
an improvement: when moving from η = 1 to η = 6, the cut generators are “superior”
a larger number of times, and “inferior” a smaller number of times. The best value
for η on Medium instances seems to be η = 4. The same trend is observed on Hard
problems, Table 5. The peak is reached by L&P-5: overall, this generator is the one
which is “inferior” the smallest number of times, and is “superior” the largest number of
times. Additionally, L&P-3 and L&P-4 are the only methods to solve one Hard instance
(aflow40b) within the 2 hours time limit; L&P-4 requires 5240 seconds only for this task.
To conclude, L&P-5 seems to be the best choice for difficult problems in our experiments.

These results suggest that combining the L&P and R&S algorithms is indeed effective,
and that alternating between them ≈ 5 times yields the best result; after 5 iterations,
there is hardly any improvement. Moreover, applying L&P as the first GMI cut strength-
ening step seems a better choice than starting with R&S: this is because R&S cuts are
not as consistently strong as L&P cuts, being very strong on some problems, but weak
on others.

Finally, we observe that the average cut generation time increases by ≈ 50% from
η = 1 to η = 2: the second step is computationally expensive, but not as expensive as
the first one. This is because at each step, we can reuse some of the data computed
at previous iterations; in particular, we do not have to recompute the LP basis inverse
from scratch. For each η > 2, the CPU time required for cut generation increases by
less than 10%, since the number of cuts that are modified decreases. On Easy instances,
GMI cuts are the best choice in terms of CPU time, because all other methods spend
too much time for cut generation at the root – more than the time needed to solve the
instance with GMI cuts only. On Medium instances, all methods improve the root gap
closed, and reduce the total number of nodes without deteriorating the CPU time. On
Hard instances cut generation is expensive, but it is rewarded by the final gap closed.
To conclude, our cuts can be effective in reducing total solution time, provided that we
have a mechanism to detect easy instances for which excessive cut generation time is
detrimental. This issue is beyond the scope of this paper.

6 COMPUTATIONAL EXPERIMENTS 18

6.4 R&S cuts on non-optimal bases: cut violation

We provide here a brief analysis of the cut violation when R&S cuts are generated from
non-optimal bases of the LP relaxation. Recall from Section 4 that in this case, we could
generate cuts which are not violated, which would have to be discarded. It is natural
to ask how often does this happen; this is the question we try to answer in this section.
Thus, we recorded the number of non violated cuts that are computed while applying
10 rounds of cuts at the root on our test set, with the L&P-4 generator (which turned
out to be the strongest one, see Section 6.3). We gathered the same statistics for other
generators as well, and obtained very similar results, therefore here we only present data
for L&P-4.

As discussed in Section 4, if we generate large cut coefficients on the variables j ∈ B∗

which are basic in the optimal LP basis, but are nonbasic in the L&P basis from which
R&S cuts are generated, then the cut may not be violated. This explains why we modify
the R&S algorithm to try and reduce those cut coefficients as much as possible. How
often do we generate non-violated cuts if we employ the R&S algorithm unmodified? It
turns out that, even if we do not consider the set B∗ when applying the R&S coefficient
reduction algorithm (i.e. we apply the R&S algorithm directly as described in [19]), only
11 cuts are discarded because they are not violated. This is an extremely small number:
for comparison, the total number of generated cuts is 17085. We give two possible
explanations for this behavior. First, the L&P cut given in input to the R&S procedure
cuts off the optimal basic solution x̄ by a larger amount than the initial GMI cut; hence,
changing the split disjunction to obtain a stronger cut is likely to still cut off x̄. Second,
sparsity plays in our favor: if the LP tableau on which R&S is applied is sufficiently
sparse, it is likely that computing a linear combination of its rows will not deteriorate
the coefficients on the columns j ∈ B∗ by a large amount.

Thus, there is not a big margin of improvement for the modification of the R&S
algorithm proposed in Section 4: the number of non-violated cuts is already negligible.
Indeed, it turns out that with the modified R&S algorithm, we still generate 11 non-
violated cuts (in total, we generate 17377 cuts in this case). However, an interesting side
effect of the modification is that we close more integrality gap: the average integrality
gap closed at the root over all instances after 10 rounds increases from 47.39% to 49.01%.
Hence, the proposed modification seems to have a positive effect. Our intuition is that
the modified R&S algorithm is likely to increase the cut violation, yielding deeper cuts.
This can be seen by looking at the expression for the distance cut off (first used as a
measure of cut quality in [9]). Suppose the cut is αx ≤ α0; then the normal vector of the
hyperplane represented by this cut is α. Therefore, the distance d of the basic solution x̄
from the hyperplane αx = α0 satisfies α(x̄+ dα) = α0. From this we get the expression:

d = (α0 − αx̄)/‖α‖22. (17)

By giving more priority to reducing cut coefficients on the columns j ∈ B∗ such that
x̄j > 0, the modified R&S algorithm acts on both the numerator and the denominator
of (17), as opposed to only trying to reduce the denominator.

6.5 Cut density

We conclude our computational study with an analysis of the density of the cutting planes
generated by the methods proposed in this paper. The density is recorded on all cutting
planes generated during the 10 rounds applied at the root node of all instances in our test

6 COMPUTATIONAL EXPERIMENTS 19

set, and for each cut it is computed as a percentage with respect to the maximum density
allowed, i.e.: number of nonzeroes over the maximum number of nonzeroes allowed. The
maximum number of nonzeroes allowed is equal to min{n, 1000 + n/5}, where n is the
number of columns; similar strategies to select the maximum density are used in the
Branch-and-Cut solvers COIN-OR Cbc [15] and SCIP [1]. In Figure 4 we report the
average density values for all cut generators L&P-η and R&S-η with η = 1, . . . , 6, for
each round of cut generation applied at the root. For comparison, we additionally report
the same curve for the traditional GMI cuts.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

de
ns

ity

round

cut density

GMI
LaP-1
LaP-2
LaP-3
LaP-4
LaP-5
LaP-6
RS-1
RS-2
RS-3
RS-4
RS-5
RS-6

Figure 4: Average cut density for the first 10 rounds.

We can draw some conclusions from the graph. Surprisingly, GMI cuts are the densest
cut on average, and they are also denser than most other cuts through the 10 rounds,
with the exception of R&S-1. R&S-1 is close to GMI in most rounds; therefore, even if it
aims at reducing cut coefficients (in the extended (n+m)-space, i.e. when the tableau is
expressed with equality constraints), it does not reduce density (in the original n-space)
by a large amount: ≈ 2% on average. L&P cuts, on the other hand, appear to be
consistently sparser than GMI cuts through all 10 rounds. The same beneficial effect is
observed when L&P and R&S are combined. An important observation is that there does
not seem to be an increase in cut density when η moves from 1 to 6: our combined L&P
+ R&S cut generation algorithm is very stable in this respect, regardless of the number
of iterations and whether we start with L&P or R&S. Finally, density grows steadily with
the number of applied rounds, and the distance between GMI and other cut generators
becomes smaller: at the tenth round, all cut generators yield similarly dense cuts, and
the density is more than double that of the first round.

7 CONCLUSION 20

7 Conclusion

In this paper we presented a combination of two existing algorithms for generating split
cuts: Lift-and-Project and Reduce-and-Split. In doing so, we introduced an extension
of the Lift-and-Project procedure on the original simplex tableau that can be employed
on general split disjunctions (instead of elementary disjunctions), and we analyzed the
application of Reduce-and-Split on non-optimal bases of the LP relaxation. We obtained
a cut generation algorithm that iteratively modifies both the LP basis and the split
disjunction from which a split cut is generated.

Computational experiments on a set of benchmark instances showed that this com-
bination is effective on mixed-integer instances, solving problems in a smaller number of
nodes and closing more integrality gap on the unsolved problems on average. In particu-
lar, iterating more than once between L&P and R&S proved to be a good choice: in our
experiments, applying L&P first and then iterating 4 times between the two algorithms
yielded the best results. Our cut generation algorithm is not significantly slower than the
original L&P and R&S algorithms, but generates stronger cutting planes that should be
useful in practice for the solution of difficult MILPs.

References

[1] T. Achterberg. Scip: Solving constraint integer programs. Mathematical Program-

ming Computation, 1(1):1–41, 2009.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):361–372, 2006.

[3] K. Andersen, G. Cornuéjols, and Y. Li. Reduce-and-split cuts: Improving the per-
formance of mixed integer Gomory cuts. Management Science, 51(11):1720–1732,
2005.

[4] K. Andersen, G. Cornuéjols, and Y. Li. Split closure and intersection cuts. Mathe-

matical Programming A, 102(3):457–493, 2005.

[5] E. Balas. Intersection cuts - a new type of cutting planes for integer programming.
Operations Research, 19(1):19–39, 1971.

[6] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979.

[7] E. Balas, and R. G. Jeroslow. Stengthening cuts for mixed integer programming
European Journal of Operational Research, 4:224–234, 1980.

[8] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programming. Mathematical Programming, 58: 295–324, 1993.

[9] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science, 42(9):1229–1246, 1996.

[10] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations

Research Letters, 19(1):1–9, 1996.

[11] E. Balas and M. Perregaard. A precise correspondence between lift-and-project
cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming.
Mathematical Programming, 94(2-3):221–245, 2003.

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 21

[12] E. Balas and P. Bonami. Generating lift-and-project cuts from the lp simplex
tableau: open source implementation and testing of new variants. Mathematical

Programming Computation, 1:165–199, 2009.

[13] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[14] S. Ceria, G. Cornuéjols, and M. Dawande. Combining and strengthening Gomory
cuts. In E. Balas and J. Clausen, editors, Integer Programming and Combinatorial

Optimization, volume 920 of Lecture Notes in Computer Science, pages 438–451.
Springer Berlin / Heidelberg, 1995.

[15] COIN-OR Branch-and-Cut. https://projects.coin-or.org/Cbc

[16] COIN-OR Cut Generation Library. https://projects.coin-or.org/Cgl

[17] COIN-OR Linear Programming. https://projects.coin-or.org/Clp

[18] W. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer program-
ming problems. Mathematical Programming, 47:155–174, 1990.

[19] G. Cornuéjols and G. Nannicini. Practical strategies for generating rank-1 split
cuts in mixed-integer linear programming. Mathematical Programming Computation,
3:281–318, 2011.

[20] R. E. Gomory. An algorithm for the mixed-integer problem. Technical Report
RM-2597, RAND Corporation, 1960.

[21] I. ILOG. IBM ILOG CPLEX 12.1 User’s Manual. IBM ILOG, Gentilly, France,
2009.

[22] F. Margot. Testing cut generators for mixed-integer linear programming. Mathe-

matical Programming Computation, 1(1):69–95, 2009.

[23] G. Nemhauser and L. Wolsey. A recursive procedure for generating all cuts for 0-1
mixed integer programs. Mathematical Programming, 46:379–390, 1990.

[24] M. Perregaard. A practical implementation of lift-and-project cuts. In International

Symposium on Mathematical Programming, Copenhagen, 2003.

[25] F. Wesselmann. Strengthening Gomory mixed-integer cuts: a computational study.
Technical report, University of Paderborn, 2009.

A Detailed tables of results from Section 6.3

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 22

Table 6: Detailed results for L&P-1 and R&S-1 cuts.
L&P-1 R&S-1

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 16.54 252 100.00 161 21.08 100.00 8.25 4 100.00 161 12.79
blend2 32.56 0.18 129 100.00 917 0.50 29.08 0.15 114 100.00 929 0.42
dcmulti 86.52 2.25 398 100.00 94 2.46 72.64 0.77 348 100.00 209 1.09
dsbmip 0.00 4.56 384 100.00 13 4.74 0.00 4.12 364 100.00 13 4.30
egout 100.00 0.02 55 100.00 0 0.02 100.00 0.01 32 100.00 0 0.01
fiber 91.77 1.68 305 100.00 508 2.06 88.52 4.76 206 100.00 570 5.47
fixnet6 56.72 1.54 189 100.00 693 3.07 49.94 0.60 161 100.00 376 1.06
flugpl 16.36 0.02 73 100.00 290 0.03 96.88 0.01 50 100.00 64 0.01
gen 96.07 0.25 95 100.00 2 0.26 91.65 0.15 92 100.00 2 0.17
gesa3 81.04 5.85 500 100.00 94 6.11 44.11 2.91 500 100.00 240 3.20
gesa3 o 89.57 5.28 403 100.00 73 5.49 61.69 2.71 145 100.00 312 3.06
khb05250 99.13 0.46 106 100.00 13 0.52 96.68 0.31 109 100.00 22 0.37
misc06 96.99 0.44 96 100.00 12 0.50 80.30 0.29 105 100.00 32 0.36
qnet1 51.10 4.76 461 100.00 585 10.78 33.05 6.14 283 100.00 495 8.36
qnet1 o 69.26 3.07 405 100.00 237 4.19 58.67 4.74 311 100.00 527 7.91
rentacar 0.00 2.17 34 100.00 17 2.52 0.00 0.93 10 100.00 30 1.37
aflow30a 47.13 4.10 409 100.00 25987 62.30 29.50 1.43 313 100.00 54983 62.03
arki001 50.59 7.78 408 100.00 490040 1202.43 57.06 6.81 490 100.00 276275 833.40
bell3a 62.16 0.03 26 100.00 27922 1.74 62.16 0.02 29 100.00 15696 1.56
gesa2 94.74 5.53 443 100.00 2662 8.04 91.62 3.68 496 100.00 2274 6.25
gesa2 o 94.28 4.20 461 100.00 3822 8.19 91.17 3.42 417 100.00 1148 4.93
glass4 0.00 0.26 314 100.00 463683 114.80 0.00 0.24 251 100.00 2265847 515.80
mas74 9.21 0.23 188 100.00 2981710 319.32 8.11 0.06 87 100.00 2885266 268.69
mas76 9.35 0.22 168 100.00 545667 48.21 8.16 0.04 62 100.00 516026 40.76
misc07 2.43 0.92 246 100.00 39561 24.46 0.72 0.39 126 100.00 18140 10.45
mod011 12.22 8.45 144 100.00 6406 57.72 0.26 6.57 1 100.00 17246 81.09
modglob 62.63 1.14 340 100.00 92705 45.23 56.32 0.57 308 100.00 171204 80.24
noswot -0.00 0.08 163 100.00 694040 104.47 0.00 0.07 181 100.00 694040 103.57
pk1 0.00 0.07 150 100.00 279380 35.56 0.00 0.07 149 100.00 279380 36.01
pp08aCUTS 87.04 1.78 385 100.00 1283 3.20 73.49 0.63 418 100.00 4596 4.42
pp08a 95.03 0.75 329 100.00 2106 2.13 94.93 0.33 378 100.00 2883 2.43
qiu 27.94 18.71 467 100.00 29448 563.77 11.44 5.04 469 100.00 12591 121.07
rgn 51.36 0.08 144 100.00 3580 0.42 70.66 0.06 132 100.00 2262 0.32
rout 31.68 2.40 454 100.00 128541 203.35 10.33 0.67 269 100.00 181745 135.69
vpm1 55.54 0.07 134 100.00 2665 0.47 100.00 0.03 79 100.00 1 0.04
vpm2 63.10 0.41 288 100.00 16907 5.50 51.80 0.22 294 100.00 18999 6.67
a1c1s1 27.21 27.27 499 63.82 799673 7200.00 23.41 6.18 478 61.43 1419778 7200.01
aflow40b 34.15 14.67 218 95.50 1063047 7200.00 19.52 3.37 81 91.87 1773851 7200.00
b1c1s1 16.80 41.81 500 69.01 397488 7200.00 17.06 9.09 486 69.27 599906 7200.01
b2c1s1 16.09 59.47 500 66.58 173045 7200.01 10.24 13.28 427 64.63 281404 7200.00
bg512142 3.00 13.79 500 49.61 774056 7200.00 2.61 6.92 492 49.38 745056 7200.00
dano3mip 0.02 178.92 6 1.04 2101 7200.04 0.03 61.26 7 1.06 2458 7200.04
danoint 1.16 3.50 348 61.35 576748 7200.01 1.07 1.44 358 79.97 750774 7200.00
dg012142 0.01 23.77 500 49.53 561717 7200.00 0.01 31.92 498 55.71 616579 7200.01
mkc 54.21 5.29 198 81.31 2832166 7200.00 32.28 21.89 216 80.97 2407618 7200.00
momentum1 64.54 312.14 230 65.35 521 7200.06 64.52 144.15 227 81.97 527 7200.12
momentum2 40.77 1074.65 229 68.77 477 7200.17 39.05 310.60 219 68.78 488 7200.24
nsrand-ipx 61.80 35.88 217 87.60 1434311 7200.00 49.78 9.75 108 86.34 1713539 7200.00
opt1217 20.96 1.22 268 22.83 4739969 7200.08 54.19 1.20 222 54.19 8413096 7200.01
roll3000 53.08 16.62 393 82.06 952937 7200.00 7.46 6.53 289 61.47 772180 7200.00
set1ch 67.41 2.40 500 93.70 10653874 7200.00 48.02 1.17 500 79.31 3831719 7200.09
swath 28.40 17.98 290 58.08 896689 7200.00 28.11 10.54 129 58.71 1014968 7200.00
timtab1 39.72 0.74 500 87.38 16443060 7199.99 42.21 0.36 500 91.82 16792769 7200.00
timtab2 27.08 1.32 500 56.41 10903845 7200.01 26.92 1.24 500 57.18 10039227 7200.00
tr12-30 45.36 4.57 500 55.86 5776355 7200.01 47.76 3.12 500 57.31 3431033 7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 23

Table 7: Detailed results for L&P-2 and R&S-2 cuts.
L&P-2 R&S-2

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 35.83 213 100.00 161 40.37 100.00 7.36 4 100.00 161 11.89
blend2 35.83 0.47 147 100.00 917 0.75 32.53 0.38 146 100.00 908 0.70
dcmulti 87.44 4.00 440 100.00 107 4.35 82.87 2.63 399 100.00 210 3.03
dsbmip 0.00 6.03 350 100.00 13 6.22 0.00 6.95 375 100.00 13 7.14
egout 100.00 0.02 47 100.00 0 0.02 100.00 0.01 32 100.00 0 0.01
fiber 89.82 4.44 322 100.00 570 5.15 92.35 5.73 257 100.00 515 6.12
fixnet6 57.92 1.67 167 100.00 605 3.17 52.95 1.68 197 100.00 1053 4.25
flugpl 75.47 0.01 67 100.00 133 0.02 98.86 0.01 71 100.00 28 0.02
gen 96.94 0.35 85 100.00 0 0.37 94.31 0.35 98 100.00 0 0.37
gesa3 70.22 9.98 500 100.00 183 10.41 75.19 8.93 500 100.00 76 9.26
gesa3 o 90.06 9.25 404 100.00 34 9.43 93.05 7.19 346 100.00 43 7.29
khb05250 98.66 0.58 99 100.00 16 0.64 97.07 0.61 105 100.00 18 0.67
misc06 99.73 0.56 95 100.00 7 0.61 94.28 0.57 112 100.00 22 0.62
qnet1 50.15 12.44 468 100.00 449 14.84 49.93 11.21 463 100.00 598 16.86
qnet1 o 70.65 6.77 401 100.00 301 7.81 73.77 5.90 396 100.00 300 7.27
rentacar 0.00 2.46 34 100.00 17 2.80 0.00 1.75 11 100.00 30 2.18
aflow30a 47.17 5.79 398 100.00 32231 60.44 43.15 4.58 401 100.00 31300 62.41
arki001 55.89 14.21 463 100.00 195454 634.03 56.51 8.89 487 100.00 230492 552.87
bell3a 62.16 0.03 30 100.00 28082 1.71 62.16 0.03 26 100.00 24756 1.54
gesa2 97.58 9.24 478 100.00 236 9.58 96.98 8.10 483 100.00 157 8.36
gesa2 o 97.41 7.86 454 100.00 680 8.56 98.41 6.63 446 100.00 115 6.77
glass4 0.00 0.27 314 100.00 463683 113.37 0.00 0.32 305 100.00 2265847 520.24
mas74 9.02 0.29 178 100.00 3012675 315.93 8.69 0.20 132 100.00 3155390 354.51
mas76 9.08 0.23 146 100.00 494158 40.92 9.36 0.12 122 100.00 465009 40.84
misc07 1.61 1.22 278 100.00 16243 10.58 4.05 1.05 282 100.00 46806 28.24
mod011 5.19 13.09 131 100.00 13603 81.42 0.28 9.35 3 100.00 19128 97.00
modglob 65.22 1.38 312 100.00 17820 9.67 63.27 1.75 368 100.00 47297 29.91
noswot -0.00 0.09 152 100.00 694040 104.12 0.00 0.11 192 100.00 694040 104.29
pk1 0.00 0.07 150 100.00 279380 35.65 0.00 0.07 149 100.00 279380 36.01
pp08aCUTS 90.09 1.94 344 100.00 1938 4.38 89.85 1.66 361 100.00 1646 3.84
pp08a 95.76 1.20 353 100.00 1679 2.74 96.51 0.77 327 100.00 1440 1.96
qiu 28.13 18.77 467 100.00 48408 796.39 27.71 22.07 469 100.00 58757 1079.17
rgn 57.61 0.09 138 100.00 4114 0.57 66.36 0.08 128 100.00 3589 0.44
rout 33.21 4.07 458 100.00 214771 356.08 31.60 2.62 442 100.00 123222 235.92
vpm1 78.19 0.05 88 100.00 112 0.08 92.99 0.04 79 100.00 39 0.06
vpm2 68.74 0.65 302 100.00 5125 2.67 58.98 0.53 310 100.00 5640 2.50
a1c1s1 23.71 42.54 497 60.44 814055 7200.00 26.28 29.11 457 62.35 954268 7200.01
aflow40b 34.61 18.72 255 94.92 1443596 7200.00 22.03 4.45 87 98.21 2025478 7200.00
b1c1s1 18.05 67.57 500 68.56 381824 7200.02 15.01 34.61 444 66.81 421127 7200.02
b2c1s1 16.98 99.04 500 67.26 156537 7200.01 14.61 52.50 404 63.13 185771 7200.01
bg512142 2.97 28.45 500 48.44 544550 7200.01 2.27 16.40 496 49.90 608810 7199.99
dano3mip 0.02 418.07 6 1.02 1881 7200.01 0.03 93.50 7 1.06 2373 7200.13
danoint 1.16 5.73 354 81.80 685112 7200.00 1.33 3.76 352 66.54 583194 7200.01
dg012142 0.01 73.97 500 52.31 555966 7200.01 0.01 46.56 494 52.74 530445 7200.01
mkc 41.92 15.53 222 80.41 2590007 7200.00 63.57 14.97 235 81.21 2490173 7200.00
momentum1 64.49 396.92 266 64.75 489 7200.15 62.06 344.01 220 64.67 514 7200.19
momentum2 40.92 1043.20 195 68.80 506 7200.28 39.57 1042.54 230 68.84 512 7200.15
nsrand-ipx 62.97 47.95 270 92.60 1772810 7200.00 50.21 11.47 105 84.04 1731898 7200.00
opt1217 17.60 1.38 267 24.41 11270792 7200.01 13.78 0.83 224 21.77 10414613 7200.00
roll3000 28.89 28.08 413 70.92 665477 7200.01 39.53 19.37 403 83.16 1014449 7200.00
set1ch 63.64 4.73 499 87.61 6815028 7200.00 56.50 3.76 500 87.57 6527500 7200.01
swath 28.43 21.18 273 58.93 1062400 7200.01 27.39 18.73 192 49.51 981648 7200.01
timtab1 48.84 1.82 497 92.65 16375094 7200.00 45.70 0.97 500 90.96 16663797 7200.00
timtab2 31.81 3.96 494 58.96 7914985 7200.00 27.71 1.99 500 58.30 9757182 7200.00
tr12-30 46.16 10.72 495 55.64 5626807 7200.00 38.78 7.59 500 49.43 6222719 7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 24

Table 8: Detailed results for L&P-3 and R&S-3 cuts.
L&P-3 R&S-3

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 36.81 227 100.00 161 41.37 100.00 9.93 4 100.00 161 14.47
blend2 34.75 0.42 134 100.00 967 0.76 33.21 0.54 146 100.00 935 0.82
dcmulti 89.14 3.65 412 100.00 78 3.91 83.35 4.34 444 100.00 158 4.68
dsbmip 0.00 6.59 354 100.00 13 6.78 0.00 10.41 345 100.00 13 10.60
egout 100.00 0.01 44 100.00 0 0.02 100.00 0.01 20 100.00 0 0.01
fiber 89.89 2.51 212 100.00 540 2.89 90.64 10.34 286 100.00 495 10.86
fixnet6 59.11 2.16 182 100.00 628 3.26 56.05 1.93 166 100.00 1061 3.45
flugpl 97.54 0.01 57 100.00 18 0.01 99.80 0.01 66 100.00 3 0.02
gen 97.38 0.24 64 100.00 2 0.26 58.35 0.50 107 100.00 2 0.52
gesa3 78.52 10.01 500 100.00 110 10.32 81.32 13.53 500 100.00 51 13.78
gesa3 o 94.93 9.78 402 100.00 28 9.97 89.38 11.88 377 100.00 47 12.04
khb05250 98.79 0.55 90 100.00 15 0.60 98.10 0.97 114 100.00 20 1.05
misc06 99.48 0.50 89 100.00 10 0.55 98.40 0.85 125 100.00 12 0.90
qnet1 47.68 12.50 461 100.00 640 17.62 58.53 18.52 349 100.00 286 19.84
qnet1 o 71.34 8.19 414 100.00 429 9.71 74.90 11.64 415 100.00 237 12.76
rentacar 0.00 2.51 34 100.00 17 2.85 0.00 2.13 11 100.00 30 2.57
aflow30a 44.86 6.83 393 100.00 32341 73.04 43.78 6.74 385 100.00 36989 75.98
arki001 53.49 14.12 442 100.00 228453 880.62 63.45 12.66 472 100.00 168103 571.50
bell3a 62.16 0.03 29 100.00 33524 2.11 62.16 0.03 26 100.00 24756 1.54
gesa2 97.37 9.89 443 100.00 260 10.20 96.65 13.05 492 100.00 886 14.05
gesa2 o 97.66 9.25 447 100.00 578 10.03 96.28 12.18 471 100.00 439 12.66
glass4 0.00 0.27 314 100.00 463683 114.52 0.00 0.34 305 100.00 2265847 523.23
mas74 8.92 0.34 181 100.00 3013313 336.47 8.74 0.25 147 100.00 4350042 488.91
mas76 9.31 0.22 168 100.00 540241 44.29 9.80 0.16 120 100.00 496915 42.31
misc07 2.51 1.15 259 100.00 23080 14.97 2.62 1.34 262 100.00 30760 21.35
mod011 5.31 17.26 115 100.00 10769 89.92 0.28 9.45 3 100.00 19128 87.36
modglob 63.57 1.92 322 100.00 34601 17.67 68.94 1.71 330 100.00 40151 24.69
noswot -0.00 0.10 175 100.00 694040 104.50 -0.00 0.13 179 100.00 694040 105.24
pk1 0.00 0.07 150 100.00 279380 35.78 0.00 0.07 149 100.00 279380 36.03
pp08aCUTS 85.40 2.66 358 100.00 1669 4.25 90.87 1.54 322 100.00 2090 3.82
pp08a 97.17 1.05 319 100.00 992 2.28 96.34 0.75 259 100.00 1180 1.71
qiu 28.62 23.10 467 100.00 37797 663.80 30.82 23.66 466 100.00 36000 662.47
rgn 52.66 0.17 165 100.00 4059 0.65 68.50 0.09 124 100.00 2956 0.46
rout 44.05 4.56 434 100.00 123978 243.45 40.58 4.09 434 100.00 248505 597.18
vpm1 92.95 0.05 71 100.00 54 0.06 92.99 0.06 79 100.00 39 0.07
vpm2 61.64 0.61 287 100.00 3179 1.67 66.79 0.58 306 100.00 3927 1.71
a1c1s1 28.00 53.86 499 66.52 903983 7200.01 24.03 38.14 430 61.11 875210 7200.00
aflow40b 35.13 22.23 211 100.00 1471422 6327.53 26.72 5.75 109 92.11 1554640 7200.00
b1c1s1 21.15 63.84 500 71.44 364426 7200.02 15.39 56.61 409 68.64 451821 7200.00
b2c1s1 17.31 119.59 500 66.67 178552 7200.00 17.99 77.88 459 62.61 166794 7200.01
bg512142 3.04 31.13 500 49.02 579253 7200.01 2.47 32.69 489 50.46 627360 7200.01
dano3mip 0.02 404.32 6 1.04 2115 7200.08 0.03 130.95 7 1.02 1905 7200.09
danoint 1.16 6.33 357 63.96 576663 7200.01 1.08 5.61 354 59.28 518942 7200.01
dg012142 0.01 79.07 500 41.48 592802 7200.00 0.01 104.81 489 45.92 579770 7200.00
mkc 50.56 22.73 257 81.00 2466335 7200.00 52.87 36.36 235 79.99 2669203 7200.00
momentum1 64.46 373.26 259 82.23 681 7200.11 64.52 560.36 234 82.36 1473 7200.09
momentum2 32.36 1135.28 235 68.82 499 7200.18 35.97 1217.84 165 68.81 487 7200.34
nsrand-ipx 65.75 53.89 258 94.08 1901215 7200.01 56.86 14.60 119 84.39 1667384 7200.00
opt1217 21.65 2.32 304 24.80 10641431 7200.00 17.86 2.37 303 21.73 8138058 7200.00
roll3000 35.99 26.13 414 83.28 1196977 7200.00 47.06 31.44 421 77.48 656312 7200.01
set1ch 56.82 5.58 496 85.01 6117535 7200.05 60.11 5.65 497 89.03 6954290 7200.01
swath 28.43 24.25 290 58.00 931899 7200.01 27.97 19.16 148 47.16 994738 7200.00
timtab1 43.36 2.24 492 92.07 15276320 7200.00 51.21 1.90 498 93.70 15326395 7200.01
timtab2 31.25 4.16 494 60.75 8343697 7200.00 33.56 5.15 500 61.64 8928425 7200.02
tr12-30 43.60 12.12 494 52.83 4437638 7200.00 42.36 13.57 498 52.57 4942071 7200.01

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 25

Table 9: Detailed results for L&P-4 and R&S-4 cuts.
L&P-4 R&S-4

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 36.33 227 100.00 161 40.85 100.00 7.49 4 100.00 161 12.00
blend2 38.55 0.52 141 100.00 1055 0.85 35.43 0.54 154 100.00 1020 0.87
dcmulti 89.92 3.98 422 100.00 90 4.22 85.17 4.02 405 100.00 123 4.36
dsbmip 0.00 6.81 367 100.00 13 7.00 0.00 9.19 351 100.00 13 9.38
egout 100.00 0.01 44 100.00 0 0.02 100.00 0.01 20 100.00 0 0.01
fiber 88.45 2.49 185 100.00 524 2.96 92.26 8.96 249 100.00 492 9.39
fixnet6 59.28 1.75 160 100.00 610 2.86 56.68 2.11 179 100.00 702 4.03
flugpl 97.55 0.01 57 100.00 16 0.01 99.93 0.02 70 100.00 4 0.02
gen 97.50 0.24 64 100.00 2 0.25 60.76 0.49 107 100.00 0 0.51
gesa3 75.12 11.05 500 100.00 71 11.30 79.46 13.18 500 100.00 94 13.52
gesa3 o 90.22 8.37 374 100.00 32 8.50 94.49 10.56 349 100.00 29 10.67
khb05250 98.79 0.55 90 100.00 14 0.59 98.92 0.82 104 100.00 15 0.89
misc06 98.90 0.55 88 100.00 9 0.60 98.48 0.82 123 100.00 13 0.87
qnet1 51.20 13.71 453 100.00 371 15.23 50.20 20.52 412 100.00 368 22.91
qnet1 o 75.19 10.33 398 100.00 235 11.60 73.57 10.62 416 100.00 525 14.42
rentacar 0.00 2.48 34 100.00 17 2.83 0.00 1.95 11 100.00 30 2.38
aflow30a 48.87 6.66 382 100.00 26691 64.72 45.55 7.05 405 100.00 29912 72.94
arki001 63.33 12.23 424 100.00 105960 337.49 61.47 12.51 475 100.00 258489 670.37
bell3a 62.16 0.03 29 100.00 33524 2.11 62.16 0.03 26 100.00 24756 1.55
gesa2 97.02 10.44 445 100.00 297 10.80 97.34 12.66 490 100.00 263 13.02
gesa2 o 97.73 9.62 454 100.00 345 9.94 96.65 11.39 444 100.00 412 11.80
glass4 0.00 0.28 314 100.00 463683 115.96 0.00 0.35 305 100.00 2265847 518.50
mas74 8.84 0.35 176 100.00 3916510 448.68 8.81 0.26 148 100.00 3159428 341.59
mas76 8.99 0.28 143 100.00 502255 43.56 9.47 0.13 101 100.00 475130 40.81
misc07 2.51 1.19 245 100.00 43040 24.12 1.97 1.38 285 100.00 24364 15.53
mod011 5.31 19.17 114 100.00 10823 93.39 0.28 9.43 3 100.00 19128 87.64
modglob 67.85 2.14 327 100.00 53342 30.80 74.86 1.63 314 100.00 22947 12.78
noswot -0.00 0.09 179 100.00 694040 104.54 0.00 0.12 168 100.00 694040 105.29
pk1 0.00 0.07 150 100.00 279380 35.92 0.00 0.07 149 100.00 279380 36.17
pp08aCUTS 90.89 2.54 343 100.00 1186 3.82 90.58 1.72 317 100.00 1361 3.28
pp08a 96.91 1.23 332 100.00 1074 2.46 96.33 1.16 326 100.00 1111 2.18
qiu 27.14 21.90 467 100.00 41264 592.33 28.57 23.33 468 100.00 39959 765.87
rgn 62.12 0.16 142 100.00 4044 0.65 74.72 0.10 123 100.00 3325 0.60
rout 39.61 4.32 434 100.00 115575 214.39 32.40 4.74 447 100.00 349576 651.47
vpm1 92.99 0.05 65 100.00 6 0.06 92.99 0.05 79 100.00 39 0.06
vpm2 67.45 0.61 282 100.00 2804 1.59 68.45 0.58 283 100.00 1503 1.28
a1c1s1 26.68 52.95 500 65.31 1301327 7200.00 25.68 48.29 419 66.25 1070359 7200.04
aflow40b 36.49 20.12 224 100.00 1225113 5238.47 27.88 6.92 118 92.85 1468403 7200.01
b1c1s1 17.62 96.32 500 69.71 271930 7200.01 17.10 59.59 340 69.86 435420 7200.00
b2c1s1 18.65 103.46 500 66.72 144884 7200.00 18.51 83.38 451 65.91 189048 7200.00
bg512142 2.55 38.92 500 48.92 558244 7200.00 2.55 34.53 489 46.30 624781 7200.01
dano3mip 0.02 439.15 6 1.04 2107 7200.08 0.03 135.57 7 1.09 2681 7200.14
danoint 1.46 6.34 336 68.06 540115 7200.00 1.36 6.37 355 67.94 582558 7200.01
dg012142 0.01 84.45 499 54.55 524882 7200.01 0.01 96.07 487 51.21 557727 7200.00
mkc 51.04 20.40 256 78.68 2781088 7200.00 53.00 56.82 237 73.72 2268773 7200.00
momentum1 63.31 373.60 266 70.68 536 7200.12 61.68 479.82 243 69.03 525 7200.16
momentum2 40.96 914.25 238 68.85 483 7200.11 38.19 1193.88 196 68.78 474 7200.42
nsrand-ipx 60.46 56.03 227 89.68 1749585 7200.00 57.78 14.89 127 84.38 1570748 7200.00
opt1217 29.73 2.27 293 30.93 8048994 7200.09 20.13 2.08 274 24.34 7342698 7200.00
roll3000 32.30 32.38 415 77.18 879156 7200.01 46.63 34.70 413 77.58 734294 7200.01
set1ch 61.32 6.32 493 89.30 7397715 7200.00 56.60 5.84 500 85.02 7234043 7200.00
swath 28.44 22.31 266 57.96 994262 7200.00 27.57 19.54 163 48.14 959010 7200.00
timtab1 46.05 2.16 494 91.43 16065016 7200.00 46.25 1.92 493 94.06 16386369 7200.00
timtab2 32.10 4.94 495 61.76 9149961 7200.00 29.94 5.27 499 58.26 9108168 7200.00
tr12-30 45.85 13.88 494 55.36 6131751 7200.00 44.89 15.68 499 55.03 3613179 7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 26

Table 10: Detailed results for L&P-5 and R&S-5 cuts.
L&P-5 R&S-5

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 35.35 227 100.00 161 39.85 100.00 8.46 4 100.00 161 13.00
blend2 35.58 0.48 133 100.00 832 0.74 27.50 0.40 130 100.00 822 0.66
dcmulti 89.82 4.12 400 100.00 157 4.51 87.97 3.81 404 100.00 123 4.15
dsbmip 0.00 6.78 343 100.00 13 6.97 0.00 9.71 369 100.00 13 9.90
egout 100.00 0.01 44 100.00 0 0.02 100.00 0.01 20 100.00 0 0.01
fiber 90.32 5.54 329 100.00 547 6.10 90.43 9.66 274 100.00 509 10.22
fixnet6 61.46 1.98 171 100.00 597 3.40 54.90 2.57 191 100.00 842 4.61
flugpl 97.55 0.01 57 100.00 16 0.02 99.93 0.02 70 100.00 4 0.02
gen 98.15 0.26 67 100.00 0 0.27 89.88 0.39 83 100.00 0 0.41
gesa3 67.84 9.70 500 100.00 138 10.04 75.64 13.63 500 100.00 65 13.99
gesa3 o 90.76 9.10 390 100.00 44 9.25 94.49 11.25 349 100.00 29 11.37
khb05250 98.79 0.57 90 100.00 15 0.62 98.92 0.79 104 100.00 15 0.86
misc06 99.73 0.56 89 100.00 7 0.62 98.51 0.84 123 100.00 9 0.89
qnet1 56.57 19.02 464 100.00 504 22.18 47.22 20.17 463 100.00 608 26.60
qnet1 o 72.82 10.69 414 100.00 542 15.68 74.10 14.15 421 100.00 337 15.64
rentacar 0.00 2.64 34 100.00 30 3.07 0.00 2.08 11 100.00 30 2.52
aflow30a 48.79 6.72 409 100.00 21922 49.22 42.46 6.86 396 100.00 28898 59.40
arki001 61.78 16.07 482 100.00 673970 1784.63 64.31 11.53 477 100.00 177593 516.17
bell3a 62.16 0.03 29 100.00 33524 2.09 62.16 0.02 26 100.00 24756 1.55
gesa2 97.15 10.66 475 100.00 361 11.07 97.66 14.39 489 100.00 421 14.80
gesa2 o 97.59 9.72 446 100.00 288 10.00 97.76 12.74 455 100.00 327 13.09
glass4 0.00 0.29 314 100.00 2265847 532.52 0.00 0.34 305 100.00 2265847 517.79
mas74 9.09 0.37 182 100.00 3742849 435.87 8.71 0.23 128 100.00 2904274 304.35
mas76 9.36 0.27 143 100.00 296498 26.33 8.89 0.12 91 100.00 462411 39.71
misc07 2.51 1.08 246 100.00 38482 21.59 4.66 1.36 264 100.00 41917 25.75
mod011 5.21 17.70 117 100.00 10719 81.54 0.28 8.84 3 100.00 19128 84.76
modglob 66.68 2.08 325 100.00 50149 25.55 71.19 1.56 297 100.00 16719 10.28
noswot -0.00 0.10 179 100.00 694040 104.97 0.00 0.15 194 100.00 694040 104.48
pk1 0.00 0.08 150 100.00 279380 35.95 0.00 0.07 149 100.00 279380 36.09
pp08aCUTS 88.52 2.54 339 100.00 2212 4.59 90.18 2.42 364 100.00 2310 5.21
pp08a 96.36 1.26 329 100.00 1406 2.43 96.63 1.29 346 100.00 1048 2.22
qiu 27.89 23.71 467 100.00 24090 499.77 28.58 23.90 468 100.00 36651 661.02
rgn 64.17 0.12 136 100.00 1299 0.25 73.95 0.10 122 100.00 3013 0.46
rout 31.83 5.13 453 100.00 182866 308.11 34.97 4.56 435 100.00 124676 257.86
vpm1 85.63 0.05 66 100.00 60 0.07 92.99 0.05 79 100.00 39 0.06
vpm2 64.99 0.77 297 100.00 4726 2.41 65.84 0.64 285 100.00 5073 2.42
a1c1s1 30.87 61.36 500 68.13 1045248 7200.00 25.76 47.33 450 62.96 1090123 7200.00
aflow40b 35.31 19.76 217 98.35 1543564 7200.00 27.88 6.87 118 93.14 1534693 7200.00
b1c1s1 18.77 80.81 500 70.20 387707 7200.00 14.71 67.37 404 68.85 426192 7200.01
b2c1s1 16.79 125.31 499 66.42 132228 7200.01 18.80 87.63 447 64.69 160327 7200.01
bg512142 3.26 44.49 500 49.50 564810 7200.01 2.71 36.36 489 48.39 570106 7200.00
dano3mip 0.02 386.52 6 1.05 2133 7200.10 0.03 156.65 7 1.05 2266 7200.11
danoint 1.45 7.61 350 70.03 582800 7200.00 1.42 6.37 354 76.44 634243 7200.00
dg012142 0.01 85.08 500 52.44 605850 7200.00 0.01 103.72 490 42.91 587047 7200.01
mkc 45.74 37.54 256 81.17 2462049 7200.00 47.22 32.79 264 78.68 2502733 7200.00
momentum1 52.81 390.39 237 64.72 513 7200.15 61.68 540.23 243 67.49 534 7200.16
momentum2 41.57 1208.50 104 68.81 517 7200.22 32.37 1204.54 143 68.80 478 7200.38
nsrand-ipx 65.38 58.13 241 93.91 1752996 7200.00 56.77 13.83 139 82.88 1697580 7200.00
opt1217 20.90 2.11 292 24.54 13017661 7200.00 17.70 1.73 266 22.87 16381688 7199.99
roll3000 37.85 35.77 435 76.57 675800 7200.01 44.86 35.66 418 84.01 992031 7200.00
set1ch 63.97 6.60 495 91.12 7147307 7200.03 56.92 7.06 497 84.88 6892564 7200.00
swath 28.44 29.17 273 57.70 963299 7200.00 27.40 19.88 154 50.90 1020300 7200.01
timtab1 48.98 2.48 493 98.43 16991540 7200.00 48.66 2.08 498 93.76 16073424 7200.00
timtab2 32.96 5.51 496 62.60 9715792 7200.00 31.98 5.32 497 61.11 9078882 7200.01
tr12-30 46.16 14.91 492 55.54 4977278 7200.00 41.73 17.50 495 52.27 4105357 7199.99

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 27

Table 11: Detailed results for L&P-6 and R&S-6 cuts.
L&P-6 R&S-6

root cut #cuts final #nodes total root cut #cuts final #nodes total
instance gap % time gap % time gap % time gap % time
10teams 100.00 36.23 227 100.00 161 40.78 100.00 7.34 4 100.00 161 11.86
blend2 34.71 0.56 142 100.00 928 0.87 30.57 0.39 121 100.00 848 0.65
dcmulti 90.70 4.04 409 100.00 76 4.31 87.60 3.96 368 100.00 150 4.26
dsbmip 0.00 7.21 338 100.00 13 7.40 0.00 9.77 384 100.00 13 9.96
egout 100.00 0.02 44 100.00 0 0.02 100.00 0.01 20 100.00 0 0.01
fiber 91.91 5.75 323 100.00 564 6.29 90.33 7.68 297 100.00 500 8.23
fixnet6 62.21 1.98 174 100.00 451 2.52 56.95 2.38 184 100.00 666 4.42
flugpl 97.55 0.01 57 100.00 16 0.02 99.93 0.01 70 100.00 4 0.02
gen 98.15 0.26 67 100.00 0 0.27 95.69 0.38 85 100.00 0 0.39
gesa3 74.28 9.76 485 100.00 117 10.03 79.25 12.68 499 100.00 103 13.00
gesa3 o 90.83 9.40 390 100.00 43 9.55 94.82 10.24 353 100.00 26 10.32
khb05250 98.79 0.58 90 100.00 15 0.63 98.92 0.78 104 100.00 15 0.84
misc06 99.73 0.58 89 100.00 7 0.64 98.48 0.81 121 100.00 10 0.87
qnet1 54.04 18.51 464 100.00 411 20.90 45.98 18.70 467 100.00 339 20.90
qnet1 o 72.25 11.57 415 100.00 360 13.23 74.46 13.68 418 100.00 492 18.68
rentacar 0.00 2.62 34 100.00 30 3.05 0.00 2.01 11 100.00 30 2.46
aflow30a 45.41 7.52 401 100.00 25406 64.44 44.87 7.14 392 100.00 24630 52.77
arki001 67.86 13.63 464 100.00 538882 1634.39 63.25 13.68 481 100.00 184224 482.32
bell3a 62.16 0.03 29 100.00 33524 2.12 62.16 0.02 26 100.00 24756 1.54
gesa2 97.30 10.42 449 100.00 264 10.77 96.92 13.26 476 100.00 692 13.98
gesa2 o 91.78 10.09 451 100.00 716 11.63 97.47 11.03 452 100.00 636 11.87
glass4 0.00 0.28 314 100.00 2265847 529.79 0.00 0.34 305 100.00 2265847 521.99
mas74 9.09 0.38 182 100.00 3742849 446.98 8.81 0.20 121 100.00 3763241 406.77
mas76 9.32 0.28 162 100.00 297407 25.27 8.89 0.12 91 100.00 462411 39.81
misc07 2.51 1.13 246 100.00 38482 22.14 2.15 1.47 284 100.00 55238 37.27
mod011 5.21 16.53 117 100.00 10719 80.07 0.28 9.76 3 100.00 19128 89.14
modglob 59.46 2.26 342 100.00 52224 25.63 73.33 1.65 304 100.00 11299 6.41
noswot -0.00 0.10 179 100.00 694040 104.97 0.00 0.15 194 100.00 694040 104.87
pk1 0.00 0.07 150 100.00 279380 35.69 0.00 0.07 149 100.00 279380 36.06
pp08aCUTS 88.15 2.87 354 100.00 2187 5.54 91.29 2.27 361 100.00 1482 4.37
pp08a 96.28 1.36 339 100.00 1284 2.69 96.31 1.22 337 100.00 1705 2.94
qiu 27.79 20.48 467 100.00 25465 404.77 28.67 25.66 468 100.00 30836 648.53
rgn 56.68 0.15 145 100.00 2893 0.54 72.84 0.10 119 100.00 2900 0.43
rout 29.73 5.83 463 100.00 187844 372.87 33.06 4.63 445 100.00 129373 241.08
vpm1 85.63 0.05 66 100.00 60 0.07 92.99 0.05 79 100.00 39 0.06
vpm2 66.48 0.70 283 100.00 4001 2.08 64.36 0.64 285 100.00 3302 1.77
a1c1s1 26.09 63.17 499 66.63 1154669 7200.00 21.47 48.15 408 60.90 1144082 7200.01
aflow40b 35.31 19.48 217 98.68 1609454 7200.00 27.88 7.27 118 93.29 1573342 7200.00
b1c1s1 18.41 95.71 500 71.09 356632 7200.01 16.11 66.66 386 69.15 383922 7200.00
b2c1s1 16.77 113.15 499 65.55 126223 7200.02 12.60 74.06 377 59.55 132862 7200.02
bg512142 3.33 43.77 500 48.35 569857 7200.01 2.68 38.90 491 49.42 635674 7200.00
dano3mip 0.02 359.22 6 1.05 2126 7200.10 0.03 129.35 7 1.07 2448 7200.07
danoint 1.31 7.57 353 67.71 562057 7200.01 1.52 6.68 349 63.13 518736 7200.01
dg012142 0.01 93.88 500 47.23 464062 7200.00 0.01 110.38 496 49.68 574702 7200.00
mkc 52.95 19.28 248 81.11 2422768 7200.01 54.09 29.23 243 79.44 2689472 7200.00
momentum1 64.51 338.10 230 70.98 513 7200.30 61.68 466.82 243 69.05 539 7200.21
momentum2 29.43 1251.96 198 68.87 519 7200.17 38.86 1224.55 201 68.81 501 7200.25
nsrand-ipx 62.71 58.81 250 88.98 1398748 7200.00 57.26 14.70 117 86.60 1510243 7200.01
opt1217 25.56 3.54 348 28.26 4670112 7200.01 23.24 2.12 274 26.22 7265291 7200.00
roll3000 56.36 34.27 408 72.82 678609 7200.01 44.00 38.01 429 76.80 661057 7200.02
set1ch 62.63 7.17 495 91.45 6952143 7200.07 59.18 6.76 494 85.17 7119449 7200.00
swath 28.43 28.81 287 58.34 1047207 7200.01 27.90 17.89 132 49.60 1025380 7200.00
timtab1 48.74 2.28 497 96.27 16722968 7200.00 45.19 2.23 495 94.21 16694199 7200.00
timtab2 30.36 5.57 497 61.32 9836809 7200.00 34.21 5.99 498 59.25 7902097 7200.00
tr12-30 46.12 16.42 493 55.74 6162441 7200.00 41.97 17.53 498 52.62 4431694 7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 28

Table 12: Detailed results for GMI cuts.
GMI

root cut #cuts final #nodes total
instance gap % time gap % time
10teams 100.00 2.51 256 100.00 112 5.59
blend2 31.83 0.04 104 100.00 852 0.27
dcmulti 70.02 0.18 342 100.00 253 0.42
dsbmip 0.00 1.35 342 100.00 13 1.54
egout 98.97 0.01 100 100.00 4 0.01
fiber 89.78 0.20 239 100.00 632 0.71
fixnet6 48.38 0.26 191 100.00 690 1.12
flugpl 15.71 0.00 74 100.00 223 0.01
gen 21.91 0.05 106 100.00 0 0.08
gesa3 43.45 0.20 500 100.00 264 0.52
gesa3 o 60.88 0.13 162 100.00 317 0.43
khb05250 94.84 0.10 107 100.00 33 0.18
misc06 72.66 0.10 92 100.00 42 0.18
qnet1 33.24 0.52 264 100.00 664 2.56
qnet1 o 56.44 0.49 270 100.00 520 3.15
rentacar 0.00 0.20 16 100.00 30 0.62
aflow30a 32.50 0.59 332 100.00 65531 91.48
arki001 55.68 3.88 466 100.00 190622 505.08
bell3a 62.13 0.01 40 100.00 15844 1.57
gesa2 72.79 0.22 458 100.00 3371 4.63
gesa2 o 81.75 0.24 406 100.00 5497 5.60
glass4 0.00 0.04 258 100.00 2265847 518.47
mas74 8.12 0.02 56 100.00 2795555 289.31
mas76 7.04 0.02 47 100.00 397116 31.54
misc07 0.72 0.14 123 100.00 7423 4.66
mod011 3.49 0.54 115 100.00 18757 88.43
modglob 62.30 0.20 353 100.00 174053 102.61
noswot 0.00 0.02 149 100.00 694040 104.30
pk1 0.00 0.05 150 100.00 279380 36.12
pp08aCUTS 66.01 0.21 432 100.00 23005 14.61
pp08a 85.81 0.14 423 100.00 13323 7.89
qiu 15.55 2.63 468 100.00 17795 187.19
rgn 42.57 0.02 145 100.00 2632 0.36
rout 12.53 0.29 333 100.00 89627 87.84
vpm1 71.96 0.02 105 100.00 8163 1.18
vpm2 49.27 0.04 271 100.00 7642 1.88
a1c1s1 22.40 1.01 500 60.32 1463987 7200.00
aflow40b 17.19 0.62 99 92.09 1728792 7200.00
b1c1s1 12.52 1.96 500 70.35 655691 7200.01
b2c1s1 8.27 3.57 500 61.88 295712 7200.01
bg512142 1.60 1.90 500 49.50 904100 7200.01
dano3mip 0.02 7.19 5 1.04 2381 7200.06
danoint 1.01 0.40 348 82.06 860402 7200.00
dg012142 0.01 2.87 500 54.55 618284 7200.00
mkc 36.46 1.03 181 81.17 2580451 7200.00
momentum1 64.52 13.34 246 65.89 511 7200.30
momentum2 39.14 57.54 161 69.01 551 7200.08
nsrand-ipx 45.22 2.63 117 81.77 1551147 7200.00
opt1217 50.27 0.45 218 50.27 11579593 7200.01
roll3000 4.62 1.72 278 64.39 757635 7200.00
set1ch 61.11 0.20 500 89.79 6850274 7200.01
swath 28.02 0.81 91 41.24 915721 7200.00
timtab1 31.23 0.11 500 89.77 16470738 7200.00
timtab2 26.43 0.16 500 55.80 10265277 7200.00
tr12-30 52.52 0.19 500 61.45 4074819 7200.00

