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The Generalized TP Model Transformation for TS

Fuzzy Model Manipulation and Generalized
Stability Verification

Péter Baranyi

Abstract— The paper integrates various ideas about the TP
(Tensor Product) model transformation into one conceptual
framework and formulates it in terms of the TS fuzzy model
manipulation and control design framework. Several new ex-
tensions of the TP model transformation are proposed, such
as the quasi and “full”’, Compact and Rank-reduced Higher
Order Singular Value Decomposition based canonical form of
TS fuzzy models, and the bi-linear-, Multi -, Pseudo -, Convex
-, Partial TP model transformations. All of these extensions
together form the generalized TP model transformation, which
provides an effective tool to freely and readily manipulate the
antecedent sets and rules of TS fuzzy models, and also provides
main fuzzy rule component analysis, as well as a means for
complexity and accuracy trade-offs. It is demonstrated in the
paper that the proposed manipulation forms a new, effective
and necessary optimization step of TS fuzzy or polytopic models
and Linear Matrix Inequality based control design, and can also
decrease conservativeness. Identification techniques are typically
constructed according to the available data and measurement
set, as well as the type of system to be identified. As a result,
they may not always provide good representations for control
design frameworks. The paper demonstrates that the proposed
TP model transformation is unique in that it bridges between
various soft-computing based identification techniques and TS
fuzzy model based approaches. Finally, the paper proposes the
Multi TP model transformation, which is a tractable and non-
heuristic framework to verify the stability of the result of fuzzy
or various soft-computing based control designs. The Multi TP
model transformation could provide an answer to the frequently
emerging criticisms regarding the lack of mathematical stability
verification techniques in soft-computing based control design.
Control examples are provided in the paper.

Index Terms— TP model transformation, TS fuzzy model, com-
plexity trade-off, control optimization, stability verification, TP
model transformation, parallel distributed compensation (PDC)

I. INTRODUCTION

The Tensor Product (TP) model transformation was origi-
nally proposed in [1], [2] and summarized in [3] for qLPV
control theories. It transforms a function (which can be given
via closed formulas or neural networks, fuzzy logic, etc.)
into TP function form if such a transformation is possible.
If an exact transformation is not possible, then the method
determines a TP function that is an approximation of the given
function. The TP model transformation also provides a trade-
off between approximation accuracy and complexity [4] of
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the resulting TP function. Besides being a transformation of
functions, the TP model transformation is also a new concept
in qLPV based control which plays a central role in providing
a valuable means of bridging between identification and poly-
topic systems theories [1]-[3]. The TP model transformation is
uniquely effective in manipulating the convex hull of polytopic
forms, and, as a result has revealed and proved the fact that
convex hull manipulation is a necessary and crucial step in
achieving optimal solutions and decreasing conservativeness
in modern LMI based control theory. Thus, although it is a
transformation in a mathematical sense, it has established a
conceptually new direction in control theory and has laid the
ground for further new approaches towards optimality.

The core of the TP model transformation was first intro-
duced as an approach to complexity reduction of fuzzy systems
[4], [5]. Soon, it was extended to TP model transformation
for system control design [1], [2], [6] and to a framework
for polytopic model and LMI based system control [7]-[15].
A MATLAB toolbox was also created, see [16]. Some papers
began to investigate the convex hull manipulation property [8],
[17], [17]-[19] and the approximation trade-off property [9],
[20]-[26] of the TP model transformation. New convex hull
manipulation techniques were proposed in [8], [18], [19]. The
HOSVD based canonical form of TP models was initiated
in [27], [28], and it was also proved that the TP model
transformation is capable of numerically reconstructing this
form, see [29]. A computationally relaxed variant of the TP
model transformation was proposed in [23], [30]. A centralized
variant of the transformation was given in [31]. Relying on the
above properties, we can find a variety of control solutions, see
e.g. some key directions in [6], [32]-[55]. Further applications
of the TP model transformation in sliding-mode control were
presented in [11], [56].

The main goal of the paper is to introduce and conceptually
restructure the TP model transformation to a generalized form
for fuzzy modeling and to propose new features and several
new variants of the TP model transformation, in order to
achieve flexible means for TS fuzzy modeling, in the form
of a manipulation and design tool extended with a general
stability theorem.

First, in Section II, the paper recalls the transfer function
of TS fuzzy models. Section III redefines the HOSVD based
canonical form and introduces the HOSVD based canonical
form as a unique representation. A simplified variant of
the form, the quasi HOSVD based canonical form, is also
presented. Both representations serve the task of main fuzzy
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rule component analysis via the higher order singular value
based ordering of the contribution of the fuzzy rules. Section
IV introduces the generalized TP model transformation, which
is a framework based on the extension and restructuring of
the TP model transformation. This general form is capable of
systematically combining different algorithms as a framework
to achieve a bridging between various identification and mod-
eling methods through the use of the TS fuzzy model represen-
tation. The resulting TS fuzzy model is amenable to flexible
manipulation. To show this, a number of new concepts are
introduced: convex TP model transformation for LMI based
design, pseudo TP model transformation as an elementary
technique for convex hull manipulation leading to control
optimization, and finally multi TP model transformation as
a way to transform a set of TS fuzzy models into a unified
antecedent system. This section also integrates the complexity
and accuracy trade-off capability of the TP model transfor-
mation, which leads to the ability to perform main fuzzy rule
component analysis. Section V discusses the central role of the
generalized TP model transformation in terms of two aspects.
The first aspect is that the TP model transformation could be
a final step of identification, and as a generalized “interface”,
could at the same time serve as a preprocessing step for further
design requirements (e.g., to optimize control performance).
The second aspect is that the multi TP model transformation
can be used as a general framework for stability verification
of soft computing based solutions. These discussions are
demonstrated via numerical examples in Section VI. The use
of the Multi TP model transformation as a stability verification
framework is demonstrated on a strongly non-linear, 3DOF
problem of an aeroleastic wing section. The effectiveness of
the pseudo TP model transformation in LMI based design is
also demonstrated in an academic numerical example.

II. TRANSFER FUNCTION OF TS FUZZY MODEL

Let us recall the transfer function of the Takagi-Sugeno
fuzzy operator and product-sum-gravity defuzzyfication based
fuzzy model. Assume that we have a set of fuzzy rules with
N inputs such as:

IF A;;, AND A,;,, AND--. M
AND Ay,. THEN B '

01,42, 0N

Let wy, ;(z,) € [0,1], 2, € R be the membership function of
antecedent fuzzy set A, ;,% = 1,..., I, on input universe X,,,
n=1,..., N. Let the observation fuzzy sets be singleton sets
with elements x,,, and the consequent fuzzy sets B;, i, . ix
be singletons as well, represented by their single elements
bi, is,...ix ON the output universe Y. If the output of the TS
fuzzy model is not a scalar value, but a vector, matrix or even a
tensor Y of dimensions L1 X Lo X...x L, then the consequent
fuzzy sets represent vectors, matrices or tensors, respectively.
The consequent sets can also represent parametrized functions
as f(bi, is,....in,X'). For the sake of simplicity, and without
the loss of generality, we do not distinguish between what
the consequent sets symbolize, and we simply assume that
the consequents are assigned to parameters arranged into
tensors B, 4, iy € RE1*E2X XLk Tn order to have a more

general form, we turn to multi-output fuzzy rule bases. Let
the number of outputs be denoted by o =1, ..., 0, such that
each of the outputs are of the form ), € RE1xLex...xLk
We merge the output tensors into a single tensor ) along
the K + 1-th dimension, and whenever we need to extract
a single output, we can work with separate partitions of
Y € Riaxlex..xLkxO In the same way, we construct 3
from B;, i,.....in,0 assigned to the outputs.

A very typical requirement in fuzzy modeling is the
Ruspini-partition:

Definition 1 (Ruspini-partition): The antecedent member-
ship functions are given in Ruspini-partitions if they satisfy
Vpn Zle Wn,i(pn) = 1. Membership functions which
satisfy this property are denoted by w/* (p,).

Based on the above, we arrive at the following general
transfer function for TS fuzzy models:

_ v I3 In
Y= 21'1:121'2:1 e

N w0l (20)] Biyis..in

sin 2
where x € RY. This transfer function is specifically a Tensor
Product (TP) function, therefore, it can be given in the form

S RIE

N
Y= Bngl Wi (Zn), 3)
where wy, (2,,) = (Wi (2n) - wEY (2,) ).

For the sake of brevity, we will refer to the above transfer
function as a TS fuzzy model later on. In later sections, we
will focus on fuzzy control design as well, therefore, a brief
introduction to the above discussed TS fuzzy model in the
context of dynamic systems modeling is also in order here.
Let us consider a Linear Parameter-Varying (LPV) state-space
model:

) (31))- @

with input u(t), output y(¢) and state vector x(t). The
system matrix S(p(t)) € RI1*L2 is a parameter-varying
object, where p(t) € Q is a time varying N-dimensional
parameter vector which is an element of closed hypercube
Q = [a1,b1] X [ag,ba] X -+ x [an,bn] C RN, p(t) can
also include some elements of x(t), and, hence this model
belongs to the class of non-linear systems. This kind of form
is often referred to as a quasi LPV (qLPV) model. Further
parameter dependent channels, which represent various control
performance requirements, can be inserted into S(p(t)). The
gLPV model (5) can then be defined using a TS fuzzy model

as follows:
o) =sgwem()  ©

The N +2-dimensional core tensor S € RI1>x /2> xInxLixLz
is constructed from the consequent system matrices (K = 2),

also known as LTI vertex system matrices S;, i, ..iy €
RL1XL2
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If we have Ruspini-partition for all n, then the transfer
functions of the TS fuzzy model become a polytopic rep-
resentation, and in consequence S(p(t)) is always within
CO{VTL, ’Ln : Sil,iz _____ iN}'

The advantage of this form is that a large set of LMI based
system control design theories can immediately be applied to
this kind of TS fuzzy model.

III. HOSVD AND QUASI HOSVD BASED CANONICAL
FORM OF TS FUZZY MODELS

This section redefines the previously published HOSVD
based canonical form. It highlights the fact that the published
HOSVD based canonical form is not unique when the dimen-
sionality of the core tensor is larger than N, thus, it is quasi-
unique only. In order to resolve this shortcoming, a “full”
canonical form is proposed. The key idea is that the quasi
HOSVD based canonical form is resulted when the HOSVD is
executed only for dimensions assigned to the antecedent part,
and "full” HOSVD is resulted when HOSVD is also executed
on dimensions assigned to consequents and outputs. Since the
HOSVD based canonical form determines the contribution (in
decreasing order) of the fuzzy rules (in the sense of Ly norm)
via the higher order singular values (or via the singular values
by dimensions) we can view this canonical form as a tool for
main fuzzy rule component analysis.

Theorem 1 (HOSVD-based canonical form of TS models):
For brevity one may say HOSVD of TS fuzzy models. A TS
fuzzy model with output Y has the HOSVD canonical form:

Y= S% () "W e TC (6)
- et IR | Gy R XNK

in which
1) singular functions wy, ;, (x), i, = 1,..., I, contained
in singular vectors w, (x,,) form an orthonormal system
in the sense of

mazx(wy)
Vn : / Wi (Tn) W j(@n)dEn =65,  (7)
min(wy)
where 1 < 4,5 < I, and d; ; is the Kronecker-function
(0;,; =1,if i =j and §; ; = 0, if 7 # 7).

2) Transformation matrices T$_, , and T are uni-
tary (I, x I,)-matrices. Here, superscript “C” means
“Consequent transformation” and “O” means “Output
transformation”.

3) Core tensor S is areal (I3 X Io X - -+ X Iy g41)-tensor.
Its subtensors S; —, (which can be obtained by fixing
the nth index to «) have the properties of

a) all-orthogonality: two subtensors S;, —, and S;,—g
are orthogonal for all possible values of n, a and 3
subject to o # B: (S;,=aSi,=p) = 0, when a #

B,
b) ordering: [|S;, -1l > |Si=2| = - >
ISi, =1, || = 0, for all possible values of n.

Based on the analogy of the HOSVD of tensors, we refer to
the Frobenius-norms ||S;, —;||, symbolized by Ui("), as the n-
mode singular values of the TS fuzzy model.

Proof 1: The proof of the existence of the HOSVD based
canonical form in cases where a TS fuzzy model has a single
scalar output is given in [27]. The existence of the HOSVD
based canonical form for multi-output and / or non-scalar
functions can be proved in the same way, the only difference
being that in dimensions larger than N, we simply have the
original tensor HOSVD.

Proof 2: The proof of uniqueness of the HOSVD based
canonical form in cases where a TS fuzzy model has a single
scalar output is given in [27]. The uniqueness of the HOSVD
based canonical form for general cases can be proved in the
same way, the only difference being that in dimensions larger
than NV of the core tensor, the HOSVD itself guarantees the
unique decomposition [57]. Thus, this property of the HOSVD
of tensors is true for the HOSVD based canonical form as
well. As a matter of fact, the decomposition is unique to the
extent of the signs of the singular functions and the columns
of the transformation matrices, which can be systematically
switched, just like in the case of HOSVD of tensors. If there
are equal singular values on any dimension, then the HOSVD
based canonical form is not unique. In this case the n-mode
singular functions or vectors corresponding to the same n-
mode singular value can be replaced by orthonormal linear
combinations. This property is proved in the original paper on
the HOSVD concept itself, see [57].

Remark 1: Transformation matrix TkC: Nil.. N4k rans-
forms the consequent tensors to the minimal Ry 11 X Ry42 X
... X R4k orthonormal subspace that is structured via higher
order singular values. This transformation indicates whether
or not the consequent tensors have linear dependencies. Thus
we may deal only with the linearly independent tensors, and
once we have the canonical conclusions, we can restructure the
expected tensor. 7 defines the minimal number of linearly
independent outputs structured by higher order singular values.
Once we have computed the minimal number of outputs, we
can simply reconstruct the originally expected outputs using
TO.

Remark 2: Note that the HOSVD based canonical form
is not a real TS fuzzy model as its antecedent membership
functions may assume negative values.

Theorem 2 (Quasi HOSVD-based canonical form): If we
do not execute SVD on dimensions n > N, we arrive at the
quasi HOSVD canonical form. Specifically, if we multiply by
TC and T in the HOSVD canonical form (6), then we arrive
at the quasi HOSVD canonical form:

N

Proof 3: In case of the quasi-HOSVD based canonical form
(when the number of the dimensions of the core tensor is larger
than V), the unique representation is not guaranteed since not
all dimensions are decomposed by SVD, which would be the
step that can guarantee unique decomposition.

Note that even in case we use quasi-HOSVD based canon-
ical forms, where uniqueness is not guaranteed, the decompo-
sition still gives the higher order ranking of the fuzzy rules
for main fuzzy rule component analysis.
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Definition 2 (n-mode rank of TS fuzzy model): The
n-mode rank of a TS fuzzy model, where x € £,
denoted by R, = rank,(f(x),Q) is the number of
non-zero singular values in the n-th dimension, thus
R, = rank,(f(x),Q) = rank,(S). We can also indicate
the rank of the consequent parameters in dimensions
n=N+1,..., N+ K and for the outputs if n = N+ K + 1.

Definition 3 (CHOSVD/RHOSVD-based canonical form):
This definition is about the complexity trade-off property
of the HOSVD. We arrive at the Compact HOSVD
(CHOSVD) of TS fuzzy models, when we keep the first
R,, n = 1,...,N + K + 1 singular values only in all
dimensions. Accordingly, the size of the core tensor is
Ry X Ry X ... X Ry4k+1, where R, is the n-mode rank
of the TS fuzzy model. We have Rank reduced HOSVD
(RHOSVD), when we keep J; X Jy X ... x Jy nonzero
singular values only, where Vn : J, < R,, and In : J,, < R,,.
The RHOSVD canonical form of TS fuzzy models is only
an approximation, where the error (in Lo norm) is bounded
by the sum of the discarded singular values as in the case of
the HOSVD of tensors (see the proof in [57]). Using HOOI
we can further tune the core tensor to decrease the error
[58], [599]. A comprehensive analysis on the approximation
properties are given in [25], [26].

IV. GENERALIZED TP MODEL TRANSFORMATION

A. Numerical reconstruction of the HOSVD / gHOSVD of TS
fuzzy models

This section recalls the TP model transformation from [1]-
[3] and restructures it, in order to have a core algorithm that
can readily involve further extensions to be introduced in the
next subsections. This section also discuses the bi-linear TP
model transformation, which has already been used in practical
cases, but has not yet been formally introduced.

Definition 4 (discretization space €)): € = w1 Xwag X - -+ X
wy 1s a space in which we intend to perform the discretization
of a given TS fuzzy model f(x).

Definition 5 (Discretization grid M fit to 2): Let N-
dimensional M; x My X ... x My sized hyper rectangular
discretization grid M be defined by vectors

T ,
gn = ( 9n,1 In,my, 9n, M, ) S R]wn (9)
assigned to the dimensions n = 1,...,N, where
wn, = [9n1,9n.M,]- M, denotes the number of
grids on dimension n. The elements of these

vectors define the points of M as pp,,..m.,.o;my =
( 91,m, 9n,mn IN,my )T €.

Definition 6: (Discretised function). The discretized form
of function y = f(x), x € €, over discretization grid
M is denoted by FPM) (where superscript “D” is an
abbreviation for “discretized”). FPM2) ¢ RMixMax...x My

contains elements Gy, m,....mnx = J(Pma..smn,..ma )
Lemma 1: The discretization of a given f(x) =

N
B @1 w,(z,,) simplifies to the discretization of the weighting

N y
functions w,, ;(z,,) as FPMY = B @1 gD Mnsen) \where
n—

D(Mp,wn) D(Mp,wn) D(Mp,wn)
Q'Un( ) - ( mn,l e mn,ln

). o

D(My,wn
where QP Mnwn) ¢ RMuxIn and are constructed from
discretized functions as:

D(Mp,wn)

T
Ny ( w”,in(g’ml) wn,in(gn,Mn) ) 5 (11)

where i, = 1...1,.

Note that the result of HOSVD has the same structure as
the discretized TS fuzzy models. Thus, the key idea is that
executing HOSVD on the discretized function, we obtain the
discretized form of the HOSVD based canonical form of the
TS fuzzy model:

Algorithm 1: (TP model transformation) Assume a given

N
TS fuzzy model f(x) = B @1vn(a:n), x € RY. The
goal of the algorithm is to numerically reconstruct the
HOSVD/CHOSVD canonical form

N S ® () “mTe TO (12)
= n\dn X
A wn(z Ntlk=1) " N4+K+1

in §2:

e STEP 0: Numerical initialization: Define discretisation
grid M by fitting M; x My X ... X My gridpoints to
Q.

o STEP 1: Discretisation: Determine FP M)

o STEP 2: Reconstruct the core of the model: Determine S
and U, by executing HOSVD, CHOSVD on P (M) (in
case of rank reduction or complexity trade-off RHOSVD
is executed in this step). This results in FPMY =
SN+K+1

MU, Thus TY = Unyp , k= 1...K and
T = Unyxt1-

o STEP 3: Determine w,(x,): Let 2 (Mnwn)

Antecedent membership functions W, (x,,) of

= U,.

N+K
c o
Tk> XN+k+1 T

Y= ((S’ % Wn(xn)> X
n=1 N+(k=1)
(13)

can be reconstructed over any point in w,,. For instance,
let us calculate the antecedent membership functions
Wgq(xq) on dimension d over a given point 4. Let us
define a new discretisation grid M’ as My X...x Myg_1 %
1xX Mgyq %x...x My and restrict the discretization space
toxgas ' =wy X ... XwWg_1 XTgXwWge1 X ... X WN,
D(M’,Q") .
then define § »*), Then for x4:

wa(za) = 505" (Qa) T (14)

where

.~ N N+ K c o
0=(8 ® Up(zn)| ® TCxnix1TO. (15)
nel N+(k=1)

lower case ”()(q)” denoted the unfolding of that dimen-
sion, see the works of Lathauwer about HOSVD.
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o STEP +1: Transformation error: This step is a numerical
checking of the accuracy of the resulting TS fuzzy model
over a huge number of random points in €.

Proof 4: Szeidl et al. [29] proves that the TP model trans-
formation numerically reconstructs the HOSVD canonical
form in case of single scalar output functions, namely if
M, — oo then § — S and U, — uPMnwn) 1 e
consider matrices 7¢ and T© resulting from SVD in the
same way as matrices U, are considered for n = 1... N in
the proof presented in paper [29] (but without transforming
them to functions), we arrive at a proof of the claim that
the TP model transformation numerically reconstructs the
HOSVD based canonical form, as well as a quasi-HOSVD
based canonical form of multiple output and/or non-scalar
functions when we multiple by 7¢ and T© (see Theorem
2). Paper [29] also gives various theorems for the speed of
the convergence for the numerical reconstruction depending
on whether we use equidistant or non-equidistant rectangular
grids for discretization.

Remark 3: The numerical implementation limits the grid
density as Vn =1,..., N : M,, = M]*** < oco. Furthermore,
the computational load of HOSVD can easily explode as M,,
and N grow larger. These factors form the bottlenecks of this
algorithm. Thus, we say that the TP model transformation
numerically reconstructs quasi-S. Papers [23], [30] propose
very effective computational complexity reduction techniques
for the TP model transformation.

Remark 4: The paper of Szeidl et al. also derives theorems
for the smallest grid density necessary for finding all the ranks
of the TS fuzzy model, thus, the discretization density should
be set according to Szeidl’s theorems and based on the fact
that the maximum rank is determined by the number of the
antecedent membership functions by dimensions of the given
TS fuzzy model. If we do not see the structure of the given
TS fuzzy model, or the given model is not a TS fuzzy model
(see later), then we can practically use a grid with the highest
density made possible by the numerical implementation.

Remark 5: If the density of the discretisation grid is not
sufficiently high to find the rank of the given TS fuzzy model,
then the TP model transformation results in an approximation
only. In this case the transformation works like in the case of
given non-TS fuzzy models (see details later and [25], [26]).

In various engineering cases we have different accuracy
requirements of different components of the TS fuzzy model,
hence, it is not always necessary to find all points of antecedent
membership functions in Step 3. For instance, in case of robust
control design the precise core tensor S is important as much
as the control design is based on it, however, in the final
implementation of the TS fuzzy controller, we can accept a
good piece-wise approximation of the antecedent membership
functions. This leads to a practically useful engineering imple-
mentation, where we simply use their piece-wise linear variant
of the antecedent sets in the controller:

Definition 7: (Piece-wise linear function system denoted by
w(z)) Function w(z) is defined by matrix U and grid M
over € w in such a way that U = 0P(Mw) A linear
interpolation between neighboring values of each column of
U fullly defines the piece-wise linear functions.

Algorithm 2: (Bi-linear TP model transformation) The Bi-
linear TP model transformation results in a bi-linear approx-
imation f(x) ~ S %1\7&7”(33”) of the given function fit to a
given grid M. It differs only in Step 3 as:

STEP 3: w,,(x,) is directly defined by U,, and grid M.

Remark 6: 1If the grid density is sufficient to find the precise
core tensor, but is too sparse to determine good membership
functions w,,(z,,), then we may combine the third steps of
the TP model transformation and the bi-linear TP model
transformation. Step 3 of the TP model transformation does
not require the execution of HOSVD. Only the available
memory limits the off-line storage of a number of points of
W, (2,) in Step 3, which can readily be calculated over any
x. Therefore, we may simply determine H, new gridpoints
on dimension n in Step 3 of the TP model transformation,
where H,, can be considerably larger than A"“®, and we
determine QAIIE (Hnywn) _ U, for Step 3 of the Bi-linear TP
model transformation that leads to better resolution of W, (z,,).

B. Convex TP model transformation - Incorporating Ruspini-
partition

The goal is to transform the given model to a convex TS

N
fuzzy model S @1 Wy, (z,) where the antecedent membership

functions are in Ruspini-partitions. This section focuses on
the step where the antecedents of the TS fuzzy model can
be manipulated and where the already published convex hull
generation methods can be inserted in the algorithm of the TP
model transformation.

Algorithm 3: (Convex TP model transformation) Assume a
given TS fuzzy model f(x), x € RY. The goal is to numer-

ically reconstruct TS fuzzy model f(x) = S % whiP(2,)
in x €  and include complexity trade-off if needed. The
steps of this transformation are the same as in the TP model
transformation. Only Step 2 is extended by the convex hull
generation. We also add Step +2 to the algorithm to be
executed after Step 3.

o STEP 2: Reconstruct the core of the TP structure: Deter-
mine S and U, then use the SN and NN transformation
introduced by Yam in [5], [19], which transform U,, to
UZP and define S for FPMY = 8 %l UkP,

e STEP +2: The antecedent membershif)l}unctions satisfy
the Ruspini-partition criteria over the grid, however one
has to check this between gridpoints. Obviously, in case
of bilinear TP model transformation the Ruspini-partition
is guaranteed for all z,, € Q.

Further types of convex TS fuzzy models can be generated
by using normalized, close to normalized, inverse normaized
etc. transformations in the same way as SN and NN transfor-
mation is used in Step 2, see for instance [7], [8], [17]-[19].

C. Pseudo TP model transformation

We may want to find an equivalent TS fuzzy model with
a predefined antecedent membership function system, namely
by transforming a given TS fuzzy model to an other TS fuzzy
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model with given antecedent membership functions. For such
purposes, we propose the pseudo TP model transformation as
follows:

Algorithm 4: ( Pseudo TP model transformation, TPT
model transformation for short) Assume a given TS fuzzy
model y = f(x), x € RY and antecedent membership
function system w,(z,), x € Q. The goal is to determine

N

S such that f(x) =S @1 Wy, (zy,), or if this is not possible,

then the goal is to find f(x) = S & wn(xn) where f(x)

is the best or at least a good approx1mat10n under the rank
constraints implicitly given by w,,(z,) (e.g. the number of
linearly independent new antecedent membership functions
may be less in dimension n than rank,(f(x))). Steps 0 and
+1 are the same as in the TP model transformation.

e STEP 1: Discretization: Determine FPM2  and
m]D(an,wn)
e STEP 2: Determine the core tensor:
S = FP(M.Q) %1 (an(Mn,wn))+ (16)
If QBD(M wn) 1ntr0duces rank reduction here then we

arrive at f(x) = S & wn(xn) This works like in the
case of complexity trade off via TP model transformation.

If we have predefined transformations T or T© then:

N+K
oo, w0,
where
Q = FPM.9) | %1 (QU,?(M"’“")>+ (18)

e STEP +2: Checking the antecedent membership func-
tions: Once we have the core tensor S we may recalculate
the antecedent membership functions between the points
of W5 (Mo wn) through Step 3 and compare to the given
Wi (ZTp)-

Algorithm 5: ( Partial TPT model transformation ) As-
sume a given TS fuzzy model y = f(x), x € RY. Fur-
ther, assume a given antecedent membership function system
wy(zq), x € Q, d € D. The goal is to determine S such

that f(x)
functions wy,(z,), n ¢ D, are the same as in the case
of the TP model transformation. If this is not possible, or
if we need a complexity trade-off, then the goal is to find

N
=S &1 w,(x,), where antecedent membership
ne

flx) =8 & W, (), where f(x) is the best or at least a

good approx1mat10n under the rank constraint implicitly given
by w,,(x,), n ¢ D. Steps 0,1,3,+1 and +2 are the same as in
the case of the TP™ model transformation:

STEP 2: Determine s_he core tensor as K =
FPAMY d&D (QU(?(M(“W)) Execute HOSVD on K
c

in all dimensions except n ¢ D to obtain:

N
K=8 ¥ U,. (19)

ngD

Let u0Mnwn) _ g ¢ D, in which case:

%’ (MQ S x U & wdD(Mded) — (20)
neD deD
N
=8 ﬁlmD(men. 1)
n=

D. Multi TP model transformation

We may want to transform a set of TS fuzzy models
simultaneously to the same antecedent system.

Algorithm 6: (Multi TP model transformation) Assume that
we have parameter dependent scalar, vector, matrix or tensor
functions Si(x), ¥ = 1..K, x € Q (an important property
is that they may have different sizes). The goal is to find
their TS fuzzy model representations over the same antecedent

N

=8 n@l Wy (z5):

o STEP 0): Define discretization grid M fit to €.

o STEP 1): Discretization: store all the elements of Sy (x)
in a vector f(x) = (h1(x) ha(x) hz(x) ) or
directly the discretized values according to ordering of
this vector in N + 1 dimensional tensor FP MY of size
M x My x...x My x Z.

o STEP 2-3: These two steps are the same as in the case
of the TP model transformation (including trade-off and
convex manipulation etc). As a result we have f(x) =

membership function system Sy (x)

B @ wn(xn) where B is N + 1 dimensional.

. STEP 4: By repartitioning tensor B in the N + 1-th
dimension by elements into tensors H., we have h,(x) =
N

H., @1 Wy, (zy). Finally, we can reconstruct S from
n—=

tensors H, according to the ordering of vector in Step

N
1, which leads to Si(x) = Sk @ Wn(fEn)

e STEP +1 and +2) These steps have the same error check-
ing role as in the case of the TP model transformation.

E. Summary

The previous sections proposed various TP model transfor-
mations. The variants essentially have differences in Steps 2
and 3. Step 2 is responsible for determining HOSVD, convex
forms or executing pseudo transformations and complexity
trade-offs. Step 3 is executed depending on whether or not
we need a Bi-linear TS fuzzy model form. In Step 2, the core
tensor and the discretized variants of the expected antecedent
membership functions are manipulated by dimensions. Thus,
we may combine the above TP model transformations and
quickly find very flexible variations that are suitable to our
needs. All these combinations can be carried through the use
of the Multi TP model transformation, with the key idea of
constructing a vector function.

For instance, we could define the bi-linear convex multi
partial pseudo TP model transformation, in which case Step 2
would consist in either keeping the orthonormal system or
executing SN and NN or other transformations on various
dimensions (we could also use the pseudo inverse based
product for dimensions where we have predefined antecedent
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membership functions), while Step 3 would consist in select-
ing the direct determination of piece-wise linear antecedent
membership functions on the selected dimensions. Finally, we
would obtain a set of TS fuzzy models where the antecedent
membership functions are the same.

V. GATEWAY 10 TS FUZZY MODELS AND GENERLIZED
STABILITY VERIFICATION

The TP model transformation works even in case the rules
and the entire TS model structure of the given function or
model are hidden. The only requirement of the presented
algorithms is that the model given at hand should be discretiz-
able. In case of models which have TS fuzzy model structure
(with bounded number of components) once we find all the
ranks through the TP model transformation, then irrespective
of how many extra gridpoints we add to the discretization,
the number of the nonzero singular values will not increase
when HOSVD is executed. If we have a model that has
no TS fuzzy model representation (with bounded number
of components) then the rank of the discretized tensor will
increase (at least in one dimension) with the density, such that
the rank will always be M,,. Since the computational power
available limits M,,, when using the TP model transformation
in engineering applications, it is irrelevant whether the given
model is a TS fuzzy model with a higher rank than M,
or if it is a model that does not have an exact TS fuzzy
model representation. We are faced with the same uncertainty
if we have a limitation on the number of resulting antecedent
membership functions and we have to execute RHOSVD in
any case. If we find that the given function and the resulting
TS fuzzy model are equivalent in a numerical sense, then we
may suppose that we have found all the ranks. Therefore, it
should be kept in mind that in a mathematical sense, we are
always dealing with approximations unless we perform further
analysis, however, in engineering the possible cases will be
numerically equivalent.

A. TP model transformation as a gateway to TS fuzzy models

Identification and modeling techniques based on fuzzy the-
ory, neural networks, genetic algorithms or any combination
of these approaches (referred to as soft-computing techniques)
are extremely powerful in solving modern model identification
engineering tasks, especially in cases where the derivation
of closed formulae through the consideration of physical
and engineering laws would prove to be much too difficult.
As a result, a number of different identification techniques
have emerged. Due to differences in the structure and many
times unique and problem-dependent representation of the
identification techniques, it is not trivial in these cases how we
can continue the identification phase with the well developed
system design frameworks.

The goal of having a gateway to TS fuzzy models is
motivated by the fact that TS fuzzy model based design is
well developed, has various frameworks and is widely adopted
approach towards finding routine-like solutions to engineering
problems. Further, the structure of the TS fuzzy model and its
transfer function is well-adapted to the polytopic and LMI

based modern control theories, which means that once we
have a TS fuzzy model representation of a problem, we can
almost directly use the mathematical approaches of convex
optimisation and modern control design theories. In this re-
gards, the reader is referred to the early papers of GAHINET,
BOKOR, CHILAI, BOYD, and APKARIAN, see [60]-[69], who
pioneered the polytopic model and LMI based design; and also
to the works of Sheerer, Balas, Pakard discussing the whole
structure of these control design concepts [63], [70], [71].
From the fuzzy theory side, the reader is referred to the early
papers and book of Tanaka et al. about Parallel Distributed
Compensation (PDC) design [72]-[75], [76], which clearly
shows the conceptual similarities and common points of these
theories.

The measurement based identification of given functions
and systems, or derivation of the model via physical consider-
ations typically (with the exception of some special cases, we
always make simplifying assumptions here) entails consider-
ably larger errors than the TP model transformation, thus we
can execute the TP model transformation in engineering cases
without checking whether the result of the identification has
a TS fuzzy model structure or not, in order to reveal the TS
fuzzy structure or propose a TS fuzzy model to be validated. If
the validation is positive, then we accept the TS fuzzy model
as the output of the identification, irrespective of the kinds of
identification applied. Note that in many cases the relatively
small (but non-zero) singular values may actually represent
noise in the identification process, and hence, RHOSVD can
be considered in the TP model transformation as a noise
filtering step of the identification. After this, the TP model
transformation to various further types of TS fuzzy models
would be exact, which is an important requirement in e.g.
control design.

In conclusion the TP model transformation could be a
final step of the identification, and as a generalized in-
terface” could be, simultaneously, a preprocessing step for
further design requirements (e.g. convex hull manipulation).

B. Generalized TS Fuzzy model based stability verification

If a system has various different components given in
different representations (i.e. the model is given by equations,
the controller by fuzzy logic rules and the observer by neural
network) - we say hybrid representations - then the stability
proof is extremely difficult to derive. In this case the Multi TP
model transformation can be used to find the convex TS
fuzzy model representation of all components, such that
all TS fuzzy models have the same antecedent system, in
order to apply LMI based stability or performance analysis
in a straightforward way. As a matter of fact if there is no
exact TS fuzzy model representation for a component, then
the complexity trade-off should be carefully executed while
considering the best achievable accuracy and/or performing
validation as discussed in the previous subsection.

VI. EXAMPLES

A. Convex hull manipulation via TP™ model transformation

This example shows how the TP* model transformation
can be used to interpolate between different exact convex TS
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fuzzy model representations of a given model. The example
of this section starts with an HOSVD based canonical from
(e.g. transformed from the result of an identification) of a very
simple qLPV state-space model. The example goes through a
typical PDC design strategy, where the controller and observer
are searched for in TS fuzzy model form and their consequent
vertices are designed via LMIs from the consequent vertices
of the derived TS fuzzy model. The example uses the TP
model transformation to systematically interpolate between the
antecedent systems, hence, the convex hull of the convex TS
fuzzy model representations of the given model for the design,
and will show that the LMI based design leads to considerably
different solutions or in many cases the LMIs are not feasible.
Hence, this example also demonstrates that the LMI based
design is very sensitive to convex hull manipulation in full
agreement with paper [17] in which the necessity of convex
hull manipulation in LMI-based control design is proved.
This example reveals an additional novelty, namely that if
different convex TS fuzzy models are applied for controller
and observer design (if the separation theory is applicable)
then we can further improve the resulting control performance.
Since the example is very simple we can drop the tensor
notation.

1) The given TS fuzzy model: Assume the following TS
fuzzy model S(p(t)) = Zi:l wy(p(t))S, given in HOSVD
based canonical form, and assume that it has been validated
for the identified qLPV system:

(;ch =S(p(t)) (ﬁg) ’

where p(t) € Q =

(22)

[0,0.04]. The system matrices are:

g, — 1t (11487 11924 0.0009
1= —1.1495 —1.1915 —0.0009

g, — qot (1343021 1205501 2.1529
2= 132.1521  —127.3150 —2.1495
S. — 1ot (—0-2175 0.2135  0.4384
3= —0.2281 0.2247 —0.4379

and the assigned antecedent membership functions are
shown on Fig. 1.

2) Manipulation of the Convex TS fuzzy model: Let us
execute the convex TP model transformation with SN, NN
transformation (in Step 2) introduced by Yam. This leads to
a Ruspini-partitioned antecedent function system that defines
the vertices to form a convex hull around the given qLPV
model. We also execute the CNO transformation that leads to
an antecedent system such that the vertices form a tight convex
hull around the given model, for more details about SN, NN
and CNO transformations see [3], [5], [8], [18], [19]:

3
S(p(t)) — waNN( SS’NN ZwCNO SCNO
r=1

(23)
The antecedent membership functions are given in Fig. 2 and
3.
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In the next step the TP model transformation is executed.
We define the linear interpolation between the antecedent
membership function systems for all p(¢) € Q such that:

wa(p(t)) = Aw MO (p(t)) + (1 = w7V (p(2)),

where A € [0, 1]. This means that we are tightening the convex
hull with . Then, using the TP™ model transformation, we
determine the interpolated and exact TS fuzzy model such that:

3
) =Y wr(p(t)Ss?

3) Control design: In order to provide an example of how
the convex hull of the vertices influences the resulting control,
we simply enlarge and tighten the convex hull by tuning .
We search for the controller and the observer in the following
structure:

(24)

(25)
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X(t) = A(p(t)R(t) + B(p()u(t) + K(p(t))(y(t) - 5’22)6))
y(t) = Clp®)x(t) and u(t) = -F(p(t)x(t). (27

Thus, the goal of the design is to find the vertices of the
observer and controller as follows:

F(p(t)) = > w)(p(t))F; (28)
and
R
K(p(t) =Y w)(p()K. (29)

Let us apply a very simple LMIs taken from [7], [8] and
substitute the model vertices S? to determine F) and K. Let
us investigate the results at z = 1,...,Z = 31 equidistantly
located points of A within [0, 1]. We focus on the comparison
of the control performance of the controllers resulting for all
z in terms of the maximum control value and the stabilization
time. First we focus only on the state feedback controller
design.

The first conclusion is that the LMIs are not feasible in
the range of z = 1,...,20. All of these Ruspini partitioned
TS fuzzy models are not good representations for the present
LMI based design. When we further tighten the convex hull
for z 21,...,31, we find that the LMIs are feasible,
which means that we can determine the TS fuzzy controller.
When we compare the resulting control performance for these
controllers we find that the stabilization time is almost the
same, however the maximum control value (which reflects on
the conservativeness from this aspect) really depends on the
applied convex hull. The maximum control value decreases
as we get closer to the CNO type tight convex hull, see Fig.
4 (control value 0 on Fig. 4 means that there is no feasible

solution). Zeontrotler ON the Fig. 4 refers to the interpolated
model S which is used for the controller design. The figure
shows the maximum of the control values for the same x(0),
and one can see that when z increases to 31, in other words
A increases to 1 (which means that we are using increasingly
tight convex hulls), then the maximum of the control value
shows a drastically decreasing tendency. In conclusion, the
results demonstrate the theoretical statements of [17] and
clearly show that the manipulation of the antecedent fuzzy sets
is necessary in control design, because the LMI optimizes the
solution for the given TS fuzzy model representation only, but
not for the given system.
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Fig. 4. The maximum of the control value for a given convex hull type (for
the same x(0))

When we include the observer design, we find that the LMIs
are not feasible in the range z = 1, ..., 14 (an interesting point
here is that the observer has decreased the infeasible range).
Moving between z = 15, ..., 30 the LMIs are feasible, and we
find that at z = 16 we have the “best” result with regards to
our comparison objectives, namely the smallest maximum of
the control value, see Fig. 6. The stabilization time is almost
the same in all cases. Zcontroller,obsrever Mmeans that we use
the same TP model representation (i.e. the same convex hull
determined by the antecedent membership functions) for both
the controller and observer design. Thus, the conclusion is that
the tightest hull does not necessarily lead to the best solution.
The antecedent sets at z = 16 are depicted in Fig. 5. The
vertexes are:

ge=16 _ 103 (09809 10186 0.0010
L —0.9819 —1.0176 —0.0010
gi=16 _ g ( 0-9373 10640 0.0014
2 = —0.9387 —1.0626 —0.0014
gi=16 _ 103 (09982 10017 0.0004
3= —0.9986 —1.0013 —0.0004)

An important point here is that including the observation
with a proper convex hull improves the resulting control
performance.
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Since the separation theory applies here, we may simply
use different TP models for the controller design and for
the observer design. Fig. 7 shows how the maximum of the
control values varies (control value 0 means that there is no
feasible solution) for the same x(0) when the TS fuzzy model
used for the observer design (2opserver) 18 different from the
TS fuzzy model used for controller design (zcontrotier)- Fig.
8 shows some intersections of the surface depicted on Fig.
7. It shows the changing of the control performance when
the controller is fixed but the convex hull of the observer is
modified. Fig. 9 shows that the performance is rather variable
when the observer is fixed and the convex hull of the controller
is tightened.

One may continue and readily try various types of convex
hulls systematically, since the execution of the TP model
transformation in the present case takes less than a minute on
a regular computer. The conclusion of this simple example is
that the convex hull can readily be manipulated by the TP
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model transformation and this may have considerable effects
on the resulting control performances and the conservativeness
of the solution. An additional conclusion is that we can achieve
even better performance when we derive different TS fuzzy
models for controller and observer design.

B. General framework for stability verification via Multi TP
model transformation

We investigate the example of the 3DoF aeroelastic wing
section. Very rich and deep investigations on the control design
of the 2DoF and 3DoF aeroelastic wing section are available
in a series of papers published in the Journal of Guidance and
Dynamics and Control [77]-[83]. The goal of the design is
to stabilize the pitch and the plunge motion of the wing by
controlling the dynamics of the trailing edge actuator.

The qLPV model of the wing section is given in Appendix
1. The challenge in the control design of the wing section is
the strong nonlinearity and various phenomena such as limit
cycle oscillation and even chaotic behaviour emerging in the
uncontrolled case. Assume that we face a situation where the
observer based output feedback design is complete and we
have a fuzzy logic controller (see Appendix 2) and neural
network observer (see Appendix 3) in the structure given in
Fig. 10 for Q = [—0.3,0.3]rad x [8,20]m/s. Further, assume
that the performance of the controlled system is acceptable,
see the results for a very critical wind speed on Fig. 11,
where the pitch and the plunge are shown alongside the
controlled trailing edge, which has a direct effect on the
dynamic motion of the wing and the control value of the
dynamics of the trailing edge. However, no stability proof
of the system is given. This example shows how the multi
TP model transformation is capable of transforming the given
system components to convex TS fuzzy models, such that the
antecedent membership function systems are the same. Then
we can check the stability via the feasibility test of LMIs. We
may also substitute the consequent systems into LMIs which
can indicate a certain performance as well.

First of all, we execute the multi TP model transformation
(with grid M = 137 x 137) on the system model, the observer
and the controller. As a result, we find that all of these can
be given exactly by 2 x 3 vertices with the same CNO type
antecedent membership functions system as follows:

S(p(1) = 8§ B WSO (p, (1)), (30)
F(p(1)) = F 8 wS(p,(1). G
K(p() =K B w0, (). ()

The CNO antecedent membership functions are shown on
Fig. 12. Once we have S,—1. ¢, F,=1.6 and K,—; ¢, we can
use, for instance, quadratic stability analysis. In this case,
when we substitute these vertices into the MATLAB quad stab
function, for instance, we see that the stability is guaranteed.
The execution of the multi TP model transformation and
the quad stab functions in MATLAB take a few minutes, in

contrast the analytical derivations may be quite hard or even
practically impossible in a reasonable amount of time.
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Fig. 10. Observer based output feedback control structure

VII. CONCLUSION

The paper generalized the TP model transformation and
integrated various features in order to obtain a tractable, non-
heuristic numerical framework for fuzzy rule base manip-
ulation, such as HOSVD based main component analysis,
complexity reduction and manipulation of antecedent fuzzy
sets. Since the TP model transformation can be executed
on various different kinds of representations, it can serve
as a bridge to TS fuzzy model based theories of design
and analysis. From a system control design perspective, the
paper demonstrated that this new framework can be used to
manipulate the TS fuzzy model representation specifically for
LMI based control performance optimzation. Thus, the paper
came to the conclusion that the TP model transformation
can be considered as a final step of various identification
and modeling processes, and can at the same time be re-
garded as a general “interface” — i.e. a preprocessing step —
towards fulfilling further design requirements. It was shown
that the TP model transformation can also be used to find TS
fuzzy representations of system components with the same
parameter dependent convex weightings, a property which
directly leads to LMI based system analysis and stability
verification frameworks. In this sense, the results presented
in the paper represent an attempt to resolve the main stability
verification criticisms which are often leveled at fuzzy or any
soft-computing based control solutions.

VIII. APPENDIX 1: MODEL OF THE 3DOF AEROELASTIC
WING SECTION

The equations of motion (detailed description is in [84],

[85] ):

i
(81 S, Sg) Oz + (33)
B
h h L
+S4 Oé +Ss5| a | = M
5 B kﬁse?'vo/Bdes
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Fig. 11. Time response of controlled system for U = 14.4m/s. 0 0 5

ko(a) is obtained by curve fitting on the measured
displacement-moment data for a non-linear spring as k(@) =
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25.55—103.19a + 543.242. Quasi-steady aerodynamic force
and moment is derived as:

L = pU?bCy,, + pU%bcy, B (39)

T\

ho (1 é
M = pU2bZCma,eff. a+ E + (2 - a) bﬁ +

+pU?bChs .., ;. B-

L and M above are accurate for the low-velocity regime.

The trailing-edge servo-motor dynamics is represented using
a second-order system of the form fgﬁ—kc/gsmoﬁ.—kkgsmoﬁ =
kg,,,.,us. Combining equations (33) and (39) one can obtain
the qLPV model of the system:

(40)

where
xt)=(h & B h a B and u(t)=us.

It is assumed that only state variable « is measurable, thus
y = « is chosen as the output. The output matrix in the system
matrix is the following:

C=(0 0 0 0 1 0). (41)
c=2b
Lg '8
I'30r4
ra.c. ra
aerodynamic center.
elastic axis tt.:. ;,\%t
wing body c.g. 3/4-chord

Fig. 13. Two-dimension flat plate airfoil small deflection, force notation and
schematic diagram

The nonlinear system matrix S(p(¢)) depends on the free
stream velocity U and pitch «, thus parameter vector p(t) can
be written as p(t) = (U(t) a(t))T

IX. APPENDIX 2: FUZZY LOGIC CONTROLLER

The fuzzy logic controller has two inputs representing the
elements of the parameter vector as o and U. 9 antecedent
fuzzy sets are given on each input dimension. Thus 81
linguistic fuzzy rule describes the control law. The output of
the fuzzy controller is calculated by TS fuzzy model strategy.

13

The antecedent sets are depicted on Figure 14. The output of
the fuzzy engine is the feedback gains F(p(¢)). The output of
the controller is the —F(p(¢))X(¢) estimated by the observer
except the measurable «.

Membership function plots
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Fig. 14. Antecedent membership functions of the fuzzy controller

X. APPENDIX 3: NEURAL NETWORK OBSERVER

The observer is given by a 3 layered neural networks. Each
layer has 25 neurons. Actually each element of the K(p(t)) is
computed by one neural network so in total 6 neural networks
are given.
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