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Improved algorithms for splitting full matrix algebras
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Abstract

Let K be an algebraic number field of degree d and discriminant ∆ over Q. Let A
be an associative algebra over K given by structure constants such that A ∼= Mn(K)
holds for some positive integer n. Suppose that d, n and |∆| are bounded. In a previous
paper a polynomial time ff-algorithm was given to construct explicitly an isomorphism
A → Mn(K).

Here we simplify and improve this algorithm in the cases n ≤ 43, K = Q, and n = 2,
with K = Q(

√
−1) or K = Q(

√
−3). The improvements are based on work by Y. Kitaoka

and R. Coulangeon on tensor products of lattices.

1 Introduction

The following explicit isomorphism problem is important in computational representation the-
ory: let K be an algebraic number field, A an associative algebra over K. Suppose that A is
isomorphic to the full matrix algebraMn(K). Construct explicitly an isomorphism A → Mn(K).
Or, equivalently, give an irreducible A module.

The algebra A is considered to be given by a collection of structure constants γijk ∈ K.
They form the multiplication table of A with respect to some K basis a1, . . . , am: the products
aiaj can be expressed as

aiaj = γij1a1 + γij2a2 + · · ·+ γijmam.

In [5] a polynomial time ff-algorithm was given for the case of the problem, when n and
the degree and the discriminant of K are all bounded. Applications were also outlined there,

0 2010 Mathematics Subject Classification: 16Z05, 11Y16, 68W30.
Key words and phrases: Central simple algebra, maximal order, real and complex embedding, lattice basis
reduction, tensor product of lattices, Hermite constant, Bergé-Martinet constant.
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including some parametrization problems of algebraic geometry. The methods of [5] are based
on theoretical and algorithmic results on lattices and eventually boil down to enumerating short
vectors in some lattices in real Euclidean spaces.

In this paper we present considerable improvements of the methods of [5] in the case when
the ground field K is the rationals, and n ≤ 43. This is based on results of Kitaoka [6], [7]
on tensor products of lattices, in particular we make use of the powerful result of Corollary
2. In Theorem 3 we prove a quantitative version, which allows further reduction in computing
time. Some of Kitaoka’s results have been extended by Coulangeon [3] from Q to imaginary
quadratic fields. Using these we also obtain an improvement of the original algorithm when
K = Q(

√
−1) (Gaussian rationals) or K = Q(

√
−3) (Eisenstein numbers) for the case n = 2.

The new algorithms are simpler and faster than the original ones.
For the basic definitions and facts on lattices in real Euclidean spaces we refer to [2], [9],

and [10].

2 Full matrix algebras over Q

A (full) lattice L ⊂ Rn is the free Abelian group generated by n linearly independent vectors
b1,b2, . . . ,bn. ThenM = (b1|b2| . . . |bn) is a matrix of L, and | detM | is called the determinant
of L, and is denoted by detL. We denote by λ1(L) the Euclidean length of the shortest nonzero
vector from L. The nth Hermite’s constant is

γn := sup
L

(

λ1(L)

(detL)1/n

)2

,

where L is a full lattice in Rn. Hermite proved that γn actually exists. The exact value of γn
is known only for n ∈ {1, 2, . . . , 8, 24}.

We briefly recall now the definition of the tensor product of lattices, for more information
see section 1.10 of Martinet [9], and section 7 in Kitaoka [7]. Let L and M be two lattices in Rm

and Rn, respectively. The tensor product of Z modules L⊗Z M embeds in the straightforward
way into Rm ⊗R Rn. This allows one to define L⊗M as the set of integral linear combinations
of the tensors x⊗ y from Rm ⊗R Rn where x ∈ L and y ∈ M .

Note that, in terms of coordinates, L ⊗ M can be viewed as the set (actually lattice) of
m by n matrices over R which are integral linear combinations of dyads of the form xyT ,
where x ∈ L and y ∈ M . Note also that Rm ⊗ Rn is an Euclidean space with the law
〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉〈y1,y2〉. In this setting the norm on the tensor product Rm ⊗ Rn

is actually the Frobenius norm on the space of matrices Mm,n(R).
Let L be a full lattice in Rm. The dual L∗ of L consists of those vectors y ∈ Rm for which

we have 〈x,y〉 ∈ Z holds for every x ∈ L. The supremum γ′
n of λ1(L)λ1(L

∗) among full lattices
L ⊂ Rn is the Bergé-Martinet constant, see [1], [9]. It is known that γ′

n ≤ γn for every n.
Following Y. Kitaoka [6] we say that a lattice L is of E-type if every minimal nonzero vector

of L⊗M is of the form x⊗ y (x ∈ L, y ∈ M) for any lattice M .
Kitaoka proved in [6], and in Theorem 7.1.1. of [7] the following.

Theorem 1 (Kitaoka). If L is a lattice of rank at most 43, then L is of E-type.

We remark here that by a theorem of Steinberg (see [10], Chapter II, §9) for any integer
n ≥ 292 there exists a lattice L such that λ1(L ⊗ L∗) < λ1(L)λ1(L

∗). Thus, the conclusion of
Kitaoka’s theorem does not hold for larger values of n.
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We can apply Kitaoka’s theorem to maximal orders of the form Λ = QMn(Z)Q
−1 ⊂ Mn(R),

where Q ∈ GLn(R).

Corollary 2. For any dimension n ≤ 43 and subring Λ ⊂ Mn(R) of the above form the nonzero
matrices with the smallest Frobenius norm in Λ are of rank one.

Proof. The order Λ is given by the transformation matrix Q. As in the proof of Theorem 1
of [5], we see that as a lattice Λ ∼= QZn ⊗ (QZn)∗. But QZn is a rank n lattice, hence it is
of E-type, giving that the matrices of minimal norm in Λ are dyadic products of vectors from
QZn and (QZn)∗, and hence have rank 1 as matrices from Mn(R).

Thus, when n ≤ 43, then the smallest zero divisors in any Λ have rank one. In particular,
no matrix from Λ of rank at least 2 can have minimal length. By using a modified variant
of Kitaoka’s original argument, we prove a slightly stronger, quantitative version of the latter
statement.

Recall that the rank of a nonzero tensor v ∈ L⊗M is the smallest positive integer r such
that v can be written as

v =

r
∑

i=1

xi ⊗ yi (1)

for some x1, . . . ,xr ∈ L and y1, . . . ,yr ∈ M .

Theorem 3. Let L and M be lattices. Then for every tensor v ∈ L⊗M of rank r we have

‖v‖ ≥
√

r

γ2
r

λ1(L⊗M).

We remark that the above bound is meaningful when the dimension of L or M is at most
43. Then obviously r ≤ 43, and by Lemma 7.1.2 from [7] for 2 ≤ r ≤ 43 we have 1 < r/γ2

r .
For r large the bound becomes trivial, because r/γ2

r tends to zero as r grows. We shall need
Lemma 7.1.3 from [7]:

Lemma 4. Let A,B ∈ Mn(R) be positive definite real symmetric matrices. Then we have
Tr(AB) ≥ n n

√
detA n

√
detB.

Proof of Theorem 3. Let v ∈ L ⊗ M be a tensor of rank r. Then v can be written in the
form (1). Let L1 be the lattice generated by {x1, . . . ,xr}, and similarly let M1 be the lattice
spanned by {y1, . . . ,yr}. By the minimality of representation (1) the rank of these sublattices
is r. Noting that

‖v‖2 =
∥

∥

∥

∥

∥

r
∑

i=1

xi ⊗ yi

∥

∥

∥

∥

∥

2

=

r
∑

i,j=1

〈xi,xj〉〈yi,yj〉 = Tr([〈xi,xj〉]ri,j=1 · [〈yi,yj〉]ri,j=1),

and by using Lemma 4 we obtain

‖v‖2 ≥ r (det[〈xi,xj〉] · det[〈yi,yj〉])1/r . (2)

Now let us assume for contradiction that ‖v‖2 < (r/γ2
r)λ1(L⊗M)2. It follows that

‖v‖2 < r

γ2
r

(λ1(L)λ1(M))2 ≤ r

γ2
r

(λ1(L1)λ1(M1))
2.

3



Combining this with (2) we obtain

r <
r

γ2
r

· λ1(L1)
2

(det[〈xi,xj〉])1/r
· λ1(M1)

2

(det[〈yi,yj〉])1/r
≤ r

γ2
r

γ2

r ,

since [〈xi,xj〉]ri,j=1 and [〈yi,yj〉]ri,j=1 are Gram matrices for L1 and M1, respectively. The con-
tradiction finishes the proof. �

Using the known values of γr simple calculation gives that the minimal value of r/γ2
2 for

2 ≤ r ≤ 8 is 3

2
, which is attained at r = 2. We remark that the bound of Theorem 3 is sharp,

at least for r = 2. This is demonstrated by the hexagonal lattice A2 ≤ R2 which is generated
by the vectors

(

1

2
√
3

2

)

,

(

1

0

)

.

It is known that A2 is attains the Hermite constant, moreover this holds also for the dual lattice
A∗

2 which is spanned by the vectors

(

0

2√
3

)

,

(

1

− 1√
3

)

.

Some calculation shows that the minimal norm among the rank two tensors in A2 ⊗ A∗
2 is√

2 =
√

3

2
· 2√

3
=
√

3

2
λ1(A2)λ1(A

∗
2).

In [5] it was shown that for the shortest nonzero matrix v ∈ Λ = QMn(Z)Q
−1 we have

‖v‖ ≤ γn, where γn is the Hermite constant. This can be strengthened as follows. Using again
that Λ ∼= QZn ⊗ (QZn)∗, we obtain that

‖v‖ ≤ λ1(QZn)λ1((QZn)∗) ≤ γ′
n, (3)

where γ′ is the Bergé-Martinet constant.

3 The modified IRS algorithm over Q for n ≤ 43

The input of the algorithm is an associative algebra A over Q given by structure constants. It
is known that A is isomorphic to the full matrix algebra Mn(Q). The objective of the algorithm
is to find an element C ∈ A which has rank one, when viewed as a matrix from Mn(Q).

The first four steps of the algorithm below are identical to the first four steps of the cor-
responding algorithm from [5]. The last two steps of that method are replaced here by a new
step 5:

1. Construct a maximal order Λ in A.

2. Compute an embedding of A into Mn(R). This way we have a Frobenius norm on A.
For X ∈ A we can set ‖X‖ =

√

Tr(XTX). Also, via this embedding Λ can be viewed
as a full lattice in Rm, where m = n2. The length ‖v‖ of a lattice vector v is just the
Frobenius norm of v as a matrix.

3. Compute a rational approximation A of our basis B of Λ with a suitable precision.

4



4. Obtain a reduced basis b1, . . . ,bm of the lattice Λ ⊂ Rm by computing an LLL-reduced

basis from A. The value cm of reducedness is (γm)
m

2
(

3

2

)m
2

m(m−1)
2 .

5. Generate all integral linear combinations

C =
m
∑

i=1

αibi,

where αi are integers, |αi| ≤ cm, until a C is found with rankC = 1. Output this C.

Theorem 5. This algorithm is correct when n ≤ 43. Moreover, it runs in ff-polynomial time.

Proof. For the details and timing of steps 1-4 we refer to the proof of Theorem 1 from [5]. As
a result of these computations we obtain a basis b1, . . . ,bm of the lattice Λ such that

‖b1‖ · ‖b2‖ · · · ‖bm‖ ≤ cm · det(Λ)

holds with

cm = (γm)
m

2

(

3

2

)m

2
m(m−1)

2 .

We recall the following bound by H. W. Lenstra [8].

Lemma 6. Let Γ be a full lattice in Rm. Suppose that we have a basis b1, . . . ,bm of Γ over Z

such that
‖b1‖ · ‖b2‖ · · · ‖bm‖ ≤ c · det(Γ)

holds for a real number c > 0. Suppose that

v =
m
∑

i=1

αibi ∈ Γ, αi ∈ Z.

Then we have |αi| ≤ c ‖v‖
‖bi‖ for i = 1, . . . , m.

Let v ∈ Λ be a nonzero vector with minimal length. Then, on one hand, by Corollary 2 v is
a matrix of rank one. On the other hand, when v is expressed as an integer linear combination
v =

∑m
i=1

αibi then by Lemma 6 we have

|αi| ≤ cm
‖v‖
‖bi‖

≤ cm. (4)

This implies that there is indeed a rank one matrix C ∈ Λ among the linear combinations
enumerated.

To obtain the timing bound, we observe that at step 5 we enumerate at most (2cm + 1)m

linear combinations, and this value is bounded by our assumption n ≤ 43.

We remark that the upper bound |αi| ≤ cm which defines the domain to be searched at
step 5 can be reduced. During the run of step 5 one may update the quantity d which is the
actual minimum of the numbers (γ2

r/
√
r)‖C‖ over the matrices C enumerated so far (here r is

the rank of C). From (4), Theorem 3, and (3) it follows that

|αi| ≤ cm
min{d, γ′

n}
‖bi‖

. (5)
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4 Two by two matrices over imaginary quadratic fields

Here we consider possible extensions of the improvements obtained over Q to other number
fields. In general not much is known about tensor products of lattices over general number
fields. On the positive side, Coulangeon [3] extended some of Kitaoka’s results to imaginary
quadratic fields.

Let K denote an imaginary quadratic number field Q(
√
−d) where d is a square-free positive

integer. By O we denote the ring of algebraic integers in K: O = Z1 + Z
√
−d + Z1+

√
−d

2
if

d ≡ −1 modulo 4 and O = Z1 + Z
√
−d otherwise. In the next discussion we consider K (and

hence O) to be embedded into C.
Let A be a central simple algebra of dimension 4 over K isomorphic to M2(K) and let Λ be

a maximal order in A. We assume that we are given an embedding φ of A into M2(C). From
the theory of central simple algebras over number fields we know (see Corollary 27.6 in Reiner
[11]) that there exists a matrix B ∈ M2(C) and a fractional ideal I of O such that

Bφ(Λ)B−1 =

(

O I−1

I O

)

.

In other words, there exists a full O-lattice L in C2 (a finitely generated O-submodule of C2

that spans C2 as a linear space over C) such that

Λ = {A ∈ M2(C) : AL ⊆ L} .

In fact, for our specific Λ, we can take L = B

(

O
I

)

.

Let 〈, 〉 stand for the standard Hermitian bilinear form on C2. The linear extension of the
mapping u⊗ v 7→ Au,v where Au,vw = 〈v, w〉u gives an identification of M2(C) with C2 ⊗C C2.
By this identification, the tensor square of the standard Euclidean norm of C2 becomes the
Frobenius norm of matrices. Also, Λ is identified with L⊗O L∗ where

L∗ =
{

u ∈ C2 : 〈u, v〉 ∈ L for every v ∈ L
}

and L⊗O L∗ is just the additive subgroup of C2⊗CC
2 spanned by the tensors of the form u⊗v

where u ∈ L and v ∈ L∗.

Remark. We can speak about the rank of an element x ∈ L ⊗O L∗ in two ways. One is the
minimal positive integer r such that x can be written as

x =
r
∑

i=1

xi ⊗ yi, (6)

for some vectors xi ∈ L and yi ∈ L∗. The other possible notion of rank is the rank of x as
a matrix from M2(C). The two notions are not the same1. As an example2, let d = 5, and
Λ = M2(O) and consider the matrix

C =

(

3 1 +
√
−5

1−
√
−5 2

)

1It is not hard to show that the two notions of rank coincide if O is a principal ideal ring.
2We thank Géza Kós for suggesting this example.
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from Λ. We have detC = 0, hence C has rank 1 as a matrix from M2(C). Moreover, using the
fact that 3 and 2 are irreducible elements in O, we see that C is not a decomposable tensor
from O2 ⊗O O2.

We shall use the term rank in the former sense. We note also, that in the minimal repre-
sentation (6) the vectors xi and yi are linearly independent over K. For a proof we refer to
Lemma 3.1 in [3].

Let M be an O-submodule of C2 generated by two linearly independent vectors. The
determinant of M is defined as the following Gram matrix

detM = det

(

〈v1,v1〉 〈v1,v2〉
〈v2,v1〉 〈v2,v2〉

)

,

where v1,v2 is any basis for M .
Following the notation of [3], we denote by γh(M) the quantity

‖v‖2/(detM)
1
2 ,

where v is a shortest nonzero vector from M .
Let D be the discriminant of K (we have D = d if d ≡ 3 modulo 4 and D = 4d otherwise.)

It is known (last paragraph of Subsection 2.1 in [3]) that γh(M) = γ(M)
√
D/2, and hence

γh(M) = γ(M)
√
D/2 ≤ γ4

√
D/2 =

√

D/2, (7)

where γ(M) is the ratio of ‖v‖2 and the fourth root of the determinant of M , considered as a
Z-lattice of rank 4, and γ4 =

√
2 is the Hermite constant.

Let us define r(Λ) as the ratio between the squared length of the shortest rank 1 element
of φ(Λ) and that of the shortest rank 2 element in φ(Λ).

Proposition 7. We have

r(Λ) ≤ 1

2
γh(M)γh(M

′),

where M is an O-sublattice of L generated by two linearly independent vectors over K and and
M ′ is an O-sublattice of L∗ generated by two linearly independent vectors over K.

Proof. Indeed, let v and w be shortest nonzero vectors from L and L∗, respectively. Also, let
ω be a shortest nonzero vector of rank 2 from Λ ∼= L⊗O L∗. We have then

r(Λ) =
‖v‖2 · |w‖2

‖ω‖2 .

Similarly to the rational case (2) we obtain

‖ω‖2 ≥ 2(detM)1/2(detM ′)1/2

for some sublattices M ≤ L and M ′ ≤ L∗ which are spanned by two linearly independent
vectors over K (see Proposition 3.2 from [3] for the details).

Let v′ and w′ be shortest nonzero vectors from M and M ′, respectively. Clearly we have
‖v‖ ≤ ‖v′‖, and ‖w‖ ≤ ‖w′‖. By putting all these together we obtain

r(Λ) =
‖v‖2 · |w‖2

‖ω‖2 ≤ ‖v′‖2 · |w′‖2
2(detM)1/2(detM ′)1/2

=
1

2
γh(M)γh(M

′).
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For d = 1 by (7) and Proposition 7 we have r(Λ) ≤ 1

2

√
2 ·

√
2 = 1. Similarly, for d = 3 we

find that

r(Λ) ≤ 1

2

√

3

2

√

3

2
=

3

4
< 1.

We have obtained the following:

Proposition 8. For d = 1, at least one of the smallest element of φ(Λ) with respect to the
Frobenius norm has rank one. For d = 3 every smallest element of φ(Λ) has rank one. �

The following example shows that over the Gaussian rationals it does indeed occur that a
shortest nonzero element of Λ has rank 2. Let d = 1 let L be O-submodule of C2 generated by
(1, 0)T and ( 1√

2
, i√

2
)T and let Λ = {A ∈ M2(C) : AL ⊆ L}. Then

Λ =







1 + i

2

(

a b
c e

)

:
a, b, c, e ∈ O,

a+ c ≡ a+ b ≡ b+ e ≡ c+ e ≡ 0 mod (1 + i),
a+ b+ c+ e ≡ 0 mod 2







and the identity matrix is one of the elements of Λ having the smallest Frobenius norm.

Next we outline a direct, elementary proof of inequality (7). Let K = Q(
√
−d) be an

imaginary quadratic number field, O be the maximal order of K. Suppose further that O is a
principal ideal ring.

Lemma 9. Let z be any complex number. Then there exists an element α ∈ O such that
|z − α| ≤ κ, where

κ =

{

d+1

4
√
d

d ≡ 3 mod 4,
√
d+1

2
otherwise.

The proof is a simple argument from elementary geometry which we omit here. For d = 1,
we have κ =

√
2

2
, for d = 2, κ =

√
3

2
, for d = 3, κ =

√
3

3
, for d = 7, κ = 2

√
7

7
, for d = 11,

κ = 3√
11
. In these cases κ < 1. For for d = 5, 6, 10 and for d > 11 we have κ > 1. Let us define

τ = ⌊κ + 1⌋. Then obviously we have κ/τ < 1.

Proposition 10. Suppose that κ < 1 holds, and let M be an O-submodule of C2 generated by
two linearly independent vectors over K. Then

γh(M) ≤ τ√
1− κ2

.

Proof. Let v,w be a basis of M such that v is a shortest nonzero vector from M . Such a basis
exists because O is a principal ideal ring. Apply now the preceding lemma for z = τ 〈v,w〉

〈v,v〉 .
There exists an α ∈ O be such that

∣

∣

∣

∣

〈v,w〉
〈v,v〉 − α

τ

∣

∣

∣

∣

≤ κ

τ

and put w′ = w − α
τ
v. Then τw′ ∈ M and hence ‖w′‖ ≥ ‖v‖

τ
. Furthermore,

|〈v,w′〉| =
∣

∣

∣

∣

〈v,w− α

τ
v〉
∣

∣

∣

∣

=
∣

∣

∣
〈v,w〉 − α

τ
〈v,v〉

∣

∣

∣
≤ κ

τ
〈v,v〉.
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The Gram determinant does not change if we switch from the basis v,w to v,w′, hence

detM = det

(

〈v,v〉 〈v,w′〉
〈w′,v〉 〈w′,w′〉

)

= 〈v,v〉〈w′,w′〉 − |〈v,w′〉|2

≥
(

1

τ 2
− κ2

τ 2

)

‖v‖4.

For d = 1 the Proposition gives γh(M) ≤
√
2 =

√

D/2. For d = 2 we obtain γh(M) ≤
2 =

√

D/2. For d = 3 our bound is γh(M) ≤
√
3√
2
=
√

D/2. For d = 7 the proposition gives

γh(M) ≤
√

7

3
<
√

7

2
=
√

D
2
. For these values of d the ring O is a principal ideal ring, hence we

have proved (7).

The improved algorithm when d = 1 or d = 3

We can achieve an improvement of the algorithm of Section 3 from [5] for n = 2 and d = 1
or d = 3, i.e. for the case of two by two matrices over the Gaussian rationals or over the
Eisenstein rationals. These cases of the explicit isomorphism problem occur when one considers
parametrization of Del Pezzo surfaces of degree 8, see Section 4 in [4]. Our method may present
a viable alternative there to solving norm equations.

Our improvement over the method of [5] is very similar to that of the algorithm over Q.
Suppose therefore that K is either Q(

√
−1) or Q(

√
−3), and we have as input an algebra A

over K specified by structure constants. We assume that A ∼= M2(K). The first four steps
of the method in [5] construct a maximal order Λ, an embedding φ : Λ → M2(C), a Z linear
embedding Φ of Λ into R8 which maps an y ∈ Λ to

Φ(y) := (ℜφ(y),ℑφ(y)) ∈ R8.

The image Φ(Λ) is a full Z lattice in R8. Note that the (real) Euclidean norm ‖Φ(y)‖ is the
same as the Frobenius norm ‖φ(y)‖ inherited from M2(C).

Moreover, the first four steps return a Z basis b1, . . . ,b8 of Φ(Λ) for which we have

‖b1‖ · |b2‖ · · · ‖b8‖ ≤ c8 det Φ(Λ).

From this point on we can simplify the search for a zero divisor. By Proposition 8 it suffices
to enumerate3 the elements of Φ(Λ) which have minimal norm until a zero divisor in Λ is found.

To this end, we generate all integral linear combinations

v =

8
∑

i=1

αibi,

where αi are integers, |αi| ≤ c8, until a v is found for which the matrix y ∈ Λ with Φ(y) = v

is of rank one. The bound on the integers αi follows from Lemma 6, like in the rational case.

Acknowledgment
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3For d = 3 it suffices to find just one element with minimal norm.
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