View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by SZTAKI Publication Repository

Combining Lift-and-Project and Reduce-and-Split

Egon Balas*
Tepper School of Business, Carnegie Mellon University, PA
Email: eb17@andrew.cmu.edu

Gérard Cornuéjolsf
Tepper School of Business, Carnegie Mellon University, PA
Email: gcOv@andrew.cmu.edu

Tamés Kis*
Computer and Automation Research Institute,
Hungarian Academy of Sciences, Hungary
FEmail: tamas.kis@sztaki.hu

Giacomo Nannicini®
Tepper School of Business, Carnegie Mellon University, PA
Email: nannicin@andrew.cmu.edu

January 24, 2012

Abstract

Split cuts constitute a class of cutting planes that has been successfully em-
ployed by the majority of Branch-and-Cut solvers for Mixed Integer Linear Pro-
grams. Given a basis of the LP relaxation and a split disjunction, the correspond-
ing split cut can be computed with a closed form expression. In this paper, we
use the Lift-and-Project framework [11] to provide the basis, and the Reduce-and-
Split algorithm [19] to compute the split disjunction. We propose a cut generation
algorithm that starts from a Gomory Mixed Integer cut and alternates between
Lift-and-Project and Reduce-and-Split in order to strengthen it. This paper has
two main contributions. First, we extend the Balas and Perregaard procedure for
strengthening cuts arising from split disjunctions involving one variable, to split dis-
junctions on multiple variables. Second, we apply the Reduce-and-Split algorithm
to non-optimal bases of the LP relaxation. We provide detailed computational test-
ing of the proposed methods.

Keywords: Integer Programming, Computational Analysis, Branch-and-Cut, Lift-
and-Project.

*Supported by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
TSupported by NSF grant CMMT1024554 and ONR grant N00014-09-1-0033.
fSupported by the Hungarian Research Fund OTKA K76810.

§Supported by an IBM Fellowship.

https://core.ac.uk/display/48294182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION 2

1 Introduction

Mixed Integer Linear Programs (MILPs), i.e. mathematical programs with linear ob-
jective and constraints and both continuous and integer variables, arise in a number of
real-world applications, and their solution is therefore of great practical interest. The
most successful softwares for solving general MILPs utilize a Branch-and-Cut algorithm,
which combines cutting planes and Branch-and-Bound. Several classes of cutting planes
used by these softwares, such as Gomory Mixed Integer (GMI) cuts [20], Mixed Integer
Rounding (MIR) cuts [23] and Lift-and-Project cuts [8], fall into the category of split
cuts [18], that is, disjunctive cuts derived from two parallel hyperplanes. It was shown
in [4] that every split cut can be generated as an intersection cut [5] from an appropriate
choice of a basis of the LP relaxation and a split disjunction. The advantage of generating
split cuts as intersection cuts is that we can use closed form expressions, without having
to resort to disjunctive programming [6]. In this paper, we propose a split cut gener-
ation procedure that is based on Lift-and-Project [9, 11] and Reduce-and-Split [3, 19].
In particular, we use the former to select a basis of the LP relaxation, and the latter to
compute a split disjunction.

Lift-and-Project (L&P) cuts have been successfully used in the Branch-and-Cut frame-
work since the 90s [9]. A significant improvement in their practical performance came
a few years later, when a procedure to generate L&P cuts without solving the higher-
dimensional Cut Generating Linear Program (CGLP) was introduced by Balas and Per-
regaard [11]. This procedure starts with a split cut arising from a violated two-term
disjunction involving a single variable and the optimal basis of the LP relaxation (in
other words, a GMI cut), and mimicks the solution of the CGLP by performing pivots
in the original simplex tableau. The procedure yields a new (possibly infeasible) basis,
from which a stronger cut than the initial GMI cut can be generated. This procedure
has been incorporated into commercial solvers like Xpress-MP [24], MOPS [25], and sev-
eral versions of it have been implemented in the open source project COIN-OR, Cgl [16].
One of the main contributions of this paper consists in an extension of this procedure to
split cuts arising from general split disjunctions, i.e. any violated two-term disjunction
involving an integral linear combination of integer variables. This yields a procedure
that, given any split disjunction and any basis, produces a different basis that gives rise
to a stronger cut.

In order to apply this extended L&P procedure, we need a method for generating an
initial split disjunction. We use the Reduce-and-Split (R&S) algorithm for this purpose.
R&S, first introduced in [3] and then revisited in [19], is a cut generation algorithm that
starts from an optimal LP basis and a split disjunction on one variable, and computes
a split disjunction involving several variables that (heuristically) yields a better cut.
Therefore, we have an algorithm to produce split disjunctions, which can be used to
initialize the L&P procedure.

Another contribution of this paper is that we apply R&S on non-optimal, possibly
infeasible, tableaux. As a consequence, we have a procedure that, given any split dis-
junction and any basis, produces a new, often better split disjunction for cut generation.
Thus, we can alternate between the two procedures introduced in this paper, and itera-
tively change both the basis and the split disjunction from which a split cut is generated.

We perform extensive computational experiments on a set of benchmark MILPs to
assess the effectiveness of our ideas. Our computational results show that, within a
Cut-and-Branch framework, the combination of the two cut generation algorithms yields
stronger cutting planes than L&P or R&S alone. We obtain the best results by alternating
between the two more than once.

2 NOTATION AND PRELIMINARIES 3

The rest of this paper is organized as follows. In Section 2 we introduce our notation
and provide the necessary theoretical background. In Section 3 we review in more detail
the Lift-and-Project procedure introduced in [11], and extend it to general split disjunc-
tions. Section 4 reviews the Reduce-and-Split method, and discusses its application on
non-optimal bases of the LP relaxation. In Section 5 we describe our cut generation
algorithm, which alternates between the Lift-and-Project and the Reduce-and-Split pro-
cedures. Section 6 presents an extensive computational evaluation. Section 7 concludes
the paper. Detailed tables of results can be found in the Appendix.

2 Notation and preliminaries

We are considering a MILP of the form:

T

min c'x
Axr > b
z > 0 (MILP)
Vj € Ny T; € Z,

where A € R™*" p € R™ ce R", N :={1,...,n}, Ny :={1,...,p} with p < n, and
where upper bounding constraints are subsumed by Az > b. In the sequel (LP) will
stand for the linear programming relaxation of (MILP). A split cut for (MILP) is a valid
inequality derived from a disjunction of the form

T <my V wr>mo+1, (1)

where 7; is integer for j € Ny, m; =0 for j € N\ Ny, and 7 is an integer whose value
depends on the fractional point we want to cut off. For a given fractional point Z, 7y is
chosen so as to have

o < T < mo + 1, (2)

which yields 7o = |#Z|. If Z is a basic solution to (LP) such that Zj is fractional and
k € Np, then
v < [Tk] Vox > Tk +1 (3)

is an elementary disjunction and it is a special case of (1).
A GMI cut from (1) (or from (3)) can be derived as follows. Rewrite (LP) in standard
form:

min el
(A, -z = b (LP),
z > 0

where x € R®™™™ and the last m components are surplus variables. Let Z be a basic
solution, B(Z) the set of indices of basic variables, and J(Z) = N \ B(Z) the set of
nonbasic variables. Then, the corresponding simplex tableau can be written as:

€Xr; = IZ'Z' — Z L_Lijlrj Vi € B(IE) (4)
jed (@)

Let B;(z) = B(z) N Ny, Ji(z) = J(&) N Ny, Jo(z) = J(Z) \ Ni be the sets of integer
basic variables, integer nonbasic variables and continuous nonbasic variables, respectively.
Consider a linear combination with integer coefficients m; of those rows of (4) where

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 4

1€ B[(.’f’)!
S mwi=i— Y (5)
i€B () jed(z)
where .
& = Yiep @) Tili (6)
dj = ZiEBI(i) ;A for j € J(.f)

Let mo = |2, and define fo = & —mo, f; = a; — |a;| forall j € J. If & ¢ Z, we can derive
from (5) the following valid inequality for (MILP):

g &‘Tj + E f] rj +
= fo = 1—fo
J€J1(Z):f;< fo JeJ1(T): 3> fo

. . (7)

Z af]l‘j - Z 1 ijfoxj Z 1.

jedo(@):a;20 " ° jede(z):a; <0

This inequality is the GMI cut associated with the equation obtained through the row
multipliers 7;; its validity is shown in [20]. Choosing 7, = 1, m; = 0 Vi # k yields the
GMI cut from row k of (4).

The derivation of (7) from (5) proceeds as follows. Consider the disjunction obtained
by substituting the right hand side of (5) into (1):

E— Y dmj<me V i— Y az;>m+ L
jeJ(T) jeJ(x)

Rewriting this gives

Z ajrj > fo Vv Z (—=aj)z; > 1— fo.

jeJ(Z) jeJ(T)
The disjunctive cut obtained from the latter disjunction is

Z %.’Ej — Z 1 ijfowj Z 1. (8)

jed(@):a;>0"° jeJ(z):a,;<0

By applying the integer modularization procedure of Balas [6] and Balas and Jeroslow [7]
to (8), we obtain (7). Alternatively, (7) is the disjunctive cut from the following general
disjunction, obtained from 7 by strengthening the coefficients on the nonbasic integer
variables:

m ifi e Bi(z)
.) lag) ifie Ji(2) and f; < fo
"7\ 1a ifie Ji@) and f; > fo
0 otherwise.

(9)

3 Lift-and-Project on general disjunctions

We start this section by reviewing the original Lift-and-Project procedure, then we in-
troduce one of the main contributions of this paper, namely the extension of the Lift-

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 5

and-Project procedure on the original simplex tableau to general two-term disjunctions.

3.1 Review of Lift-and-Project

Lift-and-Project cuts were introduced in [8], and [9]. These are cuts obtained from a
two-term disjunction of the form

Ax >0 Ax >0
x>0 vV x>0
-z >0 T > 1

where 1 < k < p with 0 < Z < 1. A lift-and-project cut from this disjunction is derived
by solving the so-called cut generating linear program (CGLP)y:

min ax — f(
o — uA + ugeg > 0
o — — vA — voer, > O
65— ub = 0
153 - vb — v9 = 0
Yitjui + uw + Yivi + v = 1
u, ug, v,v9 > 0.

Here, e, is the k-th unit vector. The objective function maximizes the violation of the
cut axr > § in point . The last equation is a normalization constraint which ensures
that (CGLP);, always has a finite optimum.

Balas and Perregard observed that (CGLP)j, can be solved to optimality in the original
simplex tableau [11]. In fact, they describe the precise correspondence between the
feasible bases of (CGLP); and the bases of (LP),. Notice that in this correspondence,
the bases of (LP) are generally infeasible, i.e., in the corresponding LP solution, z may
have negative coordinates.

The L&P procedure is illustrated in Fig. 1, where the basic solution Z is to be cut
off, but the corresponding cut ax > «q is weaker than the one that can be derived after
pivoting to ' and deriving the cut o’z > «f from that (infeasible) basic solution. The
rays ¢ for i = 1,2 correspond to the non-basic columns of the simplex tableau in the
basic solution Z, whereas ! and 3 are those in the basis corresponding to Z’.

3.2 Lift-and-Project applied to general split disjunctions

For the sake of compact notation, we define (A, b) as

T A b
()= (44).
where [is the n X n identity matrix. In order to apply the Lift-and-Project procedure to
a disjunction of the form (1), one could simply formulate the (CGLP) corresponding to

Ax > b Ax > b
(—71'58 > —7r0> \/ (ﬂ'm > 7To—|—1>' (10)
However, in order to take full advantage of the correspondence between the (CGLP) and
the (LP) established in [11], it will be preferable to introduce a new integer variable

3 LIFT-AND-PROJECT ON GENERAL DISJUNCTIONS 6

Figure 1: Illustration of the Lift-and-Project procedure.

Tptm+1 to represent the difference between ma and my:

TT — Tpgmt1 = T (11)

Notice that, since 7z is integer in any feasible solution of (MILP) and m(is integer,
Tptm+1 has to be integer as well. Moreover, if z,1,4+1 < 0, then 7z < m, while if
Tptme1 > 1, then mz > mp + 1, as desired. Using the new variable, we can rewrite (10):

Az > b Az > b
TL — Tpimil = 70 \/ L — Tpami1l = 7o | - (12)
anrerl S 0 xn+m+1 Z]_

The important difference from the previous applications of the Lift-and-Project pro-
cedure to single rows (4) of the simplex tableau is the following. The equation (11) is
constructed in order to derive a cut from it. Once the cut is derived, the equation is
no longer needed and therefore it is discarded, along with the variable x,,4,,+1. On the
other hand, the variable x,,,,+1, and its expression in terms of the current nonbasic
variables, is needed throughout the pivoting process carried out in order to (implicitly)
optimize the CGLP. Thus, we have to add a new row to the optimal (LP) tableau and
keep it until the cut is optimized. This could be done by simply adding the equation
TL — Tptmt1 = 7o to the constraint set of (MILP), and then computing the amended
simplex tableau corresponding to the current basis. Instead, one can derive the new row
as a closed form expression.

3.1 Proposition
Let (Ap, Ay) be the partition of (A, —I) into basic and nonbasic columns. Then the
expression for x, ., 11 = Tx — T In terms of the nonbasic variables is

Tptms1 + (ﬂ'BAE;lAJ —Ty)ry = (WBAgl)b — T (13)

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 7

Proof. The simplex tableau corresponding to the basis indexed by B is
rp + AglAJCCJ = Aélb

If 7= (wp,my) and m; = 0 for all j € N\ Ny, then 7z — 4m+1 = 7o can be written
as
—Tntm+1 + TBTB + TjT) = M.

Appending this equation to (Ap, Aj)x = b gives

AB:L‘B + AJ.’L‘J = b (14)
TBTB — Tn+m+l T TJjTj = To-
: _(Ag 0 . At 0
The inverse of the (m + 1) x (m + 1) matrix < ts 1) is (rpAZl 1)
Multiplying (14) with this augmented basis inverse gives
rp + (AglAJ)xJ = Aglb
Tntmel + (WBABlAJ —Tmy)xy = WBAglb — T
O

The new source row (13) could of course be used to directly generate a generalized
GMI cut; instead, we apply to it the L&P procedure of [11], or one of its variants discussed
in [12] in order to obtain a stronger cut. Such a cut will be valid throughout the search
tree in case of a mixed 0-1 program, but only at the descendants of the current search
tree node for a general mixed integer program (see [10]).

3.3 Implementation of the generalized Lift-and-project proce-
dure

It is not too difficult to modify any implementation of the L&P cut generation procedure
that works on the simplex tableau and strengthens cuts derived from a disjunction (3), so
that it can strengthen split cuts derived from a more general split disjunction (1). Namely,
the L&P procedure must have a subroutine to extract the source row from the simplex
tableau before pivoting and after each pivot. This is usually done by using the basis
inverse, which is typically readily available: most Branch-and-Cut (or Cut-and-Branch)
solvers use the revised dual simplex method, which maintains the basis inverse rather
than the full simplex tableau. It suffices to modify this subroutine so that it computes
the source row using (13). This can be implemented rather efficiently using the standard
Ftran or Btran subroutines, available in many commercial and free state-of-the-art LP
solvers.

4 Reduce-and-Split from non-optimal bases

As in Section 3, we first recall the basic concepts of Reduce-and-Split, then we discuss
our contribution: the application of Reduce-and-Split on non-optimal bases.

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 8

4.1 Review of Reduce-and-Split

The idea of looking for a linear combination (5) of rows of the simplex tableau (4) to
generate strong cutting planes is not new in the integer programming literature: see
e.g. [3, 14, 19]. As discussed in Section 2, every equation (5) such that >, 5) ™%
is fractional yields a valid GMI cut. Here, T need not be an optimal solution to (LP);
however, this is the only case that is typically studied in the literature. In the next
section we consider the case where Z is basic but not optimal for (LP). In particular,
our discussion focuses on the case where T is a basic solution for a L&P tableau, i.e. a
(possibly primal infeasible) tableau obtained by pivoting following the L&P procedure.

We now review the R&S algorithm, as given in [19]. Let be the optimal solution
o (LP). R&S first determines a working set of continuous nonbasic columns Jy C
Jo (), then generates an integral combination (5) of the rows of the simplex tableau
corresponding to the basic variables in B (Z) by minimizing:

1(@;)je 1w 2, (15)

min
r€Z|Br(@)]

where @; is defined as in (6). Observe that the linear combination (5) can involve rows
with an integer valued basic variable, as long as Zie By (z) TiTi is fractional. The min-
imization problem (15) yields row multipliers 7; from which we derive (7). As can be
seen from (7), small @; on continuous nonbasic columns should yield good (i.e. small)
cut coefficients on the corresponding variables. Note that our aim is to improve the cut
coeflicients on continuous variables only. The reason for focusing on continuous variables
only is that the cut coefficients on integer variables are much more difficult to control,
because of the modular arithmetic involved in their expression (see (7)). (15) is solved
by relaxing integrality on 7, determining the optimal continuous multipliers (imposing
an additional normalization constraint to avoid the all zero solution), then rounding the
fractional components 7 to the nearest integer. In [19] it is experimentally shown that
variables with small reduced cost are good candidates for the set Jyy, as they yield cuts
which close a larger integrality gap in practice. Furthermore, instead of considering all
rows whose corresponding basic variable is in B;(Z), it is shown that better results can be
obtained by considering only a subset of carefully chosen rows. Since we are interested in
finding a linear combination that yields small coefficients, the chosen rows should ideally
be linearly dependent or almost.

In its default configuration, the Reduce-and-Split cut generation algorithm proceeds
as follows: for each row r of the simplex tableau with an integer basic variable xj, a
subset of columns Jy C Jo(Z) and a subset of rows other than r with a basic integer
variable is chosen. Then, a linear combination of these rows is sought using the procedure
outlined above. The normalization condition to avoid the all zero solution to (15) consists
in requiring m, = 1. This loop is iterated several times using different strategies to select
Jw and the set of rows. This is the basic variant of the Reduce-and-Split algorithm: we
refer to [19] for a thorough discussion.

The geometric interpretation is as follows. R&S keeps the basis B(Z) fixed, and tries
to modify the split disjunction (1) in order to obtain a cut with stronger coefficients. This
is exemplified in Figure 2: the elementary disjunction xy < |Zp] V xr > [Zk] + 1, which
yields the cut ax > «ap, is modified to obtain a stronger cut o’z > «f (from disjunction
mx < m V mr > 7w+ 1). Again, the rays r! and r? correspond to the non-basic columns
of the simplex tableau with basic solution Z. In terms of (9), R&S acts on the coefficients
m; of the disjunction on the basic integer variables.

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 9

Figure 2: Tllustration of the Reduce-and-Split procedure.

4.2 Modifications to Reduce-and-Split

In Section 3 we proposed a method to start with any split disjunction, and modify the
basis via L&P to obtain a stronger cut. What we want to do now is to use the basis
computed by L&P, and modify (“tilt”) the split disjunction to derive a better cut.

A problem arises: a cut derived from a non-optimal basis of (LP) will certainly be
valid, but how do we make sure that it will be violated by the point that we want to cut
off?7 To show why such a cut might not be violated, we need to introduce some notation.
Let be the optimal solution to (LP), where the corresponding optimal tableau A has
elements a;;. Let ' be the basic solution associated with the tableau A’ (with elements
(l;»j) obtained by applying L&P starting from z. A GMI obtained from tableau A has the

form
Z QT Z),
jeJ (@)
with a; > 0,a0 > 0. Since z; = 0 Vj € J(%), this cut is violated by . On the other
hand, a split cut obtained as a GMI cut from tableau A’ has the form:

! !
E ;%5 >y,

jeJ(@’)

and cuts off Z’ but is not necessarily violated by Z. Indeed, z; = 0Vj € J(z') N J(Z) but
z; > 0Vj € J(&@) N B(Z), therefore the left hand side may be > 0 at . The cut will
be violated if and only if ZjeJ(i’)ﬂB(;E) o7 < ap. This suggests that we should aim for
small (hopefully zero) cut coefficients on the columns with indices in J(z') N B(Z). In
Figure 3, we picture an example of a non violated cut: the L&P cut obtained from the
new basic solution #’ and the initial disjunction xp < |Zg| V g > [Tk | + 1 cuts off Z by
construction, but as soon as the disjunction is modified, we are only guaranteed to cut
off Z’ (as shown by the cut o’z > af).

In order to generate cuts from A’ that are likely to cut off Z, we modify the R&S
algorithm as follows. Let B* = J(z') N B(Z) be the set of variables which are basic
in the optimal LP tableau but are nonbasic in the L&P tableau on which we apply

4 REDUCE-AND-SPLIT FROM NON-OPTIMAL BASES 10

1
! x> 1o+ 1
1

Figure 3: A Reduce-and-Split cut from the disjunction 7z < 79 V 7z > 79 + 1, obtained
from the tableau associated with the basic solution Z’, that does not cut off the point z.

R&S. Given Jy C Jo(Z') (e.g. using one of the techniques described in [19]) and scalars
o; > 0Vj € Jw UB*, we compute:

min_ Y mdis (16)

1B (2]
TEL i€B(z')

where dj = (0;aj;)jewuB+; in other words, dj are rows of a submatrix of A’ (correspond-
ing to the set of columns Jy U B*), where each column is rescaled with multipliers o;.
The effect of these multipliers is to modify the importance of the columns when deter-
mining 7 that minimizes the norm in (16), by increasing it (if o; is large) or decreasing
it (if o; is small). Observe from (16) that we try to reduce the coefficients of (7) on all
columns with indices in B*: for continuous variables in B*, this should yield a reduction
on the resulting cut coefficient; for integer variables, the end result is not so clear because
of the integer modularization (cf. end of Section 2), but ; = 0 always results in a zero cut
coefficient in the corresponding column. Since we want to reduce the coefficients relative
to B* as much as possible, we set 0; =2Vj € {i € B* : &; > 0}, and 0; = 1 otherwise.
This prioritizes the reduction of the source row coefficients on the variables with indices
B* such that the corresponding component in z is nonzero. We experimentally tried
other strategies to choose ¢, but this simple idea turned out to work well in practice. A
discussion is given in Section 6. The rest of the R&S algorithm is unmodified.

Note that this method offers no guarantee of finding a violated cut, nor does it
guarantee to increase the cut violation with respect to the cut associated with the original
source row. However, R&S has proven to generate strong cuts in practice, therefore we
are interested in testing whether it is equally effective if applied to non-optimal bases of
(LP), and in particular those generated by L&P.

5 COMBINING LIFT-AND-PROJECT AND REDUCE-AND-SPLIT 11

5 Combining Lift-and-Project and Reduce-and-Split

We combined the methods described in Section 3 and Section 4 into a single cut generation
algorithm, that alternates between the L&P and the R&S cut improvement procedures.

Our cut generation algorithm always starts with determining the set of basic integer
variables that have a fractional value (at least 1072 away from an integer) in the current
solution to the LP relaxation; the corresponding (elementary) disjunctions are processed
by nonincreasing violation (i.e. those with a violation closest to 0.5 are processed first),
until a given maximum number of cuts M is generated, or there are no more violated
disjunctions available. In this paper, we always use M = 50. This method for processing
elementary disjunction is taken from [12]. Recall that these disjunctions give rise to
the traditional GMI cuts. Then, we iteratively modify each GMI cut, changing either
the underlying disjunction (through R&S), or the underlying basis of the LP relaxation
(through L&P). One parameter of our cut generation algorithm is the maximum number
n of cut improvement steps that we want to perform, i.e. the number of times that we
alternate between L&P and R&S. When 1 = 0, we use the initial GMI cuts. Another
parameter start is whether to apply L&P or R&S at the first cut modification step.
For instance, if start = L&P and n = 3, the GMI cuts are strengthened by L&P, then
the underlying disjunction is modified by R&S (using the simplex tableau computed by
L&P), finally we change the basis again (using the new disjunction) with L&P. After each
cut improvement step, we check the outcome of the routine (L&P or R&S). If the routine
fails, either because it could not improve the cut (i.e. L&P could not perform improving
pivots, or R&S could not find a disjunction that improves the cut coefficients) or because
numerical problems were detected, then the improvement procedure for that particular
cut is stopped, and we generate the cut computed at the previous iteration. For instance,
for start = L&P and 1 = 3, if the R&S algorithm at step 2 fails, we generate the L&P
cut obtained at step 1. If the cut computed at the previous iteration does not satisfy
the numerical requirements, then the cut is discarded and we restart the process with
another elementary disjunction. Note that if the first improvement step fails, then we
simply generate the initial GMI cut. In all cases, we apply formula (7) to generate the
cuts, i.e. we always generate the strengthened disjunctive cuts (7) instead of the simple
disjunctive cuts (8).

This method is designed to be balanced between L&P and R&S: since we always
start with the same M elementary disjunction, we can compare the effects of starting
with L&P or with R&S. Note that this method is based on simple GMI cuts, which have
proved to be one of the most effective and reliable general-purpose classes of cutting
planes: our method tries to improve on the GMI cuts, but in case of failure, we revert
back to the GMI cuts.

6 Computational experiments

The cut generation algorithms presented in this paper were implemented in C++ within
the COIN-OR Cgl [16] framework. Our L&P generator is a modification of the exist-
ing CglLandP generator [12]; likewise, the R&S implementation is based on the existing
CglRedSplit2 generator [19]. The CglLandP generator employs advanced simplex algo-
rithm functions, and for this reason it only works with the COIN-OR, Clp [17] LP solver.
Traditional GMI cuts were generated using the CglLandP generator, setting the maxi-
mum number of pivots to zero. We used Cplex 12.1 [21] to perform instance preprocessing
and Branch-and-Bound. More details on the interaction between Clp and Cplex are given

6 COMPUTATIONAL EXPERIMENTS 12

in Section 6.1.

Our set of test instances is a subset of the mixed-integer instances in the union
of MIPLIB3 [13], MIPLIB2003 [2] and the set of test instances of the University of
Bologna available from http://plato.asu.edu/ftp/unibo/. We selected all mixed-
integer instances such that the LP has fewer than 500000 nonzero elements, and such
that we were able to generate 10 rounds of cutting planes with the original CglLandP
generator in less than 20 minutes. The instance bell5 was not selected because of its
poor numerical properties, which made computational experiments give erratic results,
thus producing noise in the data instead of useful information. We divide the instances in
three difficulty classes, depending on the performance of our Cut-and-Branch algorithm
(see Section 6.1) with cutting planes generated by the original CglLandP. Instances are
labeled Easy if they can be solved requiring less than one minute of CPU time and 1000
nodes; they are labeled Medium if they are not Easy but can be solved in less than 2
hours; they are Hard if they cannot be solved in 2 hours of total CPU time. A list of
instances is given in Table 1. In all tests reported in this section, the value of the optimal
solution is given to the solver as a cutoff value so that the time of discovery of integer
solutions does not affect the size of the enumeration tree.

Basy Medium Hard
10teams |aflow30a |alclsl
blend2 arkiOO01 aflow40b
dcmulti |bell3a blcisl
dsbmip gesa2 b2cisl
egout gesa2_o bgb12142
fiber glass4 dano3mip
fixnet6 |mas74 danoint
flugpl mas76 dg012142
gen misc07 mkc
gesa3 mod011 momentuml
gesa3_o modglob momentum2
khb05250 |noswot nsrand-ipx
misc06 pkl opt1217
gnetl pp08aCUTS |rol13000
gnetl_o ppO8a setlch
rentacar |qiu swath
rgn timtabl
rout timtab2
vpml tr12-30
vpm2

Table 1: List of test instances.

6.1 Cut-and-Branch

To assess the effectiveness of our cut generation procedure, and compare our cut generator
to the traditional L&P and R&S cuts, we implemented a Cut-and-Branch algorithm on
top of Cplex [21] and Clp [17]. Recall that the L&P cut generator requires a simplex
tableau in Clp format. However, we decided to employ Cplex instead of COIN-OR Chc as
Cut-and-Branch code because of its better reliability. Therefore, we proceed as follows:

6 COMPUTATIONAL EXPERIMENTS 13

each problem instance is read and preprocessed by Cplex with default settings. The
presolved reduced problem is then loaded with Clp, and cutting planes are generated for
a maximum of 10 rounds or 20 minutes of CPU time. At each round of cut generation,
we perform this sequence of operations. First, we generate at most 50 cuts, and add all
of them to the LP formulation. Then, we check if any of the cutting planes generated
at previous rounds (and subsequently removed from the LP) is violated by the current
fractional point; if so, we add all such cuts to the LP. Finally, the LP is reoptimized, and
all inactive cutting planes are removed. The LP formulation obtained after 10 rounds
is loaded into Cplex, where another pass of presolve is executed before switching to
Branch-and-Bound. To simulate a bare Branch-and-Bound algorithm within the Cplex
environment, we apply the following settings:

e Cutting planes are disabled (cutsfactor = 0, and all cut generation algorithms
manually disabled);

e Emphasis on proving optimality (mipemphasis = bestbound);
e Heuristics are disabled (heurfreq = -1, and all heuristics manually disabled);

e Absolute and relative integrality gap for optimality set to zero (epgap = 0, epagap
= 0).

Constraint and integrality precision were set to 10~7. All other parameters are left to
their default value.

6.2 Parameters for cut generation

Our cut generation algorithm is described in Section 5, and has two main parameters:
the maximum number 7 of cut improvement steps that we want to perform, and whether
to apply L&P or R&S at the first cut modification step. Additionally, both the L&P
and the R&S cut generators require some parameters to perform each improvement step.
For L&P, the pivot selection rule is set to “most negative reduced cost”, the maximum
number of pivots is set to 10, and we do not apply the iterative modularization technique
discussed in [12]. For R&S, the maximum support of the disjunction is set to 5, the
maximum 1l-norm of the disjunction is set to 10, the column selection strategy (i.e. the
choice of the set Jy) is set to “first 1/3 of the columns with smallest reduced cost”,
and the row selection strategy is set to “rows with smallest angle with respect to the
source row in the space Jy UJ;” (the latter two parameters correspond to the strategies
CS1, R&S8 in [19]). These parameters were chosen for their performance based on the
computational experiences reported in [12, 19]. Even though other values for the L&P
and R&S cut generators were tested, for space reason we only report results with this
set of values. Our configuration of the L&P generator is very similar to the default
parameters discussed in [12], whereas the R&S configuration is different than in [19]
because in that paper a large number of cuts is generated at each round, but here we
want to generate at most 50 cuts per round to facilitate comparisons.

For the combined cut generation algorithm, we tested up to 6 cut improvement iter-
ations, starting either with L&P or with R&S. Each combination of parameters yields a
different cut generator, which we label as L&P-n if L&P is applied first and we perform
up to 1 improvement steps alternating between R&S and L&P, or as R&S-n if R&S is
applied first and we perform up to n improvement steps alternating between L&P and
R&S. Note that L&P-1 and R&S-1 correspond to simple L&P and R&S cuts respectively.

6 COMPUTATIONAL EXPERIMENTS 14

We remark that we performed tests to compare L&P-1 and R&S-1 with the implemen-
tations described in [12] and [19]. Computational experiments showed that our L&P-1
has very similar performance to the original implementation of [12], hence we do not
report results with the latter. On the other hand, we found difficult to compare R&S-1
with the implementation of [19], because of the significant differences in the experimental
setup (number of cuts and generation of GMI cuts from the initial tableau). For this
reason, we omit a comparison with the results in [19].

6.3 Results with Cut-and-Branch

We now report and discuss the results obtained within the framework presented in this
section, for several cut generators. For each cut generator and each instance, we report:
the amount of integrality gap closed at the root after 10 rounds of cut generation (root
gap %), the CPU time required for cut generation which includes the running of the
separation procedures as well as the repeated solutions of the node LPs (cut time), the
number of generated cuts (#cuts), the amount of integrality gap closed at the end of the
Cut-and-Branch algorithm (100% if optimality is proven within the time limit, < 100% if
the two hours limit is hit) (final gap %), the number of enumerated nodes (#nodes), and
the total CPU time required by Cut-and-Branch (total time). All times are measured in
seconds. Detailed results can be found in Tables 6 through 11, whereas averages are given
in Table 2. The average integrality gap and number of cuts are computed as arithmetic
averages; the average CPU time and number of nodes are geometric averages (to deal with
zero values, we added one to each value before computing the average, and subtracted
one from the result). For comparison, we also report, in Tables 3 and 12, results obtained
within the same framework using traditional GMI cuts from the optimal tableau.

Table 2: Average values for Tables 6 through 11.

L&P R&S

root| cut| #cuts| final #nodes total| root| cut| #cuts| final #nodes total

n | instances | gap % | time gap % time | gap % | time gap % time
Easy 66.69| 1.88[242.81[100.00 66.73 2.34] 62.70] 1.48[177.12[100.00 84.81 1.87
1|Medium | 42.82| 1.47|283.05|100.00| 36783.44| 27.97| 40.89| 0.88|247.45|100.00| 27401.35 25.64
Hard 31.67|17.73]362.95| 63.99|491855.55|7200.02| 27.07| 9.02|328.26| 65.86|529225.83|7200.03
Easy 70.18| 2.97[239.94100.00 58.13 3.36] 71.07| 2.45[219.50[100.00 61.68 2.99

2 |Medium | 45.10| 1.92|281.70(100.00| 22605.34 25.17| 45.34| 1.67]275.60|100.00| 22631.97 28.96
Hard 30.17|29.68|368.58| 64.76|488767.55|7200.03| 28.76|17.71|334.21| 63.17|527506.47 | 7200.03
Easy 72.41] 2.93(229.75|100.00 55.04 3.32| 70.13| 3.49|217.19|100.00 51.24 3.92
3|Medium | 45.38| 2.12]276.95|100.00| 20928.22 26.49| 46.98| 1.99(266.55|100.00| 25529.14| 30.80
Hard 30.53|33.18|371.89| 65.42|505878.43|7151.24| 30.42|27.89|334.95| 63.16|511616.51 | 7200.03
Easy 72.54| 3.00(225.25[100.00 49.87 3.32] 70.33| 3.28[215.88[100.00 49.71 3.81
4|Medium | 46.99| 2.14|272.35|/100.00| 18443.68| 26.46| 47.13| 2.03|267.80|100.00| 21863.21 29.03
Hard 31.32|34.45|368.53| 65.59|488861.77|7080.50| 30.30(29.63[332.11| 63.14|489310.36 | 7200.04
Easy 72.46| 3.27[234.50[100.00 55.67 3.72| 71.22| 3.43[219.75[100.00 47.71 3.94
5|Medium | 45.99| 2.21[279.20|100.00| 23520.81 29.86| 47.06| 2.08(268.65|100.00| 22320.37| 28.25
Hard 31.12|38.10|362.42| 65.85|501422.54|7200.03| 29.40(29.93|335.42| 63.48|520554.34 | 7200.04
Easy 72.82| 3.34|234.25|100.00 50.10 3.64| 72.06| 3.24|219.12|100.00 48.37 3.77
6 |Medium | 45.04| 2.22|280.15|100.00| 24948.13| 30.80| 46.88| 2.10|268.60|100.00| 23022.37| 27.81
Hard 32.06|37.66 | 369.74| 65.29|468780.03|7200.04| 29.99(29.76|329.26 | 62.84|482300.74 | 7200.03

Table 3: Average values for Table 12.

GMI
root| cut| #cuts| final F#nodes total
instances | gap % | time gap % time
Easy 52.38| 0.31[197.81{100.00 104.12 0.76
Medium | 36.51| 0.30(256.50|100.00| 47544.46| 27.02
Hard 26.45| 1.86(328.63| 64.33|571427.50|7200.03

6 COMPUTATIONAL EXPERIMENTS 15

In the integer programming community it is known that comparing the strength of
different cut generators is a difficult task, especially when we are interested in the per-
formance of Cut-and-Branch, and average values alone can be misleading. [22] proposes
a framework for statistical tests. In this paper, in addition to reporting average values,
we opted for a simple pairwise comparison between the 13 cut generators tested; in each
comparison, we count the number of instances on which the first method is superior to
the second one. The comparison is carried out on Medium and Hard instances, because
on Easy instance we expect simple GMI cuts to outperform more powerful but time-
consuming cut generation methods. Our comparison criteria are as follows: method A is
superior to method B on a given instance if:

e Medium instance: A solves the instance in 10% less CPU time than B and the
difference is at least 2 seconds, or A and B take approximately the same CPU time
(£5% or a difference of less than 2 seconds) and A requires 20% fewer nodes.

e Hard instance: A closes at least p = 1% more integrality gap than B in the two
hours, or A solves the instance within the time limit whereas B does not solve it
and has more than 5% integrality gap left.

On Medium instances, we require a difference of at least 2 seconds of CPU time, because
for small values the fluctuations may be due to other factors than the strength of the
cutting planes. If no method is superior to the other, then the 2 methods have comparable
strength on that instance. We can see from Table 4 that there seem to be an improvement
in L&P-n for increasing . There is also an improvement in R&S-n for increasing 7, but
only for 7 > 2. From R&S-1 to R&S-2, there is a big drop in performance (more on this
below). Similarly, on Hard instances, the performance of L&P-7 improves as 7 increases
from 1 to 5. In fact, the number of times L&P-n outperforms the other cut generators
increases from 75 to 118, whereas the number of occasions L&P-n is inferior to other
methods decreases from 81 to 34. However, L&P-6 is inferior to L&P-5. In Table 5 we
report results on Hard instances. We verified that as long as a “reasonable” value for p
is used (p € [1,10]), the conclusions that can be drawn are essentially the same.

We have observed that the number of generated cuts is very similar for all methods,
except on Fasy instances: for Easy instances, R&S-1 and GMI generate fewer cuts than
other methods. However, our analysis focuses on Medium and Hard instances, and on
these two problem classes all algorithms generate a similar number of cuts (the difference
can be £10%). Therefore, we can compare the cut generators on equal footing,.

We can see (Tables 2 and 3) that all proposed methods appear to be stronger than
simple GMI cuts in terms of average gap closed at the root node, and in terms of number
of nodes for Easy and Medium instances. On Hard instances, the gap closed by GMI cuts
after Branch-and-Bound is comparable to some of the other tested method, even though
GMI cuts appear to be weaker at the root. However, the number of nodes processed
in two hours is larger for GMI cuts, which explains why the amount of gap closed after
Branch-and-Bound is similar. GMI cuts are also the fastest method for Easy instances
on average, and one of the fastest methods for Medium instances. Table 4 shows that
GMI cuts perform well on Medium instances, being “superior” to other methods (but at
the same time “inferior”) a large number of times. On some hard problems, like danoint
and opt1217, GMI cuts are still a good choice (see Table 12), due to a larger number
of enumerated nodes within the time limit. This is to be expected: on some problems,
investing CPU time in more expensive cut generation techniques does not pay off and
GMI cuts come out as the winner, but in other cases, there is a large advantage to be
gained by heavy cut generation.

6 COMPUTATIONAL EXPERIMENTS

16

Table 4: Pairwise comparison of cut generators on Medium instances: number of instances
on which the cut generation algorithm on the row is superior to the one on the column.
Comparison with 10% decrease of CPU time or 20% decrease of number of nodes if CPU

time is comparable (£5%).

o,

lRIEd R LI T EIN

A A A A A AR T T 9 g

£lE I RIE| | EIE|EE|E
L&P-1 [[-[4[5[3[6][6[6[6][7[5]5]6]7]66
L&P-2 || 7|-|4|4|5|5|8[6|6|5[3|3]|7]|63
L&P-3 || 6|5 |-|3[9]|9|5]6|7[4[4|5|8]|71
L&P-4 |[5|7|6|-|7|6|7[9[8|6[7|7|8]|83
L&P-5 || 9|74 |7|-|3|8[7|6|5[6|4]|8]|74
L&P-6 || 6|7 |5|5|1|-|7|6[4[4[4|5]|7]|6l
R&S-1 ({968 |8|7|8|-[8[8[8[7|7|6]90
R&S-2 |[6|3|4|2]6|6|6|-[4[3[1|2]6]49
R&S-3 || 7|54 |4]|4|5|5]5]-[2[2|2]6]51
R&S-4 || 7|4|5|5|9|8|5[5[5|-[3|4]6]66
R&S-5 || 6|67 |4|7|6|6|5[4[6|-|3]|6]|66
R&S-6 || 6|97 |4|7|7|6[5[6[5[4|-]6]|T2
GMI |[8]7|8|7|6|6|5|7|7|8|5]6]|-]80
[Sum Inf.[[82]70[67]56]74[75]74]75[72[61[51[54[81] |

Table 5: Pairwise comparison of cut generators on Hard instances: number of instances
on which the cut generation algorithm on the row is superior to the one on the column.
Comparison with 1% absolute difference in final gap closed.

o

dRk R R NI E:

A A | A A A A @ @2 gl g
R EEEEEEIEEIEIEE
L&P-1 || -[4(3(|3]2[5|6| 8 |12|7| 9|9 |[7|75
L&P-2 (|6 |- (442478 |8 [9|10| 8 | 7|77
L&P-3 [|[10| 7| -6 [4|5|8|11]10|9] 9 |10 |10 99
L&P-4 |99 |7|-(4|5|7|13[10|10[10|12|9 |[105
L&P-5 |99 |7|6|-|8 8|11 |13 |11]14 |13 |9 ||118
L&P-6 (99652 |- 8|12 |13 (11|12 | 14 |10|/111
R&S-1 [[6(4|4]6[6[6|-|19 | 79| 8| 89|82
R&S-2 |64 (3 21|34 -7 |7]6|8|8]59
R&S-3 ||3|6[(4|4[1|3|5|6] -|5]6]|5|6]54
R&S-4 || 7|54 |1(2]|2|6|8 |7 |-]8|5|8]63
R&S-5 [|5|5(3|3[3|2(6|9 |7 |6]-|619]64
R&S-6 [543 |1]2[3|5|6 |6 |5|5 |- |T7]| 52
GMI 6754|5557 |6 |7]8|8]|-]73
[Sum Inf.|[81]73]53]45]34]51| 75| 108]106]96]105]106]99] |

6 COMPUTATIONAL EXPERIMENTS 17

We also observe that R&S-1 performs very well on average on Medium and especially
Hard instances, and appears to be stronger than L&P-1 by looking at Table 2 only; a
more detailed analysis of the results reveals that its good average behaviour depends on
some Hard and Medium instances on which R&S-1 is considerably stronger than other
cut generators (examples are bell3a, danoint, dg012412, opt1217, vpml), but on several
other instances R&S-1 is clearly weaker. This is well indicated by Tables 4 and 5: R&S-1
is always “inferior” and “superior” a large number of times. We remark that the results
in [3] and [19] already showed that reducing cut coeflicients with the R&S algorithm is
very strong on some particular instances (e.g. the bell and vpm instances), therefore this
is not surprising. It is possible that in these instances, continuous variables play a very
important role in terms of the objective function value, which is the ideal setting for R&S-
1. R&S-n for n > 1 do not perform equally well as R&S-1 on the few instances where
R&S-1 really dominates. On average n > 1 yields better results on the Easy and Medium
instances in terms of nodes, but not in terms of CPU time, while being comparable on
the Hard problems; the gap closed at the root node increases significantly on all problem
classes.

The benefits for combining L&P and R&S are much clearer when improving L&P
cuts. Looking at Table 2, L&P-n with n > 1 is superior to L&P-1 in almost all respects:
gap closed at the root (except on Hard instances for some values of 7, for which we
observe a slight decrease), number of nodes on the Easy and Medium instances, and
gap closed after Branch-and-Bound on the Hard instances. On Medium instances, CPU
times for L&P-2, L&P-3 and L&P-4 are better than for L&P-1, and Table 4 also shows
an improvement: when moving from 7 = 1 to n = 6, the cut generators are “superior”
a larger number of times, and “inferior” a smaller number of times. The best value
for n on Medium instances seems to be n = 4. The same trend is observed on Hard
problems, Table 5. The peak is reached by L&P-5: overall, this generator is the one
which is “inferior” the smallest number of times, and is “superior” the largest number of
times. Additionally, L&P-3 and L&P-4 are the only methods to solve one Hard instance
(aflow40b) within the 2 hours time limit; L&P-4 requires 5240 seconds only for this task.
To conclude, L&P-5 seems to be the best choice for difficult problems in our experiments.

These results suggest that combining the L&P and R&S algorithms is indeed effective,
and that alternating between them & 5 times yields the best result; after 5 iterations,
there is hardly any improvement. Moreover, applying L&P as the first GMI cut strength-
ening step seems a better choice than starting with R&S: this is because R&S cuts are
not as consistently strong as L&P cuts, being very strong on some problems, but weak
on others.

Finally, we observe that the average cut generation time increases by ~ 50% from
n = 1 to n = 2: the second step is computationally expensive, but not as expensive as
the first one. This is because at each step, we can reuse some of the data computed
at previous iterations; in particular, we do not have to recompute the LP basis inverse
from scratch. For each n > 2, the CPU time required for cut generation increases by
less than 10%, since the number of cuts that are modified decreases. On Easy instances,
GMI cuts are the best choice in terms of CPU time, because all other methods spend
too much time for cut generation at the root — more than the time needed to solve the
instance with GMI cuts only. On Medium instances, all methods improve the root gap
closed, and reduce the total number of nodes without deteriorating the CPU time. On
Hard instances cut generation is expensive, but it is rewarded by the final gap closed.
To conclude, our cuts can be effective in reducing total solution time, provided that we
have a mechanism to detect easy instances for which excessive cut generation time is
detrimental. This issue is beyond the scope of this paper.

6 COMPUTATIONAL EXPERIMENTS 18

6.4 R&S cuts on non-optimal bases: cut violation

We provide here a brief analysis of the cut violation when R&S cuts are generated from
non-optimal bases of the LP relaxation. Recall from Section 4 that in this case, we could
generate cuts which are not violated, which would have to be discarded. It is natural
to ask how often does this happen; this is the question we try to answer in this section.
Thus, we recorded the number of non violated cuts that are computed while applying
10 rounds of cuts at the root on our test set, with the L&P-4 generator (which turned
out to be the strongest one, see Section 6.3). We gathered the same statistics for other
generators as well, and obtained very similar results, therefore here we only present data
for L&P-4.

As discussed in Section 4, if we generate large cut coefficients on the variables j € B*
which are basic in the optimal LP basis, but are nonbasic in the L&P basis from which
R&S cuts are generated, then the cut may not be violated. This explains why we modify
the R&S algorithm to try and reduce those cut coefficients as much as possible. How
often do we generate non-violated cuts if we employ the R&S algorithm unmodified? It
turns out that, even if we do not consider the set B* when applying the R&S coefficient
reduction algorithm (i.e. we apply the R&S algorithm directly as described in [19]), only
11 cuts are discarded because they are not violated. This is an extremely small number:
for comparison, the total number of generated cuts is 17085. We give two possible
explanations for this behavior. First, the L&P cut given in input to the R&S procedure
cuts off the optimal basic solution Z by a larger amount than the initial GMI cut; hence,
changing the split disjunction to obtain a stronger cut is likely to still cut off Z. Second,
sparsity plays in our favor: if the LP tableau on which R&S is applied is sufficiently
sparse, it is likely that computing a linear combination of its rows will not deteriorate
the coeflicients on the columns j € B* by a large amount.

Thus, there is not a big margin of improvement for the modification of the R&S
algorithm proposed in Section 4: the number of non-violated cuts is already negligible.
Indeed, it turns out that with the modified R&S algorithm, we still generate 11 non-
violated cuts (in total, we generate 17377 cuts in this case). However, an interesting side
effect of the modification is that we close more integrality gap: the average integrality
gap closed at the root over all instances after 10 rounds increases from 47.39% to 49.01%.
Hence, the proposed modification seems to have a positive effect. Our intuition is that
the modified R&S algorithm is likely to increase the cut violation, yielding deeper cuts.
This can be seen by looking at the expression for the distance cut off (first used as a
measure of cut quality in [9]). Suppose the cut is ax < ap; then the normal vector of the
hyperplane represented by this cut is a. Therefore, the distance d of the basic solution Z
from the hyperplane ax = «q satisfies a(z + da)) = . From this we get the expression:

d = (ao — az)/||al3. (17)

By giving more priority to reducing cut coefficients on the columns j € B* such that
Z; > 0, the modified R&S algorithm acts on both the numerator and the denominator
of (17), as opposed to only trying to reduce the denominator.

6.5 Cut density

We conclude our computational study with an analysis of the density of the cutting planes
generated by the methods proposed in this paper. The density is recorded on all cutting
planes generated during the 10 rounds applied at the root node of all instances in our test

6 COMPUTATIONAL EXPERIMENTS 19

set, and for each cut it is computed as a percentage with respect to the maximum density
allowed, i.e.: number of nonzeroes over the maximum number of nonzeroes allowed. The
maximum number of nonzeroes allowed is equal to min{n, 1000 + n/5}, where n is the
number of columns; similar strategies to select the maximum density are used in the
Branch-and-Cut solvers COIN-OR Cbc [15] and SCIP [1]. In Figure 4 we report the
average density values for all cut generators L&P-n and R&S-n with n = 1,...,6, for
each round of cut generation applied at the root. For comparison, we additionally report
the same curve for the traditional GMI cuts.

cut density

55

density

round
Figure 4: Average cut density for the first 10 rounds.

We can draw some conclusions from the graph. Surprisingly, GMI cuts are the densest
cut on average, and they are also denser than most other cuts through the 10 rounds,
with the exception of R&S-1. R&S-1 is close to GMI in most rounds; therefore, even if it
aims at reducing cut coefficients (in the extended (n + m)-space, i.e. when the tableau is
expressed with equality constraints), it does not reduce density (in the original n-space)
by a large amount: = 2% on average. L&P cuts, on the other hand, appear to be
consistently sparser than GMI cuts through all 10 rounds. The same beneficial effect is
observed when L&P and R&S are combined. An important observation is that there does
not seem to be an increase in cut density when 1 moves from 1 to 6: our combined L&P
+ R&S cut generation algorithm is very stable in this respect, regardless of the number
of iterations and whether we start with L&P or R&S. Finally, density grows steadily with
the number of applied rounds, and the distance between GMI and other cut generators
becomes smaller: at the tenth round, all cut generators yield similarly dense cuts, and
the density is more than double that of the first round.

7 CONCLUSION 20

7 Conclusion

In this paper we presented a combination of two existing algorithms for generating split
cuts: Lift-and-Project and Reduce-and-Split. In doing so, we introduced an extension
of the Lift-and-Project procedure on the original simplex tableau that can be employed
on general split disjunctions (instead of elementary disjunctions), and we analyzed the
application of Reduce-and-Split on non-optimal bases of the LP relaxation. We obtained
a cut generation algorithm that iteratively modifies both the LP basis and the split
disjunction from which a split cut is generated.

Computational experiments on a set of benchmark instances showed that this com-
bination is effective on mixed-integer instances, solving problems in a smaller number of
nodes and closing more integrality gap on the unsolved problems on average. In particu-
lar, iterating more than once between L&P and R&S proved to be a good choice: in our
experiments, applying L&P first and then iterating 4 times between the two algorithms
yielded the best results. Our cut generation algorithm is not significantly slower than the
original L&P and R&S algorithms, but generates stronger cutting planes that should be
useful in practice for the solution of difficult MILPs.

References

[1] T. Achterberg. Scip: Solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1-41, 2009.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):361-372, 2006.

[3] K. Andersen, G. Cornuéjols, and Y. Li. Reduce-and-split cuts: Improving the per-
formance of mixed integer Gomory cuts. Management Science, 51(11):1720-1732,
2005.

[4] K. Andersen, G. Cornuéjols, and Y. Li. Split closure and intersection cuts. Mathe-
matical Programming A, 102(3):457-493, 2005.

[5] E. Balas. Intersection cuts - a new type of cutting planes for integer programming.
Operations Research, 19(1):19-39, 1971.

[6] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3-51, 1979.

[7] E. Balas, and R. G. Jeroslow. Stengthening cuts for mixed integer programming
European Journal of Operational Research, 4:224-234, 1980.

[8] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 programming. Mathematical Programming, 58: 295-324, 1993.

[9] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science, 42(9):1229-1246, 1996.

[10] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations
Research Letters, 19(1):1-9, 1996.

[11] E. Balas and M. Perregaard. A precise correspondence between lift-and-project
cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming.
Mathematical Programming, 94(2-3):221-245, 2003.

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 21

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[23]

[24]

[25]

A

E. Balas and P. Bonami. Generating lift-and-project cuts from the lp simplex
tableau: open source implementation and testing of new variants. Mathematical
Programming Computation, 1:165-199, 2009.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12-15, 1998.

S. Ceria, G. Cornuéjols, and M. Dawande. Combining and strengthening Gomory
cuts. In E. Balas and J. Clausen, editors, Integer Programming and Combinatorial
Optimization, volume 920 of Lecture Notes in Computer Science, pages 438-451.
Springer Berlin / Heidelberg, 1995.

COIN-OR Branch-and-Cut. https://projects.coin-or.org/Cbc
COIN-OR Cut Generation Library. https://projects.coin-or.org/Cgl
COIN-OR Linear Programming. https://projects.coin-or.org/Clp

W. Cook, R. Kannan, and A. Schrijver. Chvéatal closures for mixed integer program-
ming problems. Mathematical Programming, 47:155-174, 1990.

G. Cornuéjols and G. Nannicini. Practical strategies for generating rank-1 split
cuts in mixed-integer linear programming. Mathematical Programming Computation,
3:281-318, 2011.

R. E. Gomory. An algorithm for the mixed-integer problem. Technical Report
RM-2597, RAND Corporation, 1960.

I. ILOG. IBM ILOG CPLEX 12.1 User’s Manual. IBM ILOG, Gentilly, France,
2009.

F. Margot. Testing cut generators for mixed-integer linear programming. Mathe-
matical Programming Computation, 1(1):69-95, 2009.

G. Nemhauser and L. Wolsey. A recursive procedure for generating all cuts for 0-1
mixed integer programs. Mathematical Programming, 46:379-390, 1990.

M. Perregaard. A practical implementation of lift-and-project cuts. In International
Symposium on Mathematical Programming, Copenhagen, 2003.

F. Wesselmann. Strengthening Gomory mixed-integer cuts: a computational study.
Technical report, University of Paderborn, 2009.

Detailed tables of results from Section 6.3

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 22
Table 6: Detailed results for L&P-1 and R&S-1 cuts.
L&P-1 R&S-1

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % time gap % time| gap %| time gap % time
10teams 100.00 16.54 252(100.00 161 21.08(100.00 8.25 41100.00 161 12.79
blend2 32.56 0.18 129{100.00 917 0.50| 29.08 0.15 114|100.00 929 0.42
dcmulti 86.52 2.25 398(100.00 94 2.46| 72.64 0.77 348(100.00 209 1.09
dsbmip 0.00 4.56 384 (100.00 13 4.74 0.00 4.12 364 (100.00 13 4.30
egout 100.00 0.02 55[100.00 0 0.02|100.00 0.01 32/100.00 0 0.01
fiber 91.77 1.68 305 (100.00 508 2.06| 88.52 4.76 206 100.00 570 5.47
fixnet6 56.72 1.54 189{100.00 693 3.07| 49.94 0.60 161{100.00 376 1.06
flugpl 16.36 0.02 731100.00 290 0.03| 96.88 0.01 50(100.00 64 0.01
gen 96.07 0.25 95(100.00 2 0.26| 91.65 0.15 92/100.00 2 0.17
gesa3 81.04 5.85 500 (100.00 94 6.11| 44.11 2.91 500|100.00 240 3.20
gesa3_o 89.57 5.28 403 (100.00 73 5.49| 61.69 2.71 145|100.00 312 3.06
khb05250 99.13 0.46 106 [100.00 13 0.52| 96.68 0.31 109(100.00 22 0.37
misc06 96.99 0.44 96 (100.00 12 0.50| 80.30 0.29 105|100.00 32 0.36
qnetl 51.10 4.76 461 (100.00 585 10.78| 33.05 6.14 2831100.00 495 8.36
qnetl_o 69.26 3.07 405 (100.00 237 4.19| 58.67 4.74 311(100.00 527 7.91
rentacar 0.00 2.17 34/100.00 17 2.52 0.00 0.93 10{100.00 30 1.37
aflow30a 47.13 4.10 409 (100.00 25987 62.30| 29.50 1.43 313(100.00 54983 62.03
arki001 50.59 7.78 408 (100.00 490040 | 1202.43| 57.06 6.81 490 | 100.00 276275| 833.40
bell3a 62.16 0.03 26(100.00 27922 1.74] 62.16 0.02 29(100.00 15696 1.56
gesa2 94.74 5.53 443(100.00 2662 8.04| 91.62 3.68 496 | 100.00 2274 6.25
gesa2_o 94.28 4.20 461 (100.00 3822 8.19| 91.17 3.42 417(100.00 1148 4.93
glass4 0.00 0.26 314(100.00 463683 | 114.80 0.00 0.24 2511100.00| 2265847 | 515.80
mas74 9.21 0.23 188(100.00| 2981710| 319.32 8.11 0.06 871100.00| 2885266 | 268.69
mas76 9.35 0.22 168|100.00 545667 48.21 8.16 0.04 62(100.00 516026 40.76
misc07 2.43 0.92 246 (100.00 39561 24.46 0.72 0.39 126|100.00 18140 10.45
mod011 12.22 8.45 1441100.00 6406 57.72 0.26 6.57 1]100.00 17246 81.09
modglob 62.63 1.14 340 (100.00 92705 45.23| 56.32 0.57 308(100.00 171204 80.24
noswot -0.00 0.08 163 {100.00 694040 | 104.47 0.00 0.07 181{100.00 694040 | 103.57
pkl 0.00 0.07 150|100.00 279380 35.56 0.00 0.07 149|100.00 279380 36.01
pp08aCUTS 87.04 1.78 385(100.00 1283 3.20| 73.49 0.63 418(100.00 4596 4.42
pp08a 95.03 0.75 329(100.00 2106 2.13| 94.93 0.33 378(100.00 2883 2.43
qiu 27.94 18.71 467 (100.00 29448 | 563.77| 11.44 5.04 469 | 100.00 12591 | 121.07
rgn 51.36 0.08 144100.00 3580 0.42| 70.66 0.06 132]100.00 2262 0.32
rout 31.68 2.40 454 (100.00 128541 | 203.35| 10.33 0.67 269|100.00 181745| 135.69
vpml 55.54 0.07 134|100.00 2665 0.471100.00 0.03 79/100.00 1 0.04
vpm2 63.10 0.41 288(100.00 16907 5.50| 51.80 0.22 2941100.00 18999 6.67
alcisi 27.21 27.27 499 63.82 799673 |7200.00| 23.41 6.18 478 61.43| 1419778|7200.01
aflow4Ob 34.15 14.67 218| 95.50| 1063047 |7200.00| 19.52 3.37 81| 91.87| 1773851|7200.00
blcisl 16.80 41.81 500| 69.01 397488 |7200.00| 17.06 9.09 486 | 69.27 599906 | 7200.01
b2cis1 16.09 59.47 500| 66.58 173045|7200.01| 10.24| 13.28 427| 64.63 281404 | 7200.00
bgb512142 3.00 13.79 500| 49.61 774056 | 7200.00 2.61 6.92 492| 49.38 745056 | 7200.00
dano3mip 0.02| 178.92 6 1.04 2101 |7200.04 0.03| 61.26 7 1.06 2458 |7200.04
danoint 1.16 3.50 348 | 61.35 576748 | 7200.01 1.07 1.44 358 | 79.97 750774 |7200.00
dg012142 0.01 23.77 500| 49.53 561717 |7200.00 0.01| 31.92 498 | 55.71 616579 |7200.01
mkc 54.21 5.29 198 | 81.31| 2832166|7200.00| 32.28| 21.89 216| 80.97| 2407618 |7200.00
momentuml 64.54| 312.14 230| 65.35 521|7200.06| 64.52|144.15 227 81.97 527(7200.12
momentum?2 40.77|1074.65 229 68.77 477(7200.17| 39.05(310.60 219| 68.78 488(7200.24
nsrand-ipx| 61.80 35.88 217| 87.60| 1434311|7200.00| 49.78 9.75 108 | 86.34| 1713539 |7200.00
opt1217 20.96 1.22 268 | 22.83| 4739969 |7200.08| 54.19 1.20 222| 54.19| 8413096 |7200.01
rol13000 53.08 16.62 393 | 82.06 952937 | 7200.00 7.46 6.53 289 | 61.47 772180 |7200.00
setlich 67.41 2.40 500| 93.70|10653874 | 7200.00| 48.02 1.17 500| 79.31| 3831719|7200.09
swath 28.40 17.98 290| 58.08 896689 | 7200.00| 28.11| 10.54 129| 58.71| 1014968 |7200.00
timtabl 39.72 0.74 500 | 87.38|16443060|7199.99| 42.21 0.36 500| 91.82(16792769 | 7200.00
timtab2 27.08 1.32 500| 56.41|10903845|7200.01| 26.92 1.24 500| 57.18]10039227|7200.00
tr12-30 45.36 4.57 500| 55.86| 5776355|7200.01| 47.76 3.12 500| 57.31| 3431033 |7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 23
Table 7: Detailed results for L&P-2 and R&S-2 cuts.
L&P-2 R&S-2

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % time gap % time | gap % time gap % time
10teams 100.00 35.83 213(100.00 161 40.37(100.00 7.36 41100.00 161 11.89
blend2 35.83 0.47 147{100.00 917 0.75| 32.53 0.38 146 |100.00 908 0.70
dcmulti 87.44 4.00 4401(100.00 107 4.35| 82.87 2.63 399 (100.00 210 3.03
dsbmip 0.00 6.03 350(100.00 13 6.22 0.00 6.95 375(100.00 13 7.14
egout 100.00 0.02 471100.00 0 0.02|100.00 0.01 321100.00 0 0.01
fiber 89.82 4.44 322(100.00 570 5.15| 92.35 5.73 257(100.00 515 6.12
fixnet6 57.92 1.67 167{100.00 605 3.17| 52.95 1.68 197]100.00 1053 4.25
flugpl 75.47 0.01 67(100.00 133 0.02| 98.86 0.01 71]100.00 28 0.02
gen 96.94 0.35 85(100.00 0 0.37| 94.31 0.35 981100.00 0 0.37
gesa3 70.22 9.98 500 (100.00 183 10.41| 75.19 8.93 500 (100.00 76 9.26
gesa3_o 90.06 9.25 404 (100.00 34 9.43| 93.05 7.19 346 (100.00 43 7.29
khb05250 98.66 0.58 991100.00 16 0.64| 97.07 0.61 105{100.00 18 0.67
misc06 99.73 0.56 95(100.00 7 0.61| 94.28 0.57 112{100.00 22 0.62
qnetl 50.15 12.44 468 (100.00 449 14.84| 49.93 11.21 463 (100.00 598 16.86
qnetl_o 70.65 6.77 401 (100.00 301 7.81| 73.77 5.90 396 (100.00 300 7.27
rentacar 0.00 2.46 34/100.00 17 2.80 0.00 1.75 11{100.00 30 2.18
aflow30a 47.17 5.79 398(100.00 32231 60.44| 43.15 4.58 401 {100.00 31300 62.41
arki001 55.89 14.21 463 (100.00 195454 | 634.03| 56.51 8.89 487(100.00 230492 | 552.87
bell3a 62.16 0.03 30(100.00 28082 1.71] 62.16 0.03 26(100.00 24756 1.54
gesa2 97.58 9.24 4781100.00 236 9.58| 96.98 8.10 483{100.00 157 8.36
gesa2.0 97.41 7.86 454 (100.00 680 8.56| 98.41 6.63 446 (100.00 115 6.77
glass4 0.00 0.27 314(100.00 463683 | 113.37 0.00 0.32 305(100.00| 2265847 | 520.24
mas74 9.02 0.29 178]100.00| 3012675| 315.93 8.69 0.20 132]100.00| 3155390| 354.51
mas76 9.08 0.23 146 |100.00 494158 40.92 9.36 0.12 122{100.00 465009 40.84
misc07 1.61 1.22 278(100.00 16243 10.58 4.05 1.05 282(100.00 46806 28.24
mod011 5.19 13.09 131{100.00 13603 81.42 0.28 9.35 3(100.00 19128 97.00
modglob 65.22 1.38 312(100.00 17820 9.67| 63.27 1.75 368 (100.00 47297 29.91
noswot -0.00 0.09 152{100.00 694040 | 104.12 0.00 0.11 192{100.00 694040 | 104.29
pkl 0.00 0.07 150|100.00 279380 35.65 0.00 0.07 149|100.00 279380 36.01
pp08aCUTS 90.09 1.94 344 (100.00 1938 4.38| 89.85 1.66 361(100.00 1646 3.84
pp08a 95.76 1.20 353(100.00 1679 2.74| 96.51 0.77 327(100.00 1440 1.96
qiu 28.13 18.77 467 (100.00 48408 | 796.39| 27.71 22.07 469 |100.00 58757(1079.17
rgn 57.61 0.09 138{100.00 4114 0.57| 66.36 0.08 128{100.00 3589 0.44
rout 33.21 4.07 458 (100.00 214771| 356.08| 31.60 2.62 4421100.00 123222| 235.92
vpml 78.19 0.05 88(100.00 112 0.08| 92.99 0.04 791100.00 39 0.06
vpm2 68.74 0.65 302(100.00 5125 2.67| 58.98 0.53 310(100.00 5640 2.50
alcisi 23.71 42.54 497| 60.44 814055 |7200.00| 26.28 29.11 457 | 62.35 954268 | 7200.01
aflow4Ob 34.61 18.72 255 94.92| 1443596 |7200.00| 22.03 4.45 87| 98.21| 2025478]|7200.00
blcisl 18.05 67.57 500| 68.56 381824 |7200.02| 15.01 34.61 444 | 66.81 421127 |7200.02
b2cis1 16.98 99.04 500| 67.26 156537|7200.01| 14.61 52.50 404| 63.13 185771(7200.01
bgb512142 2.97 28.45 500 | 48.44 544550 7200.01 2.27 16.40 496 | 49.90 608810 |7199.99
dano3mip 0.02| 418.07 6 1.02 1881|7200.01 0.03 93.50 7 1.06 2373|7200.13
danoint 1.16 5.73 354 | 81.80 685112 |7200.00 1.33 3.76 352 | 66.54 583194 | 7200.01
dg012142 0.01 73.97 500| 52.31 555966 | 7200.01 0.01 46.56 494 | 52.74 530445 |7200.01
mkc 41.92 15.53 222| 80.41| 2590007 |7200.00| 63.57 14.97 235| 81.21| 2490173 |7200.00
momentuml 64.49| 396.92 266 | 64.75 489 (7200.15| 62.06| 344.01 220| 64.67 51417200.19
momentum?2 40.92(1043.20 195| 68.80 506|7200.28 | 39.57|1042.54 230| 68.84 51217200.15
nsrand-ipx| 62.97 47.95 270 92.60| 1772810|7200.00| 50.21 11.47 105| 84.04| 1731898|7200.00
opt1217 17.60 1.38 267| 24.41|11270792|7200.01| 13.78 0.83 224| 21.77|10414613|7200.00
rol13000 28.89 28.08 413| 70.92 665477|7200.01| 39.53 19.37 403 | 83.16| 1014449 |7200.00
setlich 63.64 4.73 499 | 87.61| 6815028|7200.00| 56.50 3.76 500 | 87.57| 6527500 |7200.01
swath 28.43 21.18 273 | 58.93| 1062400 |7200.01| 27.39 18.73 192| 49.51 981648 | 7200.01
timtabl 48.84 1.82 497 | 92.65|16375094 | 7200.00 | 45.70 0.97 500 | 90.96|16663797 | 7200.00
timtab2 31.81 3.96 494 | 58.96| 7914985|7200.00| 27.71 1.99 500| 58.30| 9757182 |7200.00
tr12-30 46.16 10.72 495| 55.64| 5626807 |7200.00| 38.78 7.59 500 49.43| 6222719 |7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 24
Table 8: Detailed results for L&P-3 and R&S-3 cuts.
L&P-3 R&S-3

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % time gap % time | gap % time gap % time
10teams 100.00 36.81 227(100.00 161 41.37(100.00 9.93 41100.00 161 14.47
blend2 34.75 0.42 134{100.00 967 0.76| 33.21 0.54 146 |100.00 935 0.82
dcmulti 89.14 3.65 412(100.00 78 3.91| 83.35 4.34 4441100.00 158 4.68
dsbmip 0.00 6.59 354 (100.00 13 6.78 0.00 10.41 345(100.00 13 10.60
egout 100.00 0.01 441100.00 0 0.02|100.00 0.01 20(100.00 0 0.01
fiber 89.89 2.51 212(100.00 540 2.89| 90.64 10.34 286 (100.00 495 10.86
fixnet6 59.11 2.16 182{100.00 628 3.26| 56.05 1.93 166 | 100.00 1061 3.45
flugpl 97.54 0.01 57(100.00 18 0.01| 99.80 0.01 66 |100.00 3 0.02
gen 97.38 0.24 64100.00 2 0.26| 58.35 0.50 107{100.00 2 0.52
gesa3 78.52 10.01 500 (100.00 110 10.32| 81.32 13.53 500 (100.00 51 13.78
gesa3_o 94.93 9.78 402 (100.00 28 9.97| 89.38 11.88 377(100.00 47 12.04
khb05250 98.79 0.55 90| 100.00 15 0.60| 98.10 0.97 114{100.00 20 1.05
misc06 99.48 0.50 89(100.00 10 0.55| 98.40 0.85 125|100.00 12 0.90
qnetl 47.68 12.50 461 (100.00 640 17.62| 58.53 18.52 349(100.00 286 19.84
qnetl_o 71.34 8.19 414(100.00 429 9.71| 74.90 11.64 415(100.00 237 12.76
rentacar 0.00 2.51 34/100.00 17 2.85 0.00 2.13 11{100.00 30 2.57
aflow30a 44.86 6.83 393(100.00 32341 73.04| 43.78 6.74 385(100.00 36989 75.98
arki001 53.49 14.12 442 (100.00 228453 | 880.62| 63.45 12.66 472(100.00 168103 | 571.50
bell3a 62.16 0.03 29(100.00 33524 2.11| 62.16 0.03 26(100.00 24756 1.54
gesa2 97.37 9.89 443(100.00 260 10.20| 96.65 13.05 492{100.00 886 14.05
gesa2.0 97.66 9.25 447(100.00 578 10.03| 96.28 12.18 471(100.00 439 12.66
glass4 0.00 0.27 314(100.00 463683 | 114.52 0.00 0.34 305(100.00| 2265847| 523.23
mas74 8.92 0.34 181]100.00| 3013313| 336.47 8.74 0.25 147]100.00| 4350042| 488.91
mas76 9.31 0.22 168|100.00 540241 44.29 9.80 0.16 120{100.00 496915 42.31
misc07 2.51 1.15 259(100.00 23080 14.97 2.62 1.34 262(100.00 30760 21.35
mod011 5.31 17.26 115{100.00 10769 89.92 0.28 9.45 3(100.00 19128 87.36
modglob 63.57 1.92 322(100.00 34601 17.67| 68.94 1.71 330(100.00 40151 24.69
noswot -0.00 0.10 175(100.00 694040 | 104.50| -0.00 0.13 179(100.00 694040 | 105.24
pkl 0.00 0.07 150|100.00 279380 35.78 0.00 0.07 149|100.00 279380 36.03
pp08aCUTS 85.40 2.66 358(100.00 1669 4.25| 90.87 1.54 322(100.00 2090 3.82
pp08a 97.17 1.05 319(100.00 992 2.28| 96.34 0.75 259(100.00 1180 1.71
qiu 28.62 23.10 467 (100.00 37797| 663.80| 30.82 23.66 466 | 100.00 36000| 662.47
rgn 52.66 0.17 165|100.00 4059 0.65| 68.50 0.09 124100.00 2956 0.46
rout 44.05 4.56 434 (100.00 123978 | 243.45| 40.58 4.09 434|100.00 248505 | 597.18
vpml 92.95 0.05 71/100.00 54 0.06| 92.99 0.06 791100.00 39 0.07
vpm2 61.64 0.61 287(100.00 3179 1.67| 66.79 0.58 306 [100.00 3927 1.71
alcisi 28.00 53.86 499 66.52 903983 | 7200.01| 24.03 38.14 430| 61.11 875210 7200.00
aflow4Ob 35.13 22.23 211[100.00| 1471422|6327.53| 26.72 5.75 109| 92.11| 1554640|7200.00
blcisl 21.15 63.84 500| 71.44 364426 | 7200.02| 15.39 56.61 409 | 68.64 451821 | 7200.00
b2cis1 17.31| 119.59 500| 66.67 178552|7200.00| 17.99 77.88 459| 62.61 166794 | 7200.01
bgb512142 3.04 31.13 500(49.02 579253 |7200.01 2.47 32.69 489 | 50.46 627360 | 7200.01
dano3mip 0.02| 404.32 6 1.04 2115|7200.08 0.03| 130.95 7 1.02 1905 | 7200.09
danoint 1.16 6.33 357| 63.96 576663 |7200.01 1.08 5.61 354 | 59.28 518942 |7200.01
dg012142 0.01 79.07 500 | 41.48 592802 | 7200.00 0.01| 104.81 489 | 45.92 579770 |7200.00
mkc 50.56 22.73 257| 81.00| 2466335|7200.00| 52.87 36.36 235| 79.99| 2669203 |7200.00
momentuml 64.46| 373.26 259 82.23 681 (7200.11| 64.52| 560.36 234| 82.36 1473|7200.09
momentum?2 32.36(1135.28 235| 68.82 499 (7200.18| 35.97(1217.84 165| 68.81 487 |7200.34
nsrand-ipx| 65.75 53.89 258 | 94.08| 1901215|7200.01| 56.86 14.60 119| 84.39| 1667384 |7200.00
opt1217 21.65 2.32 304 | 24.80|10641431|7200.00| 17.86 2.37 303| 21.73| 8138058 |7200.00
rol13000 35.99 26.13 414| 83.28| 1196977 |7200.00| 47.06 31.44 421 | 77.48 656312 |7200.01
setlich 56.82 5.58 496 85.01| 6117535|7200.05| 60.11 5.65 497 89.03| 6954290 | 7200.01
swath 28.43 24.25 290 | 58.00 931899 |7200.01| 27.97 19.16 148 | 47.16 994738 | 7200.00
timtabl 43.36 2.24 492 92.07|15276320|7200.00| 51.21 1.90 498 | 93.70|15326395|7200.01
timtab2 31.25 4.16 494| 60.75| 8343697|7200.00| 33.56 5.15 500| 61.64| 8928425|7200.02
tr12-30 43.60 12.12 494 | 52.83| 4437638|7200.00| 42.36 13.57 498 | 52.57| 4942071|7200.01

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 25
Table 9: Detailed results for L&P-4 and R&S-4 cuts.
L&P-4 R&S-4

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % | time gap % time| gap % time gap % time
10teams 100.00| 36.33 227(100.00 161 40.85(100.00 7.49 41100.00 161 12.00
blend2 38.55 0.52 141|100.00 1055 0.85| 35.43 0.54 154|100.00 1020 0.87
dcmulti 89.92 3.98 422100.00 90 4.22| 85.17 4.02 4051 100.00 123 4.36
dsbmip 0.00 6.81 367 (100.00 13 7.00 0.00 9.19 351(100.00 13 9.38
egout 100.00 0.01 441100.00 0 0.02{100.00 0.01 20(100.00 0 0.01
fiber 88.45 2.49 185|100.00 524 2.96| 92.26 8.96 2491100.00 492 9.39
fixnet6 59.28 1.75 160|100.00 610 2.86| 56.68 2.11 179]100.00 702 4.03
flugpl 97.55 0.01 571100.00 16 0.01| 99.93 0.02 70(100.00 4 0.02
gen 97.50 0.24 64 (100.00 2 0.25| 60.76 0.49 107|100.00 0 0.51
gesa3 75.12| 11.05 500 [100.00 71 11.30| 79.46 13.18 500|100.00 94 13.52
gesa3_o 90.22 8.37 374 ({100.00 32 8.50| 94.49 10.56 349(100.00 29 10.67
khb05250 98.79 0.55 90 |100.00 14 0.59| 98.92 0.82 104 |100.00 15 0.89
misc06 98.90 0.55 88(100.00 9 0.60| 98.48 0.82 123|100.00 13 0.87
gnetl 51.20| 13.71 4531100.00 371 15.23| 50.20 20.52 412{100.00 368 22.91
qnetl_o 75.19| 10.33 398 (100.00 235 11.60| 73.57 10.62 416 |100.00 525 14.42
rentacar 0.00 2.48 341100.00 17 2.83 0.00 1.95 11{100.00 30 2.38
aflow30a 48.87 6.66 382 (100.00 26691 64.72| 45.55 7.05 405 (100.00 29912 72.94
arki001 63.33| 12.23 4241100.00 105960 | 337.49| 61.47 12.51 475(100.00 258489 | 670.37
bell3a 62.16 0.03 29(100.00 33524 2.11| 62.16 0.03 26(100.00 24756 1.55
gesa2 97.02| 10.44 445{100.00 297 10.80| 97.34 12.66 490 (100.00 263 13.02
gesa2.0 97.73 9.62 4541100.00 345 9.94| 96.65 11.39 4441100.00 412 11.80
glass4 0.00 0.28 314 {100.00 463683 | 115.96 0.00 0.35 305(100.00| 2265847| 518.50
mas74 8.84 0.35 1761100.00| 3916510 448.68 8.81 0.26 148]100.00| 3159428 | 341.59
mas76 8.99 0.28 1431100.00 502255 43.56 9.47 0.13 101{100.00 475130 40.81
misc07 2.51 1.19 245(100.00 43040 24.12 1.97 1.38 2851100.00 24364 15.53
mod011 5.31| 19.17 114|100.00 10823 93.39 0.28 9.43 3(100.00 19128 87.64
modglob 67.85 2.14 327(100.00 53342 30.80| 74.86 1.63 314(100.00 22947 12.78
noswot -0.00 0.09 1791100.00 694040 | 104.54 0.00 0.12 168(100.00 694040 | 105.29
pkl 0.00 0.07 150|100.00 279380 35.92 0.00 0.07 149|100.00 279380 36.17
pp08aCUTS 90.89 2.54 343 (100.00 1186 3.82| 90.58 1.72 317(100.00 1361 3.28
pp08a 96.91 1.23 332(100.00 1074 2.46| 96.33 1.16 326 (100.00 1111 2.18
qiu 27.14| 21.90 467{100.00 41264 | 592.33| 28.57 23.33 468 | 100.00 39959 | 765.87
rgn 62.12 0.16 142 {100.00 4044 0.65| 74.72 0.10 123|100.00 3325 0.60
rout 39.61 4.32 434{100.00 115575| 214.39| 32.40 4.74 4471100.00 349576 | 651.47
vpml 92.99 0.05 65(100.00 6 0.06| 92.99 0.05 79/100.00 39 0.06
vpm2 67.45 0.61 282(100.00 2804 1.59| 68.45 0.58 2831100.00 1503 1.28
alcisi 26.68| 52.95 500 65.31| 1301327|7200.00| 25.68 48.29 419 66.25| 1070359 |7200.04
aflow4Ob 36.49| 20.12 224(100.00| 1225113|5238.47| 27.88 6.92 118| 92.85| 1468403 |7200.01
blcisl 17.62| 96.32 500| 69.71 271930 |7200.01| 17.10 59.59 340| 69.86 435420 | 7200.00
b2cis1 18.65|103.46 500| 66.72 144884 |7200.00| 18.51 83.38 451| 65.91 189048 | 7200.00
bgb512142 2.55| 38.92 500 | 48.92 558244 |7200.00 2.55 34.53 489 | 46.30 624781 |7200.01
dano3mip 0.02]439.15 6 1.04 2107 |7200.08 0.03| 135.57 7 1.09 2681 |7200.14
danoint 1.46 6.34 336 | 68.06 540115 |7200.00 1.36 6.37 355| 67.94 582558 (7200.01
dg012142 0.01| 84.45 499| 54.55 524882 | 7200.01 0.01 96.07 487 51.21 557727 (7200.00
mkc 51.04| 20.40 256| 78.68| 2781088 |7200.00| 53.00 56.82 237 | 73.72| 2268773 |7200.00
momentuml 63.31|373.60 266 | 70.68 536 (7200.12| 61.68| 479.82 243| 69.03 525(7200.16
momentum?2 40.96914.25 238 | 68.85 483|7200.11| 38.19/1193.88 196| 68.78 474(7200.42
nsrand-ipx| 60.46| 56.03 227 89.68| 1749585|7200.00| 57.78 14.89 127| 84.38| 1570748 |7200.00
opt1217 29.73 2.27 293| 30.93| 8048994 |7200.09| 20.13 2.08 274 | 24.34| 7342698 |7200.00
rol13000 32.30| 32.38 415| 77.18 879156 | 7200.01| 46.63 34.70 413| 77.58 734294 |7200.01
setlich 61.32 6.32 493 | 89.30| 7397715|7200.00| 56.60 5.84 500| 85.02| 7234043 |7200.00
swath 28.44| 22.31 266 | 57.96 994262 | 7200.00| 27.57 19.54 163| 48.14 959010 | 7200.00
timtabl 46.05 2.16 494| 91.43 16065016 | 7200.00| 46.25 1.92 493 | 94.06| 16386369 | 7200.00
timtab2 32.10 4.94 495| 61.76| 9149961 |7200.00| 29.94 5.27 499| 58.26| 9108168 |7200.00
tr12-30 45.85| 13.88 494 | 55.36| 6131751|7200.00| 44.89 15.68 499 | 55.03| 3613179|7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 26
Table 10: Detailed results for L&P-5 and R&S-5 cuts.
L&P-5 R&S-5

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % time gap % time | gap % time gap % time
10teams 100.00 35.35 227(100.00 161 39.85(100.00 8.46 41100.00 161 13.00
blend2 35.58 0.48 133]100.00 832 0.74| 27.50 0.40 130{100.00 822 0.66
dcmulti 89.82 4.12 400 | 100.00 157 4.51| 87.97 3.81 404 |100.00 123 4.15
dsbmip 0.00 6.78 343(100.00 13 6.97 0.00 9.71 369 (100.00 13 9.90
egout 100.00 0.01 441100.00 0 0.02|100.00 0.01 20(100.00 0 0.01
fiber 90.32 5.54 329(100.00 547 6.10| 90.43 9.66 274(100.00 509 10.22
fixnet6 61.46 1.98 171{100.00 597 3.40| 54.90 2.57 191{100.00 842 4.61
flugpl 97.55 0.01 57(100.00 16 0.02| 99.93 0.02 70{100.00 4 0.02
gen 98.15 0.26 67(100.00 0 0.27| 89.88 0.39 831100.00 0 0.41
gesa3 67.84 9.70 500 (100.00 138 10.04| 75.64 13.63 500 (100.00 65 13.99
gesa3_o 90.76 9.10 390 (100.00 44 9.25| 94.49 11.25 349 (100.00 29 11.37
khb05250 98.79 0.57 90| 100.00 15 0.62| 98.92 0.79 104 |100.00 15 0.86
misc06 99.73 0.56 89(100.00 7 0.62| 98.51 0.84 123|100.00 9 0.89
qnetl 56.57 19.02 464 (100.00 504 22.18| 47.22 20.17 463 (100.00 608 26.60
qnetl_o 72.82 10.69 414(100.00 542 15.68| 74.10 14.15 421(100.00 337 15.64
rentacar 0.00 2.64 34/100.00 30 3.07 0.00 2.08 11{100.00 30 2.52
aflow30a 48.79 6.72 409 (100.00 21922 49.22| 42.46 6.86 396 (100.00 28898 59.40
arki001 61.78 16.07 482(100.00 673970 |1784.63| 64.31 11.53 4771100.00 177593| 516.17
bell3a 62.16 0.03 29(100.00 33524 2.09| 62.16 0.02 26(100.00 24756 1.55
gesa2 97.15 10.66 4751100.00 361 11.07| 97.66 14.39 489{100.00 421 14.80
gesa2.0 97.59 9.72 446 (100.00 288 10.00| 97.76 12.74 455(100.00 327 13.09
glass4 0.00 0.29 314(100.00| 2265847| 532.52 0.00 0.34 305(100.00| 2265847| 517.79
mas74 9.09 0.37 182]100.00| 3742849| 435.87 8.71 0.23 128 100.00| 2904274| 304.35
mas76 9.36 0.27 143|100.00 296498 26.33 8.89 0.12 91]100.00 462411 39.71
misc07 2.51 1.08 246 (100.00 38482 21.59 4.66 1.36 264 (100.00 41917 25.75
mod011 5.21 17.70 117{100.00 10719 81.54 0.28 8.84 3(100.00 19128 84.76
modglob 66.68 2.08 325(100.00 50149 25.55| 71.19 1.56 297(100.00 16719 10.28
noswot -0.00 0.10 179(100.00 694040 | 104.97 0.00 0.15 194 {100.00 694040 | 104.48
pkl 0.00 0.08 150|100.00 279380 35.95 0.00 0.07 149|100.00 279380 36.09
pp08aCUTS 88.52 2.54 339(100.00 2212 4.59| 90.18 2.42 364 (100.00 2310 5.21
pp08a 96.36 1.26 329(100.00 1406 2.43| 96.63 1.29 346 (100.00 1048 2.22
qiu 27.89 23.71 467 (100.00 24090 | 499.77| 28.58 23.90 468|100.00 36651 | 661.02
rgn 64.17 0.12 136 |100.00 1299 0.25| 73.95 0.10 122{100.00 3013 0.46
rout 31.83 5.13 453 (100.00 182866| 308.11| 34.97 4.56 435|100.00 124676 | 257.86
vpml 85.63 0.05 66|100.00 60 0.07| 92.99 0.05 791100.00 39 0.06
vpm2 64.99 0.77 297(100.00 4726 2.41| 65.84 0.64 285(100.00 5073 2.42
alcisi 30.87 61.36 500 | 68.13| 1045248 |7200.00| 25.76 47.33 450 62.96| 1090123 |7200.00
aflow4Ob 35.31 19.76 217| 98.35| 1543564 |7200.00| 27.88 6.87 118 | 93.14| 1534693|7200.00
blcisl 18.77 80.81 500| 70.20 387707 |7200.00| 14.71 67.37 404 | 68.85 426192 |7200.01
b2cis1 16.79| 125.31 499 | 66.42 132228|7200.01| 18.80 87.63 447 | 64.69 160327 |7200.01
bgb512142 3.26 44.49 500(49.50 564810 7200.01 2.71 36.36 489 | 48.39 570106 | 7200.00
dano3mip 0.02| 386.52 6 1.05 2133|7200.10 0.03| 156.65 7 1.05 2266 |7200.11
danoint 1.45 7.61 350(70.03 582800 | 7200.00 1.42 6.37 354 | 76.44 634243 |7200.00
dg012142 0.01 85.08 500 | 52.44 605850 | 7200.00 0.01| 103.72 490| 42.91 587047 |7200.01
mkc 45.74 37.54 256 | 81.17| 2462049|7200.00| 47.22 32.79 264 | 78.68| 2502733 |7200.00
momentuml 52.81| 390.39 237 64.72 513|7200.15| 61.68| 540.23 243 | 67.49 534(7200.16
momentum?2 41.57(1208.50 104 | 68.81 517|7200.22| 32.37|1204.54 143 | 68.80 47817200.38
nsrand-ipx| 65.38 58.13 241 93.91| 1752996|7200.00| 56.77 13.83 139| 82.88| 1697580|7200.00
opt1217 20.90 2.11 292| 24.54|13017661|7200.00| 17.70 1.73 266 | 22.87|16381688|7199.99
rol13000 37.85 35.77 435| 76.57 675800|7200.01| 44.86 35.66 418 | 84.01 992031 | 7200.00
setlich 63.97 6.60 495| 91.12| 7147307|7200.03| 56.92 7.06 497 | 84.88| 6892564 | 7200.00
swath 28.44 29.17 273| 57.70 963299 | 7200.00| 27.40 19.88 154 | 50.90| 1020300|7200.01
timtabl 48.98 2.48 493 | 98.43|16991540 | 7200.00| 48.66 2.08 498 | 93.76|16073424|7200.00
timtab2 32.96 5.51 496 | 62.60| 9715792|7200.00| 31.98 5.32 497| 61.11| 9078882 |7200.01
tr12-30 46.16 14.91 492| 55.54| 4977278 |7200.00| 41.73 17.50 495| 52.27| 4105357|7199.99

A DETAILED TABLES OF RESULTS FROM SECTION 6.3 27
Table 11: Detailed results for L&P-6 and R&S-6 cuts.
L&P-6 R&S-6

root cut [#cuts| final] #nodes total root cut [#cuts| final] #nodes total
instance gap % time gap % time | gap % time gap % time
10teams 100.00 36.23 227(100.00 161 40.78|100.00 7.34 41100.00 161 11.86
blend2 34.71 0.56 142{100.00 928 0.87| 30.57 0.39 121{100.00 848 0.65
dcmulti 90.70 4.04 409 (100.00 76 4.31| 87.60 3.96 368(100.00 150 4.26
dsbmip 0.00 7.21 338(100.00 13 7.40 0.00 9.77 384 (100.00 13 9.96
egout 100.00 0.02 441100.00 0 0.02|100.00 0.01 20(100.00 0 0.01
fiber 91.91 5.75 323(100.00 564 6.29| 90.33 7.68 297(100.00 500 8.23
fixnet6 62.21 1.98 1741100.00 451 2.52| 56.95 2.38 184{100.00 666 4.42
flugpl 97.55 0.01 57(100.00 16 0.02| 99.93 0.01 70{100.00 4 0.02
gen 98.15 0.26 67(100.00 0 0.27| 95.69 0.38 851100.00 0 0.39
gesa3 74.28 9.76 485(100.00 117 10.03| 79.25 12.68 499 (100.00 103 13.00
gesa3_o 90.83 9.40 390 (100.00 43 9.55| 94.82 10.24 353(100.00 26 10.32
khb05250 98.79 0.58 90| 100.00 15 0.63| 98.92 0.78 104 |100.00 15 0.84
misc06 99.73 0.58 89(100.00 7 0.64| 98.48 0.81 121|100.00 10 0.87
qnetl 54.04 18.51 464 (100.00 411 20.90| 45.98 18.70 467(100.00 339 20.90
qnetl_o 72.25 11.57 415(100.00 360 13.23| 74.46 13.68 418(100.00 492 18.68
rentacar 0.00 2.62 34/100.00 30 3.05 0.00 2.01 11{100.00 30 2.46
aflow30a 45.41 7.52 401 {100.00 25406 64.44| 44.87 7.14 392(100.00 24630 52.77
arki001 67.86 13.63 464 (100.00 538882|1634.39| 63.25 13.68 481{100.00 184224 | 482.32
bell3a 62.16 0.03 29(100.00 33524 2.12| 62.16 0.02 26(100.00 24756 1.54
gesa2 97.30 10.42 449(100.00 264 10.77| 96.92 13.26 476|100.00 692 13.98
gesa2.0 91.78 10.09 451(100.00 716 11.63| 97.47 11.03 452(100.00 636 11.87
glass4 0.00 0.28 314(100.00| 2265847| 529.79 0.00 0.34 305(100.00| 2265847| 521.99
mas74 9.09 0.38 182(100.00| 3742849| 446.98 8.81 0.20 121]100.00| 3763241| 406.77
mas76 9.32 0.28 162{100.00 297407 25.27 8.89 0.12 91]100.00 462411 39.81
misc07 2.51 1.13 246 (100.00 38482 22.14 2.15 1.47 284 (100.00 55238 37.27
mod011 5.21 16.53 117{100.00 10719 80.07 0.28 9.76 3(100.00 19128 89.14
modglob 59.46 2.26 342(100.00 52224 25.63| 73.33 1.65 304 (100.00 11299 6.41
noswot -0.00 0.10 179(100.00 694040 | 104.97 0.00 0.15 194 {100.00 694040 | 104.87
pkl 0.00 0.07 150|100.00 279380 35.69 0.00 0.07 149|100.00 279380 36.06
pp08aCUTS 88.15 2.87 354 (100.00 2187 5.54| 91.29 2.27 361(100.00 1482 4.37
pp08a 96.28 1.36 339(100.00 1284 2.69| 96.31 1.22 337(100.00 1705 2.94
qiu 27.79 20.48 467 (100.00 25465 | 404.77| 28.67 25.66 468|100.00 30836 | 648.53
rgn 56.68 0.15 145|100.00 2893 0.54| 72.84 0.10 119|100.00 2900 0.43
rout 29.73 5.83 463 (100.00 187844 | 372.87| 33.06 4.63 445{100.00 129373 | 241.08
vpml 85.63 0.05 66|100.00 60 0.07| 92.99 0.05 791100.00 39 0.06
vpm2 66.48 0.70 283(100.00 4001 2.08| 64.36 0.64 285(100.00 3302 1.77
alcisi 26.09 63.17 499 | 66.63| 1154669 |7200.00| 21.47 48.15 408 | 60.90| 1144082 |7200.01
aflow4Ob 35.31 19.48 217 98.68| 1609454 |7200.00| 27.88 7.27 118 | 93.29| 1573342|7200.00
blcisl 18.41 95.71 500(71.09 356632 |7200.01| 16.11 66.66 386 | 69.15 383922 7200.00
b2cis1 16.77| 113.15 499 | 65.55 126223|7200.02| 12.60 74.06 377| 59.55 132862 |7200.02
bgb512142 3.33 43.77 500 48.35 569857 |7200.01 2.68 38.90 491 49.42 635674 | 7200.00
dano3mip 0.02| 359.22 6 1.05 2126 |7200.10 0.03| 129.35 7 1.07 2448 |7200.07
danoint 1.31 7.57 353 | 67.71 562057 |7200.01 1.52 6.68 349 63.13 518736 |7200.01
dg012142 0.01 93.88 500 | 47.23 464062 | 7200.00 0.01| 110.38 496| 49.68 574702 |7200.00
mkc 52.95 19.28 248| 81.11| 2422768 |7200.01| 54.09 29.23 243| 79.44| 2689472 |7200.00
momentuml 64.51| 338.10 230| 70.98 513|7200.30| 61.68| 466.82 243 | 69.05 539(7200.21
momentum?2 29.43|1251.96 198 | 68.87 519|7200.17| 38.86|1224.55 201| 68.81 501|7200.25
nsrand-ipx| 62.71 58.81 250 88.98| 1398748 |7200.00| 57.26 14.70 117| 86.60| 1510243|7200.01
opt1217 25.56 3.54 348 | 28.26| 4670112|7200.01| 23.24 2.12 274| 26.22| 7265291 |7200.00
rol13000 56.36 34.27 408 | 72.82 678609 |7200.01| 44.00 38.01 429| 76.80 661057 | 7200.02
setlich 62.63 717 495| 91.45| 6952143|7200.07| 59.18 6.76 494 | 85.17| 7119449 |7200.00
swath 28.43 28.81 287 | 58.34| 1047207|7200.01| 27.90 17.89 132| 49.60| 1025380|7200.00
timtabl 48.74 2.28 497 | 96.27|16722968 | 7200.00| 45.19 2.23 495| 94.21|16694199|7200.00
timtab2 30.36 5.57 497| 61.32| 9836809 |7200.00| 34.21 5.99 498 | 59.25| 7902097 | 7200.00
tr12-30 46.12 16.42 493| 55.74| 6162441|7200.00| 41.97 17.53 498 | 52.62| 4431694 |7200.00

A DETAILED TABLES OF RESULTS FROM SECTION 6.3

Table 12: Detailed resu(l}tlsI Ifor GMI cuts.

root| cut|[#cuts| final] #nodes total
instance gap % | time gap % time
10teams 100.00| 2.51 256(100.00 112 5.59
blend2 31.83| 0.04 104 {100.00 852 0.27
dcmulti 70.02| 0.18 342 (100.00 253 0.42
dsbmip 0.00| 1.35 342 (100.00 13 1.54
egout 98.97| 0.01 100 [100.00 4 0.01
fiber 89.78| 0.20 239(100.00 632 0.71
fixnet6 48.38| 0.26 191 {100.00 690 1.12
flugpl 15.71] 0.00 741100.00 223 0.01
gen 21.91| 0.05 106 [100.00 0 0.08
gesa3 43.45| 0.20 500{100.00 264 0.52
gesa3.o 60.88| 0.13 162 [100.00 317 0.43
khb05250 94.84| 0.10 107 {100.00 33 0.18
misc06 72.66| 0.10 921100.00 42 0.18
gnetl 33.24| 0.52 264 (100.00 664 2.56
qneti_o 56.44| 0.49 270(100.00 520 3.15
rentacar 0.00| 0.20 16 [100.00 30 0.62
aflow30a 32.50| 0.59 332(100.00 65531 91.48
arkiOO1 55.68| 3.88 466 | 100.00 190622 | 505.08
bell3a 62.13| 0.01 40(100.00 15844 1.57
gesa2 72.79| 0.22 458{100.00 3371 4.63
gesa2.0 81.75| 0.24 406 | 100.00 5497 5.60
glass4 0.00| 0.04 258|100.00| 2265847 | 518.47
mas74 8.12| 0.02 56|100.00 | 2795555| 289.31
mas76 7.04| 0.02 471100.00 397116 31.54
misc07 0.72] 0.14 123|100.00 7423 4.66
mod011 3.49| 0.54 115{100.00 18757 88.43
modglob 62.30| 0.20 353(100.00 174053 | 102.61
noswot 0.00| 0.02 149 (100.00 694040 | 104.30
pki 0.00| 0.05 150 {100.00 279380 36.12
pp08aCUTS 66.01| 0.21 432{100.00 23005 14.61
pp08a 85.81| 0.14 423100.00 13323 7.89
qiu 15.55] 2.63 468 |100.00 17795| 187.19
rgn 42.57| 0.02 145|100.00 2632 0.36
rout 12.53| 0.29 333(100.00 89627 87.84
vpml 71.96| 0.02 105|100.00 8163 1.18
vpm2 49.27| 0.04 271(100.00 7642 1.88
alcisi 22.40| 1.01 500| 60.32| 1463987 |7200.00
aflow40b 17.19] 0.62 99| 92.09| 1728792 |7200.00
bicisl 12.52| 1.96 500| 70.35 655691 | 7200.01
b2cisl 8.27| 3.57 500| 61.88 295712 (7200.01
bg512142 1.60| 1.90 500 | 49.50 904100 | 7200.01
dano3mip 0.02| 7.19 5 1.04 2381 |7200.06
danoint 1.01] 0.40 348 | 82.06 860402 | 7200.00
dg012142 0.01| 2.87 500| 54.55 618284 | 7200.00
mkc 36.46| 1.03 181| 81.17| 2580451 |7200.00
momentuml 64.52(13.34 246 | 65.89 511|7200.30
momentum?2 39.14|57.54 161| 69.01 551|7200.08
nsrand-ipx| 45.22| 2.63 117| 81.77| 1551147|7200.00
opt1217 50.27| 0.45 218 | 50.27 11579593 |7200.01
rol13000 4.62| 1.72 278 | 64.39 757635 |7200.00
setich 61.11| 0.20 500| 89.79| 6850274 |7200.01
swath 28.02| 0.81 91| 41.24 915721 | 7200.00
timtabl 31.23| 0.11 500| 89.77|16470738|7200.00
timtab2 26.43| 0.16 500 | 55.80(10265277|7200.00
tr12-30 52.52| 0.19 500 | 61.45| 4074819 |7200.00

28

