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I. Introduction

ACTIVE control of aeroelasticity has been in the focus of
aerospace and control engineering for several decades. An

introduction to this topic can be found in [1]. This Note largely
focuses on the three degrees-of-freedom (DOF) nonlinear aeroelastic
test apparatus (NATA) model. The NATA model with unsteady
aerodynamics was presented in [2,3] and several active controllers
were developed in [4–14]. Linear parameter varying (LPV) control of
an improved three DOF aeroelastic model is discussed in [15].
The aim of this Note is to propose a control design strategy to

stabilize the improved three DOF NATA model presented in [15], as
well as to stabilize the NATA model with nonlinear friction. It is
assumed that only the freestream velocity and the pitch angle are
measurable, thus an output feedback control structure is applied. The
control design considers the following performance requirements:
asymptotic stability, decay rate, and constraint on the control signal,
which are formulated in terms of linear matrix inequalities (LMIs).
The proposed control design strategy has two main steps. First, the
quasilinear parameter-varying (qLPV) NATA model is transformed
into tensor-product (TP)-type polytopic form via TP model
transformation [16–18]. LMI-based control design is applied to the
TP-type polytopic form in the second step, which yields a stabilizing
controller and observer via optimizing the control performance.
Besides resulting in a stabilizing control solution to the three

DOF NATA model, it is shown that the proposed control design
methodology has the following properties. The control design can be
carried out in a nonheuristic, tractable, and routine-like fashion; the
design steps are the same for the threeDOFmodel as for the twoDOF
model in [9,10]. The model can be extended with additional
nonlinearities such as friction. A feasible LMI solution is achieved
via convex hull manipulation. The control design strategy is also
oblivious as to whether the nonlinearities are given as analytical
formulas, in soft-computing form, or as numerical data sets.
Numerical simulations are carried out with a perturbed case, in which
measurement noise, time delay, parameter uncertainties, and control
signal saturation are present.
ThisNote is structured as follows: Section II presents the equations

of motion and the qLPV model of the three DOF aeroelastic wing
section. Section III introduces the proposed control design strategy.

Based on the control strategy, Sec. IV gives the results of the control
design, and Sec. V provides simulation results with evaluation and
comparison with results of other published solutions. Conclusions
are stated at the end of the Note.

II. Equations of Motion of the Three Degrees-of-
Freedom Aeroelastic Wing Section

One of the most recent models of the three DOF aeroelastic wing
section based on real measurements, which was adopted in this
investigation,was presented and greatly elaborated on in [11,15]. The
problem of flutter suppression for the prototypical aeroelastic wing
section is considered. The flat plate airfoil is constrained to have three
DOF: plunge h, pitch α, and trailing-edge surface deflection β. The
equations of motion can be written as
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kα�α� is obtained in [15] by curve fitting on the measured
displacement-moment data for a nonlinear spring kα�α� �
25.55 − 103.19α� 543.24α2. It is important to emphasize that the
order of the polynomial defining kα�α� does not influence the control
design methodology (see later). Hence, one can apply a higher-order
polynomial to model the nonlinearity of the spring, which can be
found in previous works dealing with the aeroelastic wing section
model [5].
Quasi-steady aerodynamic force L and momentM are assumed in

the same way as earlier works had done in their control design
approaches:
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The preceding L andM are accurate for the low-velocity regime.
Based on [15], it is assumed that the trailing-edge servomotor

dynamics can be represented using a second-order system of the form

Îβ �β� cβservo _β� kβservoβ � kβservouβ (3)

By combining Eqs. (1–3), one obtains
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whereMeom,Ceom,Keom, and Feom are the mass, damping, stiffness,
and forcing matrices of the equation of motion [15].
The preceding equation can be transformed to the state-space

qLPV form of
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with inputu�t� � uβ ∈ R, the measurable output y�t� � α ∈ R, and
state vector

x�t� � �x1�t� x2�t� x3�t� x4�t� x5�t� x6�t� �T

� � _h _α _β h α β �T ∈ R6

The system matrix
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∈ R7×7 (6)

is a parameter-varying object, where p�t� � �U�t� α�t� �T ∈ Ω
andΩ � �a1; b1� × �a2; b2� is a closed hypercube. Sincep�t� includes
α, an element of x�t�, Eq. (6) belongs to the class of qLPV systems.
The elements of S�p�t�� are
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The details and definition of each system parameter can be found in
[15] and they have the following values:
mh � 6.516 kg; mα � 6.7 kg; mβ � 0.537 kg; xα � 0.21;

xβ � 0.233; rβ � 0 m; a � −0.673 m; b � 0.1905 m; Îα �
0.126 kgm2; Îβ � 10−5; ch � 27.43 Nms∕rad; cα � 0.215 Nms∕
rad; cβservo � 4.182 � 10−4 Nms∕rad; kh � 2844; kβservo � 7.6608�
10−3; ρ � 1.225 kg∕m3; Clα � 6.757; Cmα;eff

� −1.17; Clβ �
3.774; Cmβ;eff

� −2.1; and S � 0.5945 m.

III. Proposed Control Design Strategy

A. Reconstruction of the Tensor-Product-Type Polytopic Model

Themathematical background of the TPmodel transformation and
TP model transformation-based LMI control design was introduced
and elaborated on in [16–18] and the methodology was presented in
[9,10] for the two DOF aeroelastic model. The main definitions
related to TPmodel transformation andTP-type polytopicmodels are
as follows.
Definition 1 [finite element TP-type polytopic model (TP model)]:

S�p�t�� in Eq. (6) is given for any parameter as the parameter-varying
convex combination of LTI system matrices S ∈ RO×I:

S�p�t�� �
XI1
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XI2
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: : :
XIN
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wn;in�pn�t��Si1;i2; : : : ;iN

� S ⊠

N

n�1
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where p�t� ∈ Ω. The (N � 2)-dimensional coefficient tensor S ∈
RI1×I2× : : :×In×O×I is constructed from the LTI vertex systems
Si1 ;i2 ; : : : ;iN (8) and the row vectorwn�pn�t�� contains one variable and
continuous weighting functions wn;in�pn�t��, in � 1 : : : IN . The
weighting functions satisfy the following criteria:

∀ n; i; pn�t�∶ wn;i�pn�t�� ∈ �0; 1� (9)

∀ n; pn�t�∶
XIn
i�1

wn;i�pn�t�� � 1 (10)

Definition 2 [normal/close to normal (NO/CNO), normal-type TP

model]: The TP model is a NO-type model if its weighting functions
are normal, that is, if it satisfies Eqs. (9) and (10), and the largest value
of all weighting functions is one. The convex TP model is CNO if it
satisfies Eqs. (9) and (10), and the largest value of all weighting
functions is one or close to one.
Definition 3 (TPmodel transformation): TPmodel transformation

is a numerical method to transform qLPVmodels given in the form of
Eq. (6) to a TP-type polytopic model in the form of Eq. (8), so that a
large class of LMI-based control design techniques can be
immediately applied. If the original qLPV model has no exact TP
representation, TPmodel transformation is capable of finding the TP-
type approximants of arbitrary accuracy. This feature can also be
useful for complexity reduction via finding the best lower rank
approximation in the L2 sense.
TP model transformation can be executed uniformly (irrespective

of whether the model is given in the form of analytical equations
resulting from physical considerations or as an outcome of soft-
computing-based identification techniques, such as neural networks
or fuzzy-logic-based methods, or as a result of a black-box
identification, etc.), within a reasonable amount of time [17]. Thus,
the transformation replaces the analytical and, in many cases,
complex and not obvious conversions to numerical, tractable, and
straightforward operations that can be carried out in a routine fashion.

B. Control Structure

Alarge class ofLMI-based control design techniques is available for
polytopic models. The control design technique applied in this
research results in a controller and observer, which have the polytopic
of themodel. It is assumed that not all of the statevariables of theNATA
model are measurable (in the present research, only the pitch angle α is
measurable); therefore, output feedback design structure is applied.
The observers are required to satisfyx�t� − x̂�t� → 0 as t→ ∞, where
x̂�t� denotes the state vector estimated by the observer. Sincep�t� does
not contain values from the estimated state vector x̂�t�, thus the
following strategy for controller and observed design was used
[19,20]:
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_̂x�t� � A�p�t��x̂�t� �B�p�t��u�t� �K�p�t���y�t� − ŷ�t��
ŷ�t� � C�p�t��x̂�t�

where u�t� � −F�p�t��x�t�. This takes the following TP-type
polytopic structure:
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N
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The goal of the design is to determine gainsF andK in such away that
the stability of the output-feedback control structure is guaranteed. The
linear time-invariant (LTI) feedback gains Fi1 ;i2; : : : ;iN and observer
gainsKi1;i2; : : : ;iN stored in tensor F and K are called vertex feedback
gains and vertex observer gains, respectively.

C. Control Performance Optimization Based on Linear

Matrix Inequalities

There are several LMI theorems available for observer and
controller design to derive the vertex gainsK of the observer and the
feedback gains F of the controller.
The following control performance requirements were specified:

1) asymptotic stability for the controller and observer; 2) decay rate
for the controller; and 3) constrain on the control value for the
controller.
This Note selects the same LMI theorems as applied for the 2 DOF

aeroelastic wing case presented in [9,10]:
Theorem 1 (globally and asymptotically stable observer and

controller): Assume the polytopic model (8) with controller and
observer structure (11). This output-feedback control structure is
globally and asymptotically stable if there exists suchP1 > 0,P2 > 0
and M1;r, N2;r (r � 1; : : : ; R and R is the number of LTI vertex
systems) satisfying equations
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for r < s ≤ R, except the pairs �r; s� such that
∀p�t�∶ wr�p�t��ws�p�t�� � 0, and where M1;r � FrP1 and
N2;r � P2Kr. The feedback and observer gains can then be obtained
from the solution of the preceding LMIs as Fr �M1;rP

−1
1 and

Kr � P−1
2 N2;r.

Theorem 2 (globally and asymptotically stable observer and

controller with decay rate):
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Solving the LMIs yields an asymptotically stable observer and
controller with decay rate.
Theorem 3 (globally and asymptotically stable observer and

controller with constraint on the control value): Simultaneously
solving the LMIs of Theorem 1 with Theorem 3 in the form of

ϕ2I ≤ P1

�
P1 MT

r

Mr μ2I

�
≥ 0

leads to an asymptotically stable controller and observer structure
with bounded l2 norm of the controller.
One can utilize or design further LMIs to guarantee various

additional constraints.

D. Searching Feasibility of Linear Matrix Inequality Tests via Convex

Hull Manipulation

LMI-based design yields an optimized solution for the given
convex hull, rather than for the given qLPV problem, making the
control design conservative. As such, the feasibility test of LMIs is
sensitive to the actual polytopic form of the model [21], hence both
the LMI-based optimization and the convex hull manipulation must
be simultaneously investigated for control system design. A number
of different convex models were defined in [10]. Sum Normalized
Non-Negative (SNNN)-, CNO- and Inverted and Relaxed Normal
(IRNO)-type convex representations were examined in the current
investigation, however, only theCNO-type representationwas able to
lead to a feasible LMI solution (see later).

IV. Results of the Control Design

A. Tensor Produce Model of the Three Degrees-of-Freedom Aeroelas-

tic Wing Section

TP model transformation (generating CNO-type weighting
functions) is executed on the qLPV state-space model (7). The
transformation spaceΩ is defined in the intervalU ∈ �8; 20� m∕s and
α ∈ �−0.3; 0.3� rad and the grid density is defined as M1 ×M2,
M1 � 137, and M2 � 137. TP model transformation results in the
rank of the discretized tensor SD ∈ RM1×M2×6×6, which is two in the
first dimension and three in the second dimension. The weighting
functions w1;i�U�, i � 1 : : : 2, and w2;j�α�, j � 1 : : : 3, are depicted
in Fig. 1. The aeroelastic model (7) can be transformed exactly to
finite element TP-type polytopic model form with six vertex LTI
models.

B. Linear Matrix Inequality-Based Output Feedback Controller De-

sign

LMI-based control design can be immediately applied to the TP-
type polytopic form of the aeroelastic model (7) and the following
controllers were designed.

1. Controller 1: Asymptotic Stabilization and Decay Rate Control

By applying Theorem 2, one finds that α � 0 gives the best
controller performance for the present model. This simplymeans that
the LMIs in Theorem 2 become equivalent to the LMIs of Theorem 1.

2. Controller 2: Constraint on the Control Value

Two additional control solutions are also designed. To limit the
bounds of the control values, Theorem 3was applied. Theminimal l2
bound of the control value that still guarantees feasible LMIs was
searched in the case of controller 2.1 “min”. For comparison,
controller 2.2 “max”was also derived, where a 10 times larger bound
limit of the control signal was applied.

C. Controller 3: Asymptotic State Feedback Control of the Nonlinear

Aeroelastic Test Apparatus Model with Nonlinear Friction

The damping of the aeroelastic wing model in Eq. (3) has a linear
viscous term.However, inmany cases, nonlinear frictionmodels give
a more realistic description of the physical phenomenon, thus the
linear viscous term is replaced by a Stribeck friction model in the
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present section. Simulation results showed that the previously
designed controllers are not able to stabilize the NATA model with
Stribeck friction. This comes from the fact that dimension of the
nonlinearity increased. The aim of controller 3 is to show how a given
qLPVmodel can be extended with additional nonlinearities and how
the controller can be derived systematically in a routine-like manner
by applying the proposed control design strategy.
A Stribeck friction model defined in the following form is

applied:

Ff�t� � −

0
@Fc � �Fs − Fc��

1�
�
v
vs

�
2
�
1
Asign�v�t�� − Fvv (12)

where cβservoC � 4.182 � 10−4 Nm is the Coulomb friction term,
cβservoS � 1.2 · cβservoC is the Stribeck friction term, and _βStribeck �
0.0075 rad∕s is the Stribeck velocity. The values of these parameters
were chosen based on engineering considerations to obtain a realistic
friction model. It must be mentioned that other nonlinear friction
models can also be implemented, which can be given in analytical,
soft-computing form, or as data sets.
The parameter space Ω has to be extended by one dimension in

x3�t� � _β. The frictionmodel is expected to be valid in the interval of
_β ∈ �−1.5; 1.5� rad∕s. The grid density can be defined as
M1 ×M2 ×M3, M1 � 137, M2 � 137, and M2 � 138 (an even
number for the grid in the third dimension is chosen to avoid division

by zero during discretization). The TP model transformation results
in a CNO-type TP polytopic model, the rank of the discretized tensor
SD ∈ RM1×M2×M3×6×6 is 2, 3, 2 in the first, second, and third
dimensions, respectively. The number of vertexes becomes
2 × 3 × 2 � 12. The weighting functions can be seen in Fig. 1.
State feedback controller 3 for the preceding model was designed

by applying the controller related terms of Theorem 1.

V. Numerical Experiment Results and Evaluation

A. Simulation

Numerical experiments are presented to demonstrate the
performance of the designed stabilizing control solution. Freestream
velocity and U � 14.1 m∕s is chosen to be comparable to other
published results. Open-loop simulation was performed at the
beginning of each test to let the oscillations fully develop. However,
in the resulting figures, only the range of the simulation is shown
where the controller is on.
Two simulation cases were compared for each controller.
1) Case 1: A perturbed system is used to test the robustness of the

solution. Case 1 includes random noise normally distributed with a
variance of 10% added to the measured output signal; 3 ms constant
time delay representing the computational delay; modified nominal
values of masses and inertia by�15%; and saturation of the control
value.
2) Case 2: An ideal reference case represents the ideal simulation

cases without the perturbations listed in case 1.
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Fig. 1 CNO-type weighting functions of the dimensions α and U; _β is for the case in which nonlinear friction is included.
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In the case of controller 3, the case 1 simulation has saturation of
the control signal as the only perturbation.
Figures 2 and 3 show the time response of the controlled system for

controllers 2.1 and 3, respectively.
Simulation for controller 2.1 with sinusoidally varying freestream

velocity are also performed; the results can be seen in Fig. 4.

B. Evaluation

All of the designed controllers are able to asymptotically stabilize
the state variables of the NATA model with linear and nonlinear
friction. Controller 2.1 out of controllers 1, 2.1, and 2.2 has the
smallest control signal amplitude in case 2 and desaturates in 0.5 s,
whereas the others desaturate in 0.9 s in case 1. The settling times are

similar for all of the controllers. Thus, it can be concluded that
controller 2.1 has the most favorable properties, therefore the
simulation results of controller 2.1 are given in Fig. 2.

1. Stability

An important issue should be addressed here. The applied LMIs
guarantee that the resulting controller is stable. However, the TP
model transformation is a numerical method that can be performed
over an arbitrarily, but bounded domain Ω. Therefore, the stability
ensured by the applied LMIs is restricted toΩ. Note that the accuracy
of the given model is also bounded in reality for low speeds.
The resulting controllers guarantee asymptotic stability in
Ω∶ �−0.3; 0.3� × �8; 20�. One may extend Ω and execute the
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design method again. Controller 3 has an additional dimension in
domain Ω, thus the stability domain becomes Ω∶ �−0.3; 0.3� ×
�8; 20� × �−1.5; 1.5�.

2. Performance Discussion

The control performance discussion focuses on two objectives
based on the control performance specifications given previously.
These are the maximal control values and the settling time for each
controller. The evaluation is summarized in Table 1.
It can be concluded that controller 2.1 out of the first three designed

controllers has the best performance according to our objectives.
Controller 3 has a performance that is similar to controller 1.
However, controller 3 has to stabilize the system with an additional
nonlinearity caused by the friction.

3. Comparison with Other Results Found in Recent Technical Literature

a. Control Performance—The control performance can be compared
with the results presented in [15], where the linear quadratic regulator
(LQR) controller was designed for the same three DOF aeroelastic
wing sections. One can observe that the controllers derived with the
TP-type polytopic model and LMI design produce considerably
faster responses in case 2, but the cost is a higher control value. Case
1, which is a more realistic physical environment, saturates the
control signal, making the settling time somewhat longer,
comparable with the results found in [15]. It also has to be
mentioned that the LPV model in [15] has nonlinearity only in one
dimension, namely in U, and the controller designed in the same
paper is not output, but a full state feedback controller.
A similar model was examined in [22], in which an LQR-based

output feedback controller was designed. The control performance is
similar to the performance of controller 2.1. However, simulation
case 1 of controller 2.1 also includes time delay, parameter
uncertainties, and noise on the measured output signal.
The control performance, based on the aforementioned criteria, is

similar to the controller presented in [9], which can be expected,
because the same LMIs and control design methodology were used.
On the other hand, it has to be emphasized that the present controller
is designed for the three DOFmodel, rather than the twoDOFmodel,
and the results of case 1 simulations include time delay, noise on
the measured signal, control signal saturation, and parameter
uncertainties.
Multi-input/multi-output control designs are used in [8,12,23].

However, the actuator dynamics are not included in the models in
those cases.

b. Control DesignMethodology—Note that very simple LMI theorems
have been applied so far. If one would like to go for higher control
performance, various choices of performance specifications could be
attempted through more powerful LMI design theorems and further
convex hull manipulation. Former solutions of the three DOF
aeroelastic control problem do not focus on considerations other than
stability.

VI. Conclusions

The proposed numerical control design methodology for tensor-
product-type polytopic models can be executed systematically in a
routine-like manner and preserves this property even if the model is
extended with additional nonlinearities (such as friction). The
proposed methodology is capable of control performance
optimization through the use of linear matrix inequalities and

convex hull manipulation. Based on the proposed control design
methodology, this Note gives a stabilizing control solution for the
three degree-of-freedom aeroelastic wing section with linear and
nonlinear friction. It is shown by simulation of a perturbedmodel that
the designed controller and observer are resilient to a variety of
perturbations. The next step of the research is to design a stabilizing
control solution to the samewingmodel with parameter uncertainties
and the time delay included in the design phase and in the model, and
thus guarantees on the robustness can be made.
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