
Journal of Grid Computing manuscript No.
(will be inserted by the editor)

Fine-Grain Interoperability of Scientific Workflows in
Distributed Computing Infrastructures

Kassian Plankensteiner · Radu Prodan ·
Matthias Janetschek · Thomas Fahringer ·
Johan Montagnat · David Rogers · Ian Harvey ·
Ian Taylor · Ákos Balaskó · Péter Kacsuk

Abstract Today there exist a wide variety of scientific workflow management systems, each
designed to fulfill the needs of a certain scientific community. Unfortunately, once a work-
flow application has been designed in one particular system it becomes very hard to share
it with users working with different systems. Portability of workflows and interoperability
between current systems barely exists. In this work, we present the fine-grained interoper-
ability solution proposed in the SHIWA European project that brings together four repre-
sentative European workflow systems: ASKALON, MOTEUR, WS-PGRADE, and Triana.
The proposed interoperability is realised at two levels of abstraction: abstract and concrete.
At the abstract level, we propose a generic Interoperable Workflow Intermediate Repre-
sentation (IWIR) that can be used as a common bridge for translating workflows between
different languages independent of the underlying distributed computing infrastructure. At
the concrete level, we propose a bundling technique that aggregates the abstract IWIR rep-
resentation and concrete task representations to enable workflow instantiation, execution
and scheduling. We illustrate case studies using two real-workflow applications designed in
a native environment and then translated and executed by a foreign workflow system in a
foreign distributed computing infrastructure.

Keywords scientific workflow; interoperability; portability; intermediate representation;
distributed computing; Grid computing

K. Plankensteiner · R. Prodan ·M. Janetschek · T. Fahringer
Institute of Computer Science, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria, E-mail:
{kassian.plankensteiner,radu.prodan,matthias.janetschek,thomas.fahringer}@uibk.ac.at

J. Montagnat
I3S lab, CNRS, Sophia Antipolis, France, E-mail: johan@i3s.unice.fr

D. Rogers · I. Harvey · I. Taylor
Cardiff University, Cardiff, UK, E-mail: {d.m.rogers,i.harvey,ian.j.taylor}@cs.cardiff.ac.uk

Á. Balaskó · P. Kacsuk
MTA SZTAKI, Budapest, Hungary, E-mail: {balasko,kacsuk}@sztaki.hu

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Author manuscript, published in "Journal of Grid Computing 11, 3 (2013) 429-456"
 DOI : 10.1007/s10723-013-9261-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48294113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10723-013-9261-8
http://hal.archives-ouvertes.fr/hal-00832214
http://hal.archives-ouvertes.fr

2 Kassian Plankensteiner et al.

1 Introduction

Currently, almost every scientific workflow development and execution system provides
its own native input language designed to satisfy the needs of its specific target commu-
nity. Workflow applications are specified in different systems at various levels of detail,
sometimes hiding the underlying infrastructure, and sometimes exposing at least part of it.
In most cases, however, workflow applications are hard-coded and therefore bound to the
workflow system within which they have been developed. Running an existing workflow ap-
plication in another system than the one in which it has been originally developed requires
re-engineering and rebuilding it almost from scratch which is tedious and inefficient. This
unfortunate situation makes the entire e-science workflow community fragmented, since
sharing of existing workflow applications within and among domain-specific sciences to
enhance synergies and reduce the time-to-solution is impossible.

Scientific workflows represent the experiments conducted by scientists. These experi-
ments are usually data and computation intensive and often contain relatively simple control-
flows and rules. Scientific workflow languages are therefore mostly targeted at modelling the
data-flow between the individual workflow activities with a strong focus on efficient data
processing and scheduling of computational units [30]. We therefore call these languages
data-flow oriented. Languages like AGWL [15], GWENDIA [25], gUSE [19], SCUFL [23]
and Triana Taskgraph [31] belong to the category of data-flow oriented scientific workflow
languages.

Business workflows, on the other hand, are usually targeted at modelling the control-flow
between individual business activities and describe the processes inside and between enter-
prises with a strong focus on implementing complex business rules. In contrast to the re-
quirements of most scientific workflows, business workflows usually require the support for
process integrity which includes transactions, rollback mechanisms and audits [18]. Because
of their focus on modeling the control-flow, we call these languages control-flow oriented.

While the business process community has generally accepted the standardised, control-
flow oriented Web Services Business Execution Language WS-BPEL [18] as their workflow
language of choice, it has not been adopted by the scientific workflow community The cre-
ation of a single standard language for all users of scientific workflow systems is a difficult
undertaking that will probably not succeed in being adopted by all communities given the
heterogeneous nature of their fields and problems to solve.

To address this difficult problem, we present in this paper the fine-grained interoperabil-
ity (FGI) framework developed as part of the SHIWA (SHaring Interoperable Workflows for
large-scale scientific simulations on Available DCIs) European project [4] that brings to-
gether four representative European workflow systems: ASKALON from the University of
Innsbruck, MOTEUR from the French National Center for Scientific Research (CNRS),
WS-PGRADE from the Computer and Automation Research Institute, Hungarian Academy
of Sciences (MTA SZTAKI), and Triana from the Cardiff University. The proposed interop-
erability is realised at two levels of abstraction: abstract and concrete. At the abstract level,
we propose a generic Interoperable Workflow Intermediate Representation (IWIR) sufficient
for describing workflows at a lower level of abstraction that is only processed by the ex-
isting workflow systems and not directly exposed to the human developer. Such a common
representation shall be used as a common bridge for translating workflows between differ-
ent languages independent of the underlying Distributed Computing Infrastructure (DCI).
At the concrete level, we propose a bundling technique that aggregates the abstract IWIR
representation and concrete task representations to enable workflow instantiation, execution
and scheduling.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 3

Such a solution based on a simple and portable intermediate workflow representation
has a number of advantages for the application developers relative to the current practice
of proprietary workflow languages. First, it enables application developers to program ap-
plications using their favorite high-level workflow language and execute it on every DCI
with an IWIR-enabled enactment engine. Second, it enables the application scientists to
flexibly select the “best” enactment engine deployed on the “best” DCI infrastructure for
running their workflows. This is usually a subjective decision that can only be answered by
the scientists themselves, depending in part on the nature of experiment and the scientist’s
objectives (e.g. performance, reliability, cost). As an example, a workflow running with sen-
sitive patient data may need to stay in a locally administered DCI to satisfy data privacy
laws. Transferring the data to an external DCI would be against the law, therefore the work-
flow execution needs to be moved towards the data. Third, it enables runtime interoperability
between different workflow systems. Sub-workflows, specified either by the end-user or se-
lected dynamically by the workflow scheduler, can be transferred to, scheduled and executed
in a different workflow system on-demand in the form of a common intermediate represen-
tation, which creates numerous optimization opportunities. Fourth, it is a generic solution,
open to integration of new languages and workflow systems. Integrating a new workflow
language able to execute on n DCI infrastructures requires the development of one front-end
converter, while direct language-to-language translators require n front-end converters. Sim-
ilarly, porting m interoperable workflows to a new DCI platform requires the development of
one single IWIR-compliant back-end converter, while direct language-to-language transla-
tions would require again m back-ends, one for each workflow system. Therefore a solution
based on an intermediate language reduces the effort of porting m workflow systems onto n
distributed platforms from m ·n to m+n. This is an important step to make the development
of new workflow systems for multiple existing DCI infrastructures economically viable.

The paper is organised as follows. The next section discussed the related work. Sec-
tion 3 presents the general FGI architecture based on the abstract and concrete separation of
concerns described in Sections 4 and 5. Section 6 presents the IWIR bundle technology for
packaging the interoperable abstract and concrete workflow and task representations. Sec-
tion 7 presents information about implementing the proposed framework in the four pilot
workflow systems: ASKALON, MOTEUR, WS-PGRADE, and Triana. Section 8 discusses
the differences between BPEL and IWIR, and shows why IWIR is a more promising choice
for enabling portability and interoperability between scientific workflow systems. Section 9
validates the interoperability framework using two real-world applications translated and
run across multiple workflow systems. Section 10 concludes the paper and presents ideas
for future work.

2 Related Work

The idea of a single intermediate language is not unique and has been explored in other do-
mains, for example by the UNiversal Computer Oriented Language (UNCOL) [12] proposed
in 1958 by Melvin E. Conway as a solution for making compiler development economically
viable.

The GNU Compiler Collections GIMPLE [22] is a very successful example of a single
intermediate representation. The GNU Compiler Collection (gcc) provides front-ends for
converting C, C++, Objective C, Fortran, Java, Ada and Go to the GIMPLE representation.
Additionally, there are already frontends for Cobol, Pascal, Mercury, Modula-2, Modula-3,
VHDL, PL/I and UPC. In the back-end, gcc provides support for over 30 different target

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

4 Kassian Plankensteiner et al.

architectures. Another example is Java bytecode [21], which can be generated from a wide
range of source languages including C and Java. Software components called Java Virtual
Machines can then execute the Java Bytecode on a large number of different target archi-
tectures. Intermediate Languages have also been researched in the domain of languages
targeting parallel computing, e.g. HSSM Intermediate Language HIL [33], a universal inter-
mediate representation for massively parallel software development.

Elmroth et al. present in [13] their investigations on interoperability aspects of scientific
workflows, where they identify three different dimensions of the problem: model of compu-
tation, workflow language and workflow execution environment. They discuss the problems
and challenges of interoperability of scientific workflow based on these dimensions, mainly
focusing on the differences between local workflows and Grid workflows. Their work is
mostly a survey of the current situation of workflow interoperability and an analysis of the
concepts and semantics of different kinds of workflow languages. Their long-term objective
is to achieve logical workflow interoperability in all dimensions. While their work inves-
tigates problems related to direct conversion and compatibility between the end-user lan-
guages, we provide a solution based on an intermediate language, reducing the integration
effort significantly.

The XML Process Definition Language (XPDL) [34] is an XML language used to inter-
change business process definitions between different business workflow systems and tools.
It has been designed to exchange both graphical representation and semantics of a busi-
ness process, with the focus on the graphical representation and human interactions. XPDL
has been standardised in 1998 by the Workflow Management Coalition (WfMC). It is of-
ten used as a serialisation format for Business Process Model and Notation (BPMN) [24]
and has been especially designed to represent all concepts present in a BPMN diagram. In
contrast to XPDL, we focus on scientific workflows.

The idea of separating the abstract from the concrete part of a workflow, as we do in our
work, is rather common in scientific workflow systems, and therefore often already familiar
to our target audience. One example is Pegasus [10], which is a framework for mapping
scientific workflows onto distributed systems. It provides APIs for Java, Perl and Python for
creating a DAX which is a description of an abstract workflow graph in XML format. In the
DAX logical identifiers are used to reference files and jobs. On a DCI which utilises Pegasus
the logical file identifiers are mapped to physical files using a Replica Catalog. A Transfor-
mation Catalog maps the logical task identifiers to executables also storing additional meta-
information, while a Site Catalog tracks the compute resources of the DCI. Pegasus takes a
DAX as input and uses the catalogs to create a concrete workflow that is executable on the
DCI. Pegasus tries to achieve interoperability between different DCIs all running Pegasus by
allowing workflow developers to specify abstract workflows which are then concretised on
a given DCI. In contrast, our approach achieves interoperability between different workflow
systems by providing means for the exchange of complete and partial workflows based on a
commonly understood intermediate representation.

The interoperability scenario proposed in this paper is being researched and developed
as part of the European FP7 SHIWA (SHaring Interoperable Workflows for large-scale sci-
entific simulations on Available DCIs) [4] under the name of fine-grained workflow in-
teroperability. The SHIWA project brings together four representative workflow systems:
ASKALON from the University of Innsbruck, Moteur from the French National Center for
Scientific Research (CNRS), WS-PGRADE from the Computer and Automation Research
Institute, Hungarian Academy of Sciences (MTA SZTAKI), and Triana from the Cardiff
University. The pilot applications come from the biomedical sciences and are provided by
Charité – Universitätsmedizin Berlin and the Academic Medical Center of the University

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 5

IWIR
Bundle

IWIR Converter 1

IWIR Converter 2

IWIR Converter 3

IWIR Converter m

AGWL

gUSE

GWENDIA

new Language

ASKALON

WS-PGRADE

MOTEUR

TRIANA

new WFMSn

Fig. 1 Schematic fine-grained interoperability framework architecture.

of Amsterdam. Additional pilot applications are provided by four subcontractors. The sec-
ond interoperability scenario researched by the SHIWA project is the coarse-grain workflow
interoperability referring to the capability of nesting existing off-the-shelf workflow appli-
cations as black-box sub-workflows to be included as part of larger meta-workflows.

3 Architecture

Figure 1 displays the schematic architecture of the targeted fine-grained interoperability
framework. To qualify for fine-grained interoperability and be part of the proposed open
interoperable framework, each workflow system will need to adjust its front-end to translate
its source input language into the IWIR workflow representation. Once translated into this
intermediate representation, interoperability with the other systems is implicitly enabled.

We distinguish two parts of a workflow, corresponding to two levels of abstraction;
abstract and concrete:

– The abstract part describes two generic aspects of a workflow that decouple its definition
from the underlying implementation technology (e.g. legacy codes, Web services) and
makes it portable across DCI platforms (e.g. gLite, Globus):
1. the abstract input/output functionality of each workflow task (in terms of task type);
2. the workflow-based orchestration of the computational tasks by defining the prece-

dence relations in terms of control and data flow dependencies;
– The concrete part of a workflow application contains low-level information about its

computational tasks’ implementation technologies. This can mean a wide range of things
such as how to execute a certain application on a certain machine, where and how to call
a certain Web service, an explicit program given in a scripting language, or even an
executable binary file representing the computational task itself. The type and form of
information contained in the concrete part of the workflow is often specific to a certain
workflow system and DCI.

Figure 2 shows a graphical representation of the two layers that make the workflow a fully-
specified executable application. The mapping of tasks from the abstract part of the work-
flow to the concrete computational entities on the target DCI can either be done at the time
of workflow creation, or be handled by a scheduling component at workflow runtime. The
IWIR language deals with the abstract part of the workflow and provides a mechanism to en-
able a one-to-many mapping from the abstract tasks to the concrete computational tasks. In

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

6 Kassian Plankensteiner et al.

A

B

C

D

concrete layer

abstract layer

DCI-dependent, native description DCI-independent, interoperable description

A

B

D

C

IWIR

IW
IR

 B
un

dl
e

.bin

1101010
1000110
0101010
1110011

JSDL

<task>
<tasktype
 <name>de
 ...

JSDL

<task>
<tasktype
 <name>de
 ...

JSDL

<task>
<tasktype
 <name>de
 ...

JSDL

<task>
<tasktype
 <name>de
bin

1101010
1000110
0101010
1110011

.bin

1101010
1000110
0101010
1110011

executable

1101010
1000110
0101010
1110011

Fig. 2 Abstract and concrete layers in the fine-grained interoperability framework architecture. (color online)

our proposed architecture, the abstract and concrete part of an IWIR-compatible workflow
are packaged in a single archive file called the IWIR bundle (see Section 6).

We designed IWIR to enable portability of workflows across different specification lan-
guages, workflow systems and DCIs. IWIR is a language enabling the portability of the
abstract part of a workflow and therefore decouples itself from the concrete level by ab-
stracting from specific implementations or installations of computational entities through a
concept called task type. IWIR avoids the use of data manipulation constructs and therefore
does not define direct ways to change data (such as integer operations or concatenation of
strings), but rather provides means to powerfully distribute data to computational tasks that
do the manipulation. IWIR focuses on the description of the workflow logic independently
from the data sets to be processed. Our study of current workflow description languages led
us to the decision of creating an XML-based graph-based representation, mixing data-flows
and an expressive set of sequential and parallel control structures.

The act of transforming a native workflow application to an IWIR workflow bundle can
be broken down into the following steps (see Figure 2):

1. Convert the abstract part of the workflow to an IWIR abstract workflow graph represent-
ing the workflow logic expressed as an IWIR workflow document (see Section 4);

2. For each task type referenced in the IWIR-based graph representation, convert the con-
crete task implementation into a DCI-independent concrete task representation (CTR),
consisting of binary representations for the task as well as an explanation of how to
invoke the task (see Section 5);

3. Create an IWIR bundle containing both the IWIR-based graph representation and all the
CTRs, including appropriate meta-data information (see Section 6).

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 7�
�

�
�

<IWIR version =" version" wfname ="name"
xmlns="http ://shiwa -workflow.eu/IWIR">
<task...>

</IWIR >

Fig. 3 IWIR document structure.

�
�

�
�

<links >
<link from="from" to="to" />*

</links >

Fig. 4 Data flow links definition.

4 Abstract workflow interoperability

In this section we overview the main elements of the IWIR language, while a complete
specification is provided in [28].

At the abstract level, each native workflow description document is translated into the
intermediate abstract IWIR workflow representation. A workflow consists of one top-level
task (compound or atomic), which (if compound) may contain an arbitrary number of other
tasks as well as data- and control-flow links. This top-level task forms the data entry and exit
point of a workflow application and, therefore, also defines the signature of the application.
Figure 3 shows the IWIR document structure consisting of the following constructs:

IWIR version defines the version of the IWIR language specification. This attribute is pro-
vided to make sure that future extensions of the IWIR specification do not interfere with
existing workflow definitions. The current version is 1.1;

IWIR xmlns is the namespace of all IWIR XML tags and concepts. To be able to concen-
trate on the concepts rather than the notation, we use a global namespace declaration of
http://shiwa-workflow.eu/IWIR here;

IWIR wfname is the workflow name which serves as an identifier;
task is the top-level task element of an IWIR workflow. This element can be a compound

task or an atomic task and its signature defines the required input and output ports of
the workflow and their data types. We present in Sections 4.5 and 4.6 a list of possible
compound and atomic task constructs.

4.1 Data types

IWIR defines a set of simple data types modeled after the set of primitive data types of
common programming languages, and a composite collection data type modeled after well-
known array data structures. An IWIR data type identifier is based on XML schema data
types and can be formed according to the following BNF grammar:

<type>::= <simple-type> | <collection-type>

<collection-type>::= "collection/"<type>

<simple-type>::= "string" | "integer" | "double" | "file" | "boolean"

A collection is an ordered, indexed list of data elements of the same data type. The
number of elements in a collection can be dynamic. One data item in a collection is always
associated with a type and a possibly multi-dimensional integer index (starting from 0 with
one dimension per nesting-level). The nesting level n of a collection can be determined by
its data type, by counting the number of occurrences of the string collection in the type
definition.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

8 Kassian Plankensteiner et al.

4.2 Data flow

Data ports are connected to each other using the link construct (see Figure 4). Every com-
posite task, and therefore every scope, has a links block containing all the data flow links
in its scope defined using two attributes:
links from defines the source of the data flow connection. In IWIR, this attribute is spec-

ified in the form of task/port, where task is the name of the task and port is the name
of the data port providing the data. We call the data port referred to by the from attribute
the source port of the link;

links to defines the destination of the data flow connection. This attribute is also specified
in the form of task/port, where task is the name of the task and port is the name of
the data port consuming the data. We call the data port referred to by the to attribute the
target port of the link.

Data flow links are not allowed to cross scopes (see Section 4.4) making every composite
task self-contained with respect to its data flow.

The general rule is that the data type of the data port specified in the from attribute has to
match the data type of the port referred in the to attribute. There are a few exceptions to this
rule to account for the semantics of compound tasks such as (parallel)forEach splitting
data collections into single elements. A full specification of the particulars of these excep-
tions is given in [28]. Additionally, IWIR allows the following implicit type-cast operations
when connecting data ports using the link construct:

– boolean→ string, integer→ string, double→ string and integer→ double;
– any type A→ collection/A yields a collection containing only one entry;
– file→ string yields a URI to the file.

Furthermore, IWIR mandates that a data port may only be the target port of a single link
construct (in other words, one target port may only be linked to a single source port), except
in cases where the specification explicitly states otherwise. Generally, building a cyclic data
dependency using link constructs is not allowed in an IWIR workflow, except in very specific
cases.

4.3 Control flow

Sometimes it is required to define a pure control flow dependency between two tasks that
does not involve any data dependency. Such a dependency can be expressed in IWIR using
only the task names (as opposed to task/port) in the from and to attributes of the link

construct (see Figure 4). A pure control flow link triggers after the given source of the
link successfully finished its execution. In case of the source being a sequential loop task,
the control flow link triggers therefore after the successful execution of the final iteration.
For parallel loop tasks, the control flow link triggers only after every parallel iteration has
successfully completed. If a task depends on more than one incoming control link, it is
executed only after all incoming control links have triggered. As in the case of data flow
links, building a cyclic control dependency using link constructs is not allowed.

4.4 Scopes

In IWIR, data ports and tasks can only be referenced in certain regions of the workflow
document called scopes. Every scope has a single links block. IWIR only allows a data

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 9�

�

�

�

<task name="name" tasktype =" tasktype">
<inputPorts >

<inputPort name="name" type="type"/>*
...

</inputPorts >
<outputPorts >

<outputPort name="name" type="type"/>*
...

</outputPorts >
</task >

Fig. 5 task definition.

link to refer to data ports and tasks within the current scope consisting of the following
elements (see Figure 4):

Current task represented by its name and all data ports (i.e. input, output, loop, loop counter,
loop element, output) of the task containing the links block itself is an element of the
current scope

Enclosed tasks represented by the names and all data ports of all first-level subtasks. The
current scope does not extend to second-level tasks embedded into the first-level ones.

These strict scoping rules define an important IWIR principle of self-contained tasks provid-
ing a single point of entry (the input ports) and exit (the output ports). This ensures strong
reusability since every single task (atomic and compound) is a fully specified abstract work-
flow in itself. This allows systems to utilize the concept of sub-workflows and opens up the
possibility to easily replace workflow parts.

4.5 Atomic tasks

An atomic task is implemented by a single computational entity (e.g. executable, Web ser-
vice, script), described using the task construct shown in Figure 5 and containing the fol-
lowing attributes:

name serves as an identifier for the task. Tasks must be organized in an IWIR workflow or
a compound task which define a their scope (see Section 4.4). In the scope, the name of
each task must be unique.

type describes the functional behavior and the interface of the task. A task type is an ab-
stract description which can be implemented by different task deployments representing
concrete implementations of computational entities deployed in a DCI (e.g. binary exe-
cutable, script file, Web service instance). A task type can also refer to a sub-workflow
and must be defined in a type registry before enactment. Task types shield the imple-
mentation details of task deployments from the IWIR representation and help enabling
workflow interoperability across different DCIs. Locating and invoking of task deploy-
ments is done by an underlying runtime environment.

inputPorts/outputPorts enclose all the data ports of the task. The number and types of
the input and output ports are determined by the chosen task type. The link construct
(see Figure 4) is used to define the data flow between input and output ports of different
tasks.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

10 Kassian Plankensteiner et al.�

�

�

<if name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
</inputPorts >
<condition > condition </condition >
<then >

<task .../ >+
</then >
<else >?

<task .../ >+
</else >
<outputPorts >

<outputPort name="name" type="type"/>*
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</if >

Fig. 6 if task definition.

embedded
task

then else

output ports
input ports

1 2

3 4

A B

Fig. 7 Data flow definition in if task.

4.6 Compound tasks

A compound task encloses several atomic tasks and/or other compound tasks, including their
data- and control-flow links. The compound task and its links are self contained in the sense
that data- and control flow links may not cross the boundaries of compound task. Therefore,
compound tasks are able to form separate self-contained scopes. We classify the compound
tasks into two groups:

Basic compound tasks are sequential constructs similar to well known constructs in high-
level languages such as blockScope, if, while, blockscope, for and forEach;

Parallel compound tasks are constructs that express parallel loops, i.e. loops in which there
are no loop-carried data dependencies (parallelFor and parallelForEach).

4.6.1 blockScope task

The blockScope compound task (not shown here due to space limitations) enables the
grouping of the contained tasks in one scope. This helps to avoid naming conflicts and
enables to build DAG-like structures even at the top-level of the workflow.

4.6.2 if task

The if compound task enables the conditional execution of the inner tasks, as described by
its attributes (see Figure 6):

condition controls whether the then or the else branch is executed at runtime. For sim-
plicity, IWIR limits the condition operands boolean, double, integer and string type
values and supports most boolean operators. The expression evaluation is based on the
XPath 1.0 specification [9]. To enable more straightforward and logical use of string val-
ues, we also added two exceptions to the string→boolean conversion inspired from
XPath 2.0 [6]. For the full specification of the condition expression evaluation in IWIR,
refer to [28].

outputPorts gathers using link constructs the output of tasks from both the then and
from the else branch of the if task. This is necessary because it is generally unknown

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 11�

�

�

�

<while name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
<loopPorts >

<loopPort name="name" type="type">*
</loopPorts >

</inputPorts >
<condition >

condition
</condition >
<body >

<task .../ >+
</body >
<outputPorts >

<outputPort name="name" type="type"/>*
<unionPorts >

<unionPort name="name"
type=" collection "/>*

</unionPorts >?
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</while >

Fig. 8 while task.

output ports

input ports

embedded
task

loop ports

union ports

1
2

3

4 5

A

Fig. 9 Data flow definition in sequential
loops.

at compile time which branch of the if task is going to be executed. If the else branch
is omitted, a link from an input port of the if task to the output port needs to be created.
Since for a given if task instance only one of the then or the else branches is executed,
the links connecting task ports belonging to different branches are not allowed.

Figure 7 illustrates the usual data flow through the if construct. The data arrives at the
input port and depending on the condition evaluation, either the then or the else branch is
executed. Therefore, either link 1 or link 2 is used to transfer data to the contained tasks A
or B. After completion of the embedded task, the generated data is written to the output port
using either link 3 or link 4.

4.6.3 Sequential loops

The while and for tasks are provided to sequentially execute the loop body zero or more
times. The definition of while is displayed in Figure 8 and consists of the following at-
tributes:

condition is similar to the one defined by the if task and controls how often the while

loop body is executed;
loopPorts are optional and are used to express cyclic data flow between consecutive in

sequential loop iterations. Figure 9 shows an example in which at the beginning of ev-
ery iteration, data is flowing from the input port (through link 1) to the embedded task
A. Additionally, data from the loop ports flows to task A over link 2. After all of the
embedded tasks have finished, one iteration is complete and link 3 is used to overwrite
the contents of the loop port with data produced in task A. This data is used in the next
iteration via link 2. If there are links to union ports such as link 5 in this example, the
data produced in A is appended to the collection at the linked union port. This data flow
is repeated for every iteration. After the final iteration finished, link 4 is used to transfer
data produced by A in the final iteration to the output port;

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

12 Kassian Plankensteiner et al.

loopCounter is specific to the for task (not shown here due to space limitations) and not
present in the while task that controls the repetition through the previously described
condition. The loopCounter is initially assigned to the value specified at the from

attribute and is increased by the value of step until it reaches the to attribute or larger.
The from, to, and step attributes can either be set to fixed integer values or receive val-
ues produced by previously executed tasks and are only evaluated once at the beginning
of an invocation of the for task;

outputPorts are assigned via a link from the embedded tasks after the last iteration of the
while or for compound task. Therefore, subsequent tasks can access only data produced
in the last iteration through these output ports. If subsequent tasks need to access data
produced by intermediate iterations, union ports that aggregate any data produced during
iterations of the loop in a data collection need to be used. This is specified using a data
link (see Section 4.2) from an output port of a contained task to the union port.

The forEach compound task is similar to the for task except that there is an additional
type of data input port called loopElement port which receives a data collection over which
the loop sequentially iterates. The forEach task operates similarly to the parallelForEach
task shown later on in this paper.

4.6.4 Parallel loops

The parallelFor compound task is similar to the sequential for task except that it can
execute all its iterations in parallel. This implies that there may not exist any data depen-
dencies between different iterations of the body, therefore, the parallelFor task does not
provide any loop ports. Additionally, every output port of the parallelFor task has to be
of a collection type (see Section 4.1) to accommodate the parallel production of data in the
tasks iterations.

The parallelForEach task is similar to the forEach task with the difference that all
loop iterations can be simultaneously executed. As for parallelFor, parallelForEach
does not require the underlying workflow execution system to wait for the completion of
every iteration before continuing the execution flow in every case. Synchronization is only
required if the correct execution of the data flow requires it, for example if a subsequent task
requires all of the produced data to be available. A parallelForEach task is described by
the following attributes (see Figure 10):

loopElements block encloses one or more loop element ports and controls how often the
loop body is executed. In the case it contains one loop element, the parallelForEach

loop concurrently iterates over each element of the collection linked to the loop element
port. Linking the port to a task inside of the loop body results in a runtime value based
on the data type of the loop element port without the first collection/ identifier (see
Section 4.2) and the iteration number. In the case of more loop element ports, the body
is concurrently executed once per common element index of the collections referenced
by the links connected to these ports. If the collections sizes do not match, the extra
elements in the larger collections are ignored which allows for dot product iteration
strategies;

outputPort must be of collection type (see Section 4.1), where each iteration writes
its output determined by the data link connected to the port. The resulting collection
is ordered such that the j-th element represents the data coming from the j-th loop
iteration.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 13�

�

�

<parallelForEach name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
<loopElements >

<loopElement name="name"
type=" collection ">+

</loopElements >
</inputPorts >
<body >

<task .../ >+
</body >
<outputPorts >

<outputPort name="name" type="type"/>*
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</parallelForEach >

Fig. 10 parallelForEach task.

embedded
task

1 2

3

output ports

input ports

loopElement portsA1 A2 A3

Fig. 11 Data flow definition in the
parallelForEach task.�

�

�

�
<properties >

<property name="name" value =" value" />*
</properties >
<constraints >

<constraint name="name" value="value" />*
</constraints >

Fig. 12 Properties and Constraints

Figure 11 shows the usual data flow in a parallelForEach task, where A1, A2 and A3 are
embedded tasks representing three parallel iteration instances defined by a collection of size
three in loopElement port. Every iteration instance gets via link 1 the same data coming
from the input port. Afterwards, the collection in the loopElement port is split up and every
iteration i receives the i-th collection element via link 2. Finally, link 3 sets the j-th element
of the collection produced in the output port to be the data produced by task A in iteration j.

4.7 Properties and Constraints

Properties provide hints about the behavior of tasks, e.g. the expected size of the input
data, the estimated computational complexity, the problem size, etc. Properties are referring
to concepts that the underlying enactment system is not forced to take into account when
executing a workflow.

Constraints, on the other hand, must be complied with by the underlying workflow run-
time environment, for example to use only a certain subset of a data collection, to flatten
a nested collection, to minimize execution time, to provide a certain minimum amount of
memory, or to run on a certain specific host, architecture or DCI.

In IWIR, properties and constraints are simple name-value pairs defined by the user
to provide additional information to the workflow runtime environment for optimizing and
steering the execution of workflow applications. As shown in Figure 12, IWIR allows property
and constraint elements to be added to data ports, atomic tasks and composite tasks. Addi-
tionally, IWIR provides several built-in properties and constraints such as the element-index
constraint that cuts down a data collection to a subset, the flatten-collection constraint
that is able to flatten nested data collections, and the producedAs/consumedAs constraints
that cover data pipelining and streaming.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

14 Kassian Plankensteiner et al.�

�

�

�

<task name=" Task_A" tasktype ="org.example.exampleTask">
<inputPorts >

<inputPort name="in1" type="file"/>
</inputPorts >
<outputPorts >

<outputPort name="out1" type="file"/>
</outputPorts >

</task >

Fig. 13 An example task called Task A and its signature in IWIR

5 Concrete workflow interoperability

An IWIR abstract workflow graph contains information about the precedence relations be-
tween computational tasks, their input/output signature, and the data flow between them.
Being concerned only with the abstract part of a workflow, it does not contain information
about the computational tasks themselves. To become a fully defined executable applica-
tion, an FGI-compatible workflow needs a description of the concrete part of the workflow
(alongside the abstract one) too. In this section, we summarise the most important aspects
of the concrete workflow interoperability solution, while a detailed specification is given
in [27].

The concrete part of an FGI-compatible workflow is given by a set of DCI-independent
concrete task representations (CTR) for each task type contained in its IWIR abstract work-
flow graph. A CTR consists of two parts:

1. a set of files representing the computational task and its dependencies;
2. a JSDL template file describing how to invoke the computational task.

The first part can be fulfilled by providing for each task one or more executable files for
each platform together with the library dependencies. While in the future we will endorse
the usage of a wider range of technologies for representing concrete tasks, such as Web
Archives (war) for Web Services, Virtual Machine images equipped with all necessary tools
and libraries as well as executables for multiple architectures, we settled for statically linked
Linux x86 binaries and shell scripts as a first proof-of-concept. Using wrapper scripts we
can already invoke almost any type of concrete task this way.

The second part is based on the Job Submission Description Language (JSDL) [5],
which is an extensible XML specification standardized by the Global Grid Forum in 2005.
JSDL standardizes among others ways to describe job names, descriptions, resource require-
ments, execution limits, file staging, execution command, command-line arguments and en-
vironment variables, thus making it a good match to describe the invocation and resource
requirements of a CTR in our architecture. A fully specified JSDL document contains con-
crete instantiated values for all of these fields (e.g. URLs pointing to intermediate data only
existing during runtime). Therefore, using fully defined JSDL documents as a generic way
to describe how to invoke CTRs in our proposed framework is not directly possible. For this
reason, we abstract from fully defined JSDL documents by using placeholder tokens wher-
ever there is information that can only be known, and therefore also only be instantiated, at
runtime of a CTR. We call such a JSDL document containing placeholders a JSDL template
document.

To be able to associate the placeholders to required data, we need to define a clear con-
nection between the abstract signature of a CTR (IWIR task) and the placeholders contained
in the JSDL Template. For example, the task Task A shown in Figure 13 has one input port
in1 and one output port out1, both of the data type file. To execute a CTR implementing

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 15

this task, we could use a JSDL description such as the one given in Listing 1. Lines 3−16
define the application to be executed and the binary file to be staged in for invocation. Lines
17−22 define the data staging for input port in1 and lines 23−28 define the data staging for
output port out1. The input data staging description contains a concrete fixed URL in line
14. This URL references the location of the file provided to the input port of the concrete
task invocation. To be able to use this JSDL description as a general description of how to
invoke our CTR, we need to replace this concrete data with placeholders, such as in line
26, thereby creating a JSDL Template. By using the name of the corresponding ports in the
placeholder (i.e. <PLACEHOLDER FILESERVER in1/> instead of the URL in line 14) we are
able to establish the required logical connection to the information contained in the IWIR
abstract task type signature.

Listing 1 JSDL description for the task in Figure 13

1 </JobDefinition > ...
2 <JobDescription >
3 <JobIdentification ><JobName >exampleTask </JobName ></JobIdentification >
4 <Application >
5 <ApplicationName >org/example/exampleTask </ ApplicationName >
6 <jsdl -posix:POSIXApplication_Type >
7 <jsdl -posix:Executable >exampleTask </jsdl -posix:Executable >
8 <jsdl -posix:Output >std.out </jsdl -posix:Output >
9 </jsdl -posix:POSIXApplication_Type >

10 </Application >
11 <DataStaging >
12 <FileName >exampleTask </FileName >
13 <Source >
14 <URI >http :// source.host :8080/ getFile?path =1722/ exampleTask </URI >
15 </Source >
16 </DataStaging >
17 <DataStaging >
18 <FileName >inputFile1.txt </FileName >
19 <Source >
20 <URI >http :// source.host :8080/ getFile?path =1722/ inputs/inp1.txt </URI >
21 </Source >
22 </DataStaging >
23 <DataStaging >
24 <FileName >outputFile.txt </FileName >
25 <Target >
26 <URI ><PLACEHOLDER_FILESERVER_out1 /></URI >
27 </Target >
28 </DataStaging >
29 </JobDescription >
30 </JobDefinition >

We identify three different ways to create a JSDL template document during the conver-
sion of a native workflow to the IWIR bundle format:

– Automatic creation for workflow systems whose native language contains invocation
description in a form that is expressive enough to be converted to a JSDL document
using an automatic converter;

– Semi-automatic creation for workflow systems that use RSL, xRSL or JDL as submis-
sion language for which a JSDL translator [27] can be used to semi-automatically create
a JSDL template job description;

– Manual creation of the JSDL description by the workflow developer based on a given
generic JSDL template using any text editor.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

16 Kassian Plankensteiner et al.

6 IWIR bundles

Fig. 14 Example IWIR bundle
file structure.

An IWIR bundle is a package containing both the IWIR
abstract workflow graph and at least one CTR for each task
type used. Additionally, the bundle contains metadata in-
formation describing the workflow and a mapping from ab-
stract task types to CTRs. In other words, an IWIR bundle
can be understood as a self-contained interoperable work-
flow, described in a common representation and containing
all of the information and data required to execute the con-
tained workflow on any FGI-compatible workflow execu-
tion system.

IWIR bundles use the SHIWA CGI bundle file format
and metadata framework, as specified in [17]. This open
format reuses well-supported and widely deployed specifi-
cations based on the Resource Description Framework [2]
(RDF), specifically the Simple Knowledge Organization
System [3] (SKOS) and the Open Archive Institute’s Object
Reuse and Exchange [1] (ORE) vocabularies that simplify
interoperability and integration with third party applications and projects. Exploiting RDF,
ORE and SKOS provides a coherent framework for future-facing workflow reuse through
the ability to aggregate, describe and infer relationships between resources.

Technically, an IWIR bundle is a compressed file (ZIP) containing the required files in
a directory hierarchy. The IWIR workflow document is contained at the top-level directory,
while each CTR is contained in a separate subdirectory named using a generated universally
unique identifier (UUID). As required by the SHIWA CGI bundle format specification, each
of these directories additionally contains the following two files:

resourceMap.rdf aggregates together a collection of files relating to the concept element,
ranging from descriptive metadata files to raw data. In the scope of ORE, these files are
known as aggregated resources and together with the resource map form an aggregation
of the concept element. In the context of IWIR bundles, this file provides a list of all of
the contents in a CTR (if in a subdirectory of the bundle), and/or provides a list of all
CTRs and the IWIR workflow contained in the bundle (if on the top level of the bundle);

metadata.rdf is referenced by the resource map and contains all the key metadata infor-
mation relating to the aggregation described in the resource map. In the context of IWIR
bundles, the most important information contained here is the CTRs IWIR task type and
its signature (if in a subdirectory), and/or the workflow signature (if on the top level).

Figure 14 shows the structure of a simple IWIR bundle describing a workflow containing
two IWIR task types: shiwa.fgi.example.A and shiwa.fgi.example.B. The hierarchical
nature of the bundle can easily be seen, each CTR being located in a subfolder based on a
generated UUID. The workflow is located in the root of the bundle stored using its IWIR
definition file (workflow.iwir). Nested below are the CTRs for the two IWIR task types,
each containing both the executable file and the JSDL template file. Listing 2 shows part
of the resourceMap.rdf file of the CTR in subdirectory a46c3e7f. Lines 3− 6 show the
ORE aggregation that lists the contents of the CTR, including the metadata definition file
metadata.rdf. The two most important functions of this file are the mapping of the CTR
to a given IWIR task type as referenced in the IWIR workflow (shiwa.fgi.example.A, as

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 17

shown in Listing 3, line 5) and the reference to the JSDL template file describing the CTR
invocation (see line 4 in Listing 3).

Listing 2 Excerpt from resourceMap.rdf describing the CTR of Task A

1 <rdf:Description rdf:about="aggr/">
2 <ore:aggregates rdf:resource ="A.jsdl"/>
3 <ore:aggregates rdf:resource ="A.exe"/>
4 <ore:aggregates rdf:resource =" metadata.rdf"/>
5 <rdf:type rdf:resource ="http ://www.openarchives.org/ore/terms/Aggregation "/>
6 </rdf:Description >

Listing 3 Excerpt from metadata.rdf describing the CTR of Task A

1 ...
2 <rdf:Description rdf:about="urn:uuid:a46c3e7f">
3 ...
4 <shiwa:definition rdf:resource ="A.jsdl"/>
5 <shiwa:tasktype >shiwa.fgi.example.A</ shiwa:tasktype >
6 ...
7 </rdf:Description >
8 ...

7 Implementation

We have implemented a number of tools to help developers to integrate their respective
workflow systems into our proposed architecture and avoid duplicated efforts:

IWIR tool parses IWIR XML files and provides a Java object representation enabling traver-
sal and manipulation of the workflow. We have created an XML schema for IWIR and
implemented a Java-based toolset to support workflow system developers in generat-
ing and manipulating IWIR documents as required by their language translators. Addi-
tionally, the tool provides a simple API that enables easy and correct construction and
serialisation of IWIR workflows as XML documents compliant to the schema. Parsing
and evaluation of the IWIR conditional expressions is supported too. The tool is able to
validate IWIR documents for correctness in their control flow, data flow, data types and
syntax when parsing or creating IWIR documents;

JSDL template creation tool takes as input a JSDL document and a corresponding IWIR
task signature, analyses them and, with the help of the user, creates a JSDL template
ready for inclusion in an IWIR bundle;

IWIR bundle tool parses an IWIR bundle and provides a simple API to access all the con-
tained data;

IWIR bundle creation wizard guides the user through the manual creation of a workflow
bundle, if full automation is not already provided by the workflow system integration.
To achieve this, it will first ask the user for the IWIR document and parse it to obtain the
contained IWIR task types. Then, it requests for every task type a JSDL template and the
binaries to build the required CTRs. Finally, it requests for meta-data information like
workflow name, description and dependencies, before creating a complete workflow
IWIR bundle.

More information about these tools is presented in [27]. These tools have been em-
ployed by the four pilot workflow systems [15,16,19,31] to create IWIR translation tools
and interoperability plugins that fully integrate them (and their native languages) into our
FGI architecture.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

18 Kassian Plankensteiner et al.

8 Discussion on BPEL

The Web Services Business Process Execution Language (WS-BPEL, or BPEL in short) [18]
is a widely accepted, standardised language based on XML. It is designed for specifying the
behaviour of executable as well as abstract business processes whose activities are web ser-
vices. BPEL processes are exposed as web services themselves. The language incorporates
standards like WSDL [8] for the specification of messages and web service endpoints, and
XML schema types for the definition of variable types.

BPEL was introduced in 2002 by IBM, BEA Systems and Microsoft and standardised
by the Organization for the Advancement of Structured Information Standards (OASIS) in
2004. Today there exist a lot of commercial (e.g. Oracle BPEL Process Manager, IBM Web-
Sphere Process Server and Microsoft BizTalk Server) and open-source (e.g. ActiveBPEL
and Apache ODE) business process execution engines which comply with the BPEL lan-
guage specification, but also extend BPEL with proprietary extensions. Designed as a lan-
guage for the description of business processes, BPEL is targeted at modelling the control-
flow between individual business activities with a strong focus on implementing complex
business rules. BPEL provides business process related features such as the support for pro-
cess integrity including transactions, rollback mechanisms and audits [18]. BPEL is an im-
perative, control-flow oriented, Turing-complete language. Data exchange is based on glob-
ally shared variables, managed by a central entity. Variables in BPEL are mutable meaning
that any task in between the definition and the use of a variable can potentially manipulate
the value of the variable.

Since BPEL is the only workflow language in wide use today that was standardised by a
standards body, there is a need to take a closer look at the potential of utilising BPEL to help
in achieving interoperability and portability between existing scientific workflow systems
before proposing a new language like our proposed Interoperable Workflow Intermediate
Representation (IWIR).

8.1 Using BPEL as intermediate language for portable workflow exchange

Investigations on using BPEL as intermediate representation to enable fine-grained scientific
workflow interoperability led us to the conclusion that there are several reasons why BPEL
is not a good candidate:

– In BPEL the abstract part and the concrete part of a workflow are tightly coupled,
– BPEL is control-flow oriented whereas the majority of scientific workflow languages

are data-flow oriented,
– BPEL needs to be extended to meet the requirements.

8.1.1 Tight coupling of the abstract part and the concrete part of a workflow

In BPEL the abstract and the concrete part of a workflow are tightly coupled since the
specification of the process logic directly refers to WSDL-operations and also the message
types are usually defined directly in WSDL. Moreover, WSDL only supports web services
and the web service endpoints are usually hard-coded in WSDL. To be able to flexibly
use BPEL as intermediate language fo portable workflows we would want to separate the
abstract and the concrete parts and make each part replaceable.

One solution to this problem would be to use abstract BPEL [18] which would allow us
to omit WSDL specific details during design time. However, this means that we also omit

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 19

information about the message types and the operation that is referenced by a workflow
task. For our intended use this is not practicable since this information is required to match
suitable concrete task representations to a given abstract workflow task.

Another possible solution would be BPEL light [26], which addresses the tight coupling
of the abstract and concrete part. BPEL light completely disposes of WSDL and aims at
only specifying message exchange patterns, which then need to be matched to arbitrary
interface descriptions at runtime. Here we also have the problem of missing message types
and operations in the abstract part and therefore a sub-optimal solution to our problem.

Furthermore, both of these solutions would additionally eliminate the advantage of being
standardised languages overseen by a standards body.

8.1.2 Mismatch between control-flow oriented and data-flow oriented languages

IWIR as an intermediate language is targeted at scientific workflows, the majority of which
are data-flow oriented. A data-flow oriented workflow [30] is modelled by a graph. Its nodes
represent activities, the majority of its edges represent data-flow between activities. Each
task has input and output ports where the input ports consume data and the output ports pro-
duce data. Data produced by an output port is forwarded through outgoing edges to the input
ports of subsequent activities. In other words, variables in a data-flow oriented workflow are
only locally visible and are immutable. This guarantees that no variable is referenced unex-
pectedly and there is no access conflict in parallel execution. Furthermore, this also allows
to embody a functional programming style, which assumes the side-effect-freeness of the
workflow activities. With this assumption failures can be handled in a simple and greedy
way by re-executing the failed task. Whether a task can be executed is mainly dependent
on the availability of the data represented by the incoming edges. Parallel execution of ac-
tivities is mostly managed implicitly by the scheduler based on data-dependencies between
activities.

Using BPEL as intermediate language would force most scientific workflow system de-
velopers to transform a data-flow oriented language to a control-flow oriented language and
vice-versa. A control-flow oriented workflow [30] is also modelled by a graph with nodes
representing activities. However, in control-flow oriented workflows, edges usually repre-
sent the explicit control-flow between activities. Whether a task can be executed or not is
explicitly specified by the control-flow edges. Parallel execution of independent tasks al-
ways has to be specified explicitly and data is transferred between activities using explicitly
defined shared variables. These variables are usually global and mutable. If users are not ex-
tremely careful, this can lead to access conflicts and race conditions in parallel execution and
requires initialisation before the first use. Using globally shared variables requires additional
effort during workflow creation and renders the handling of failures much more complex be-
cause the values of variables need to be considered when compensating the impact of the
failure. This requires the use of sophisticated compensation mechanism.

As we can see, control-flow oriented languages exhibit different syntax and semantics
than data-flow oriented languages. This leads to a syntactic and semantic mismatch. Elmroth
et al. in [13] argue that functionality present in one style but missing in the other style re-
quires simulation of functionality with availabe primitives resulting in increased complexity
and a greatly increased potential for errors. Implementation of a two-way conversion would
be a complex and cumbersome task due to this mismatch. To demonstrate the mismatch be-
tween BPEL and data-flow oriented scientific workflow languages, we want to give a simple
example. A feature often found with scientific and other data-intensive workflow languages
is data pipelining and streaming. In data-flow oriented languages this feature is aimed at

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

20 Kassian Plankensteiner et al.

improving efficient execution over large data collections. Without data pipelining a data col-
lection needs to be completely generated before it can be passed to subsequent consuming
activities. With data pipelining individual elements of the data collection can already be
passed to subsequent consuming activities before the whole data collection is complete. In
data-flow oriented workflow languages, data pipelining can be achieved by simply tagging
the relevant data link with a particular property (e.g. producedAs/consumedAs in IWIR).
BPEL does not have an explicit support for this feature, it can therefore only be achieved by
adding consecutively nested forEach constructs (see [30]), simulating the pipeline. When
only converting from a scientific workflow language to BPEL this would still be acceptable,
but for full integration we also need a conversion in the opposite direction. In this case we
would be required to apply some form of pattern matching to figure out if a given set of
nested forEach constructs implement data pipelining or if they just represent nested loops.
In our opinion such a disadvantage would be detrimental to the adoption of the intermedi-
ate workflow language and render the implementation of language converters unnecessarily
complex for a large majority of the targeted user base.

Additionally, BPEL was never designed as an intermediate language but to support the
programming in the large paradigm [11]. For this purpose BPEL incorporates a large set
of constructs which makes it Turing-complete. The problem with such a large feature set is
that the implementation of a converter supporting it (especially a backward converter) is a
complex and cumbersome task. In this respect XPDL [34] may be a better candidate since
it was designed as an intermediate language for business workflows right from the start in
contrast to BPEL, but XPDL is still a control-flow oriented language designed for business
processes and therefore it suffers from the same disadvantages as depicted above. Moreover,
it is more focused on graphical representation and human interactions.

We want to encourage scientific workflow communities to integrate their systems into
our proposed fine-grained interoperability landscape by creating forward and backward con-
verters. Therefore the intermediate language needs to be as simple and familiar and as
closely related to the majority of scientific workflow languages as possible.

8.1.3 Proprietary extensions

Using BPEL as intermediate language would require us to find, implement and combine
BPEL extensions to cover all of the requirements and peculiarities associated with scientific
workflows. The BPEL standard does provide extension constructs that allow for extensi-
bility, and every BPEL workflow using these constructs will still be a valid and standard-
compliant workflow. However, the syntax and semantics of extensions are, by definition,
not part of the BPEL specification and therefore the syntax and semantics of such work-
flows are also no longer purely defined by the BPEL standard. Furthermore, extensions add
to the complexity of a BPEL workflow that uses them. It is therefore rather obvious that
most of the advantages of BPEL being a standard are lost when adding multiple extensions.
Moreover, extensions add complexity which counteracts with our goal of providing a simple
intermediate workflow language that has a chance of being adopted in practice.

8.2 BPEL in the context of IWIR

As mentioned in Section 8.1.2, BPEL was never intended as an intermediate language but
as an execution language. Therefore we see BPEL, when it is used as a scientific workflow
language, as yet another language that should be translated to and from IWIR. Many of the

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 21

BPEL constructs can be explicitly converted to IWIR. The constructs that can not currently
be explicitly converted are mostly business-process-related such as exceptions and out-of-
band messages and global variables. Nevertheless, we are still able to incorporate these
constructs in an IWIR workflow as black boxes wrapped into concrete tasks. In fact, the
creation of IWIR converters for a suitable BPEL sub-set for scientific workflow applications
is already planned as future work.

9 Experimental case studies

In this section, we first show examples of how to use the IWIR language to express com-
mon data distribution strategies featured in many different workflow languages. Then, we
illustrate two case studies on how the FGI solution proposed in this paper enables workflow
portability across multiple systems using IWIR language translators at the abstract level and
the IWIR bundles at the concrete level.

9.1 Dot and cross products

A dot product (one-to-one) data iteration strategy of data from two collections flowing into
task A can be implemented in IWIR in the way seen in Listing 4. In this example, we have
two data collections collA and collB as input (lines 4− 5) to a parallelForEach task
called forEach1. This compound task contains an atomic task A (lines 9− 17) which will
be invoked min(l(collA), l(collB)) times, where l(X) is the number of elements in the
collection X. The i-th invocation of task A will be executed with the i-th data element of both
collA and collB as input (lines 23−24).

Listing 4 Dot product iteration example.

1 <parallelForEach name=" forEach1">
2 <inputPorts >
3 <loopElements >
4 <loopElement name="collA" type=" collection/file" />
5 <loopElement name="collB" type=" collection/file" />
6 </loopElements >
7 </inputPorts >
8 <body >
9 <task name="A" tasktype =" consumer">

10 <inputPorts >
11 <inputPort name=" elementA" type="file" />
12 <inputPort name=" elementB" type="file" />
13 </inputPorts >
14 <outputPorts >
15 <outputPort name="res" type="file" />
16 </outputPorts >
17 </task >
18 </body >
19 <outputPorts >
20 <outputPort name="res" type=" collection/file" />
21 </outputPorts >
22 <links >
23 <link from=" forEach1/collA" to="A/elementA" />
24 <link from=" forEach1/collB" to="A/elementB" />
25 <link from="A/res" to=" forEach1/res" />
26 </links >
27 </parallelForEach >

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

22 Kassian Plankensteiner et al.

A cross product (all-to-all) data iteration strategy of two collections flowing into task A

can be implemented in IWIR as displayed in Listing 5. In this example, we have two data col-
lections collA and collB as input (lines 3, 5) to a parallelForEach task called forEach1.
This compound task contains another parallelForEach task (lines 9−35) which contains
an atomic task A (lines 17− 25) invoked l(collA) · l(collB) times, where l(X) is the num-
ber of elements in the collection X. These two nested loops that iterate over the collection
elements compute the cross product that is represented as a collection of nested level 2 as
an outport of forEach1 (line 38).

Listing 5 Cross product iteration example.

1 <parallelForEach name=" forEach1">
2 <inputPorts >
3 <inputPort name=" collB" type=" collection/file"/>
4 <loopElements >
5 <loopElement name="collA" type=" collection/file"/>
6 </loopElements >
7 </inputPorts >
8 <body >
9 <parallelForEach name=" forEach2">

10 <inputPorts >
11 <inputPort name=" elementA" type="file"/>
12 <loopElements >
13 <loopElement name="collB" type=" collection/file"/>
14 <loopElements >
15 </inputPorts >
16 <body >
17 <task name="A" tasktype =" consumer">
18 <inputPorts >
19 <inputPort name=" elementA" type="file"/>
20 <inputPort name=" elementB" type="file"/>
21 </inputPorts >
22 <outputPorts >
23 <outputPort name="res" type="file"/>
24 </outputPorts >
25 </task >
26 </body >
27 <outputPorts >
28 <outputPort name="res" type=" collection/file"/>
29 </outputPorts >
30 <links >
31 <link from=" forEach2/elementA" to="A/elementA"/>
32 <link from=" forEach2/collB" to="A/elementB"/>
33 <link from="A/res" to=" forEach2/res"/>
34 </links >
35 </parallelForEach >
36 </body >
37 <outputPorts >
38 <outputPort name="res" type=" collection/collection/file"/>
39 </outputPorts >
40 <links >
41 <link from=" forEach1/collA" to=" forEach2/elementA"/>
42 <link from=" forEach1/collB" to=" forEach2/collB"/>
43 <link from=" forEach2/res" to=" forEach1/res"/>
44 </links >
45 </parallelForEach >

9.2 Image registration workflow

To illustrate show the workflow translation process using IWIR, we present a case study that
uses an image registration workflow performing a common medical image spatial alignment

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 23

Fig. 15 Image registration
workflow in MOTEUR.
(color online)

Listing 6 Image registration workflow excerpt in GWENDIA.
1 ...
2 <processor name=" First" >
3 <in name="in" type=" string" depth ="1"/>
4 <out name="out" type=" string" depth ="0"/>
5 <beanshell >
6 </beanshell >
7 </processor >
8 <processor name=" Register to first">
9 <in name="ref" type=" string" depth ="0"/>

10 <in name="float" type=" string" depth ="0"/ >
11 <out name="out" type=" string" depth ="0"/>
12 <iterationstrategy >
13 <cross >
14 <port name="ref"/>
15 <port name=" float"/>
16 </cross >
17 </iterationstrategy >
18 <beanshell >
19 </beanshell >
20 </processor >
21 ...

procedure. The workflow has been originally programmed in MOTEUR as displayed in Fig-
ure 15. The input contains images (scans) {I0,I1,I2, . . .} of a patient acquired at different
times. Because it is impossible to orient the patient precisely in the same position for each
scan, the images are misaligned in space. The workflow automatically realigns the images
in two alignment steps:

– Register to first aligns all images ({I0,I1,I2, . . .}) to the first one (I0);
– Register to average aligns all resulting images to an average model to avoid any bias

related to using the first image (I0) as reference.

The First and Average activities are utility activities that extracts the first, respectively
compute the mean image from the list.

Listing 6 shows an excerpt from the workflow in GWENDIA [25], the native work-
flow description language used by the MOTEUR system. The excerpt contains the activities
(processors in GWENDIA terminology) First (lines 1−6) and Register to first (lines
17− 19). We can observe that First has one input (in – line 2) and one output port (out
– line 3) of type string representing data file URLs. Activities in GWENDIA may receive
inputs with different nesting levels expressed using the concept of port depth. The depth of
a port determines the number of nesting levels the input port will collect or the output port
will produce before/after triggering the activity. An input port depth of 0 denotes that the
activity will trigger for each individual scalar value received. An input port depth of n means
that the activity will trigger once for every nested structure of depth n received on the port.
In Listing 6 (line 2), the activity First has a port depth one and will therefore consume
and trigger once for each element of a one-dimensional array of strings (references to image
files). The output port of First (line 3) has a depth of zero, resulting in one string (file ref-
erence) per execution of First. The second activity in Listing 6 shows that all the input and
output ports of Register to first have a depth of zero (lines 8− 10). Furthermore, we
can observe that the input ports ref and float are specified in a cross iterationstrategy

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

24 Kassian Plankensteiner et al.

(lines 11− 16) and will trigger the activity for all possible combinations. In this particular
workflow, Register to first receives all the images {I0,I1,I2, . . .} on port float and
the first image I0 on port ref. This results in an execution of Register to first for the
cross product combination of the two inputs: {(I0,I0) ,(I1,I0) ,(I2,I0) , . . .}, leading to the
creation of a set of images (given as references to their locations). The rest of the workflow
follows the same structure in executing the second alignment step.

Listing 7 shows the same portion of the workflow translated to IWIR. We can see that
the input port of the task First has been translated to type collection/file (line 3).
Since the GWENDIA workflow defined the port depth as one, we had to explicitly specify
in IWIR that this input port expects a collection of files to start the task execution. We can
also see that the GWENDIA task Register to first has been translated into two IWIR
tasks Register-to-first:cross and Register-to-first. As described in Section 9.1,
the cross product iteration strategy used in Register to first activity can be expressed
in IWIR using two parallelForEach tasks that split the incoming data collections (lines
10-41). From the port depths, the iteration strategy and the workflow structure in the GWEN-
DIA workflow, we can derive that one of the input ports receives a collection of files and the
other input port a single file. Each collection element is then used together with the file on
the second port for every execution of the Register-to-first task.

Listing 7 Image registration workflow excerpt in IWIR.

1 ...
2 <task name=" First" tasktype =" First">
3 <inputPorts >
4 <inputPort name="in" type=" collection/file"/>
5 </inputPorts >
6 <outputPorts >
7 <outputPort name="out" type="file"/>
8 </outputPorts >
9 </task >

10

11 <parallelForEach name=" Register_to_first:cross">
12 <inputPorts >
13 <inputPort name="ref" type="file"/>
14 <loopElements >
15 <loopElement name="float" type=" collection/file"/>
16 </loopElements >
17 </inputPorts >
18 <body >
19 <task name=" Register_to_first" tasktype =" Register_to_first">
20 <inputPorts >
21 <inputPort name="ref" type="file"/>
22 <inputPort name=" float" type="file"/>
23 </inputPorts >
24 <outputPorts >
25 <outputPort name="out" type="file"/>
26 </outputPorts >
27 </task >
28 </body >
29 <outputPorts >
30 <outputPort name="out" type=" collection/file"/>
31 </outputPorts >
32 <links >
33 <link from=" Register_to_first:cross/ref" to=" Register_to_first/ref"/>
34 <link from=" Register_to_first:cross/float" to=" Register_to_first/float"/>
35 <link from=" Register_to_first/out" to=" Register_to_first:cross/out"/>
36 </links >
37 </parallelForEach >
38 ...

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 25

<<Act iv i ty>>

First

<<ParallelForEach>> Register_to_first:cross

<<Act iv i ty>>

Register_to_first

<<Act iv i ty>>

Average

<<ParallelForEach>> Register_to_average:cross

<<Act iv i ty>>

Register_to_average

Fig. 16 Image registration workflow in ASKALON. (color online)

Finally in the last step, we loaded the resulting IWIR workflow into the graphical user
interface of the ASKALON workflow environment. This automatically triggers a translation
to its native AGWL language and renders a graphical view in its UML-based interface, as
displayed in Figure 16.

9.3 Image manipulation workflow

In this section, we demonstrate a common use case of the proposed fine-grain workflow
interoperability framework. We devised a scenario in which a workflow developer wishes
to collaborate in the production of a workflow with other developers. To achieve this, the
developer designs a first preliminary version of a workflow in the favourite workflow system
and language, and uses the FGI architecture to disseminate it amongst other developers in

Fig. 17 Image manipulation workflow in Triana. (color online)
Fig. 18 Image manipulation workflow in
WS-PGRADE. (color online)

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

26 Kassian Plankensteiner et al.

<<Act iv i ty>>

FileNameLoader
<<Act iv i ty>>

ImageReader

<<Act iv i ty>>

ToGreyScale

<<Act iv i ty>>

RotateLeft

<<Act iv i ty>>

ImageView2

<<Act iv i ty>>

Reflect

<<Act iv i ty>>

ImageView

<<Act iv i ty>>

GetRed

<<Act iv i ty>>

ImageView1

<<Act iv i ty>>

RotateLeft_1

Fig. 19 Modified image manipulation workflow in
ASKALON. (color online)

Sch.Queue Sch.Resource Int.Que Scheduling Startdelay Submitting Queue ParDataIn Active Parallel Serial.

Imbalance DataOut Filetransfer Error TotalTime

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000
Time (ms)

FileNameLoader@1

ImageReader@1

ToGreyScale@1

GetRed@1

RotateLeft@1

Reflect@1

ImageView1@1

RotateLeft_1@1

ImageView@1

ImageView2@1

Queue Active

Queue Active

Queue Active

Queue Active

Queue Active

Queue Active

Queue Active

Queue

Queue Active

Queue Active

Fig. 20 Modified image manipulation workflow exe-
cution in ASKALON. (color online)

the form of an IWIR bundle. The other developers are then able to further edit and modify
the workflow using their own language and execute it on their own enactment engines too.
The new modified workflow versions may be given back, again in the form of an IWIR
workflow bundle, to the original developer for evaluation, execution, and possibly further
development. To demonstrate this collaborative interoperability scenario, we employ the
current development versions of the Triana, WS-PGRADE and ASKALON systems.

In the first step, the workflow developer A working with the Triana system develops an
initial image manipulation workflow, as shown in Figure 17. The workflow loads an image
file (in the tasks FileNameLoader and ImageReader) and uses it as input to three paral-
lel workflow paths. The first of the parallel paths filters out everything but the red channel
(GetRed) and opens an image viewer (ImageView1) that displays the resulting image. The
second parallel path converts the image to a pure greyscale image (ToGreyScale), rotates
the resulting image counter-clockwise by 90◦ (RotateLeft), and finally opens another im-
age viewer (ImageView2) displaying the resulting image. The third parallel path transforms
the image into its mirror image through reflection (Reflect) and opens an image viewer
(ImageView) too.

To collaborate with developers B and C, developer A now uses the IWIR export function
in Triana to export the workflow to the IWIR bundle format. This functionality follows the
three steps proposed in our FGI architecture (see Section 3):

1. The abstract part of the native Triana taskgraph workflow is converted to an abstract
IWIR workflow graph containing seven distinct IWIR task types (FileNameLoader,
ImageReader, GetRed, ToGreyScale, Reflect and ImageView);

2. For each of the seven task types, the required binaries are identified and a JSDL template
specifying its invocation is created (i.e. the CTR);

3. An IWIR bundle containing the IWIR workflow graph and the CTRs for all seven task
types is generated.

The resulting IWIR bundle is sent to developers B and C working with the workflow
systems WS-PGRADE and ASKALON. When the developer B imports the bundle into
WS-PGRADE, it appears as shown in Figure 18. Even though the graphical representation
changed, it is still easy to see that the structure of the workflow has not changed. Developer
C working with ASKALON imports the IWIR bundle and decides to modify it to better suit
his requirements which demand the greyscaled image be rotated by 180◦ counter-clockwise
(as opposed to 90◦ in the original version). To achieve this, he duplicates the RotateLeft

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 27

task and produces a new modified version of the workflow, as shown in Figure 19. After this
successful modification, he executes the workflow using the native ASKALON workflow
system running on top of the the Austrian Grid DCI. Figure 20 shows the execution trace
of the workflow in the ASKALON performance monitoring interface. The horizontal bars
represent the workflow tasks having two visible states, queued and active, and the horizontal
axis the execution time.

Fig. 21 Modified image manipulation workflow in
Triana. (color online)

As a final step, the developer C de-
cides to give the new modified work-
flow back to the original workflow de-
veloper A. To achieve this, he exports
the ASKALON workflow to an IWIR
bundle and forwards it to his colleague
who opens and visualises it as a Tri-
ana taskgraph, as illustrated in Figure 21.
This scenario executed using the current
development versions of Triana, WS-
PGRADE and ASKALON shows there-
fore how the FGI architecture is able
to support the collaborative editing and
development of workflows by scientists
working in different environments with
different user interfaces and workflow
languages.

10 Conclusions and Future Work

In this paper we presented the architecture designed in the EU FP7 SHIWA project [4] to
support fine-grained interoperability (FGI) of scientific workflows. Our solution separates
the interoperability concerns in two layers: abstract and concrete. At the abstract layer, we
proposed a novel Interoperable Workflow Intermediate Representation (IWIR) designed to
enable portability of workflows originally written in different languages across numerous
scientific workflow systems. The common IWIR representation enables the translation of
workflows among n systems with O(n) complexity and facilitates the integration of a new
language into an IWIR-based interoperable environment with constant O(1) complexity.
We have specified the IWIR language comprising atomic tasks, compound tasks including
if, while, sequential for and parallel for statements, as well as different data types and data
flow constructs to cover the abstract part of workflow applications. At the concrete layer,
the interoperability is based on JSDL templates and the IWIR bundle concept designed for
packaging concrete task representations (CTRs) and their invocation. To support integration
of new workflow systems into the interoperability framework, we developed a number of
tools including an IWIR tool for scanning, parsing and manipulating IWIR documents, an
IWIR XML schema, an API to interact with IWIR bundles, and a JSDL template creator.
We showed why the BPEL standard is not a good candidate in being used as an intermediate
language to enable the interoperability of scientific workflow systems. We presented exam-
ples of using IWIR to model common data iteration strategies such as dot and cross product.
We showed two real-world case studies using two workflow applications designed in a na-
tive environment, translated to the IWIR bundle format, and executed by a foreign workflow
system in a foreign DCI. Additionally, we showed how workflow developers can employ

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

28 Kassian Plankensteiner et al.

the FGI architecture to cooperate, reuse, and share workflows across different, previously
incompatible workflow systems and DCIs. FGI is currently successfully supported by the
four pilot workflow systems that participate in the SHIWA project: ASKALON, MOTEUR,
WS-PGRADE and Triana.

Planned future work includes support for a wider range of technologies for CTR repre-
sentation, particularly virtual machine images for Cloud infrastructures. We also intend to
create a repository for CTRs. This repository can be used to create a one-to-many mapping
between abstract task types and concrete CTRs. An intended API that can be integrated into
workflow systems or converters allows for more flexibility in scheduling and optimization at
conversion time or even dynamically at runtime. Another area we want to target is research
on data annotation, starting with a simple semantic-enabled system that helps to better de-
scribe data consumed and produced by the concrete task representations. Additionally, we
work together with workflow communities and workflow system developers to identify open
issues and evolve IWIR to provide support for future requirements.

Acknowledgements The Austrian Science Fund project TRP 237-N23 and the European Union project
261585/SHIWA and funded this research.

References

1. Open Archives Initiative Object Reuse and Exchange (OAI-ORE). http://www.openarchives.org/
ore/.

2. Resource Description Framework (RDF) . http://www.w3.org/RDF/.
3. Simple Knowledge Organization System (SKOS), 2009. http://www.w3.org/TR/

skos-reference/.
4. SHIWA: SHaring Interoperable Workflows for large-scale scientific simulation on Available DCIs.

http://www.shiwa-workflow.eu, 2011.
5. Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough, Darren

Pulsipher, and Andreas Savva. Job Submission Description Language (JSDL) Specification, Version
1.0. Technical report, Global Grid Forum, November 2005.

6. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay, Jonathan Robie, and
Jérôme Siméon. XML Path Language (XPath) 2.0 (W3C Recommendation). Technical report, World
Wide Web Consortium, January 2007.

7. K.M. Chao, M. Younas, N. Griffiths, I. Awan, R. Anane, and CF Tsai. Analysis of Grid Service Compo-
sition with BPEL4WS. In Advanced Information Networking and Applications, 2004. AINA 2004. 18th
International Conference on, volume 1, pages 284–289. IEEE, 2004.

8. R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language. W3C Recommendation, 26, 2007. http://www.w3.org/TR/
wsdl20/.

9. James Clark and Steve DeRose. XML Path Language (XPath) 1.0 (W3C Recommendation). Technical
report, World Wide Web Consortium, 1999.

10. E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B. Berriman,
J. Good, et al. Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed
Systems. Scientific Programming, 13(3):219–237, 2005.

11. F. DeRemer and H.H. Kron. Programming-in-the-Large Versus Programming-in-the-Small. In Software
Engineering, IEEE Transactions on, number 2, pages 80–86. IEEE, 1976.

12. W. B. Dobrusky and T. B. Steel. Universal computer-oriented language. Commun. ACM, 4:138–, March
1961.

13. E. Elmroth, F. Hernández, and J. Tordsson. Three Fundamental Dimensions of Scientific Workflow
Interoperability: Model of Computation, Language, and Execution Environment. volume 26, pages 245–
256. Elsevier, 2010.

14. O. Ezenwoye, S. Sadjadi, A. Cary, and M. Robinson. Grid Service Composition in BPEL for Scientific
Applications. In On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS, pages 1304–1312. Springer, 2007. ISBN: 978-3-540-76889-0.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures 29

15. Thomas Fahringer, Radu Prodan, and et al. ASKALON: A Development and Grid Computing Environ-
ment for Scientific Workflows, chapter Frameworks and Tools: Workflow Generation, Refinement and
Execution. Workflows for e-Science. Springer Verlag, 2007.

16. Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and efficient workflow
deployment of data-intensive applications on grids with moteur. International Journal of High Perfor-
mance Computing Applications, 22(3):347–360, 2008.

17. Andrew Harrison, Dave Rogers, and Ian Taylor. SHIWA Desktop. SHIWA Deliverable D5.2, December
2010.

18. D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, et al. Web Services Business Process Execution Language Version 2.0. OASIS Standard, 11,
2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

19. Peter Kacsuk. P-GRADE portal family for grid infrastructures. Concurrency and Computation: Practice
and Experience, 23(3):235–245, March 2011.

20. F. Leymann. Choreography for the Grid: towards fitting BPEL to the resource framework. In Concur-
rency and Computation: Practice and Experience, volume 18, pages 1201–1217. Wiley Online Library,
2005. ISSN: 1532-0634.

21. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The JavaTMVirtual Machine Specifica-
tion, Java SE 7 Edition. Technical report, Oracle America, Inc., July 2011.

22. J. Merrill. GENERIC and GIMPLE: A new tree representation for entire functions. In Proceedings of
the 2003 GCC Developers’ Summit, pages 171–179, 2003.

23. Paolo Missier, Daniele Turi, Carole Goble, and et al. Taverna workflows: Syntax and semantics. In IEEE
International Conference on e-Science and Grid Computing, Dec 2007.

24. B.P. Model. Business Process Modeling Notation (BPMN) Version 2.0. OMG Specification, Object
Management Group, 2011. http://www.omg.org/spec/BPMN/2.0/.

25. Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari, and Mireille Blay Fornarino.
A data-driven workflow language for grids based on array programming principles. In Proceedings of
the 4th Workshop on Workflows in Support of Large-Scale Science, WORKS ’09, pages 7:1–7:10, New
York, NY, USA, 2009. ACM.

26. J. Nitzsche, T. Van Lessen, D. Karastoyanova, and F. Leymann. BPEL light. In Business Process
Management, 5th International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007,
Proceedings, Lecture Notes in Computer Science, pages 214–229. Springer, 2007. ISBN: 978-3-540-
75183-0.

27. Kassian Plankensteiner, Radu Prodan, Thomas Fahringer, Johan Montagnat, N. Cerezo, Dave Rogers,
Ian Harvey, Akos Balasko, and et al. Fine-grained interoperability architecture and case studies. SHIWA
Deliverable D6.2, March 2012.

28. Kassian Plankensteiner, Radu Prodan, Thomas Fahringer, Johan Montagnat, and et al. Interoperable
workflow intermediate representation. SHIWA Deliverable D6.1, December 2010.

29. A. Slominski. Adapting BPEL to Scientific Workflows. In Workflows for e-Science, pages 208–226.
Springer, 2007. ISBN: 978-1-84628-757-2.

30. W. Tan, P. Missier, I. Foster, R. Madduri, D. De Roure, and C. Goble. A Comparison of Using Taverna
and BPEL in Building Scientific Workflows: the case of caGrid. In Concurrency and Computation:
Practice and Experience, volume 22, pages 1098–1117. Wiley Online Library, 2009. ISSN: 1532-0634.

31. Ian Taylor, Matthew Shields, Ian Wang, and Rana Rana. Triana applications within Grid computing and
peer to peer environments. Journal of Grid Computing, 1(2), 2003.

32. B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and J. Patel. Sedna: A BPEL-Based
Environment for Visual Scientific Workflow Modeling. In Workflows for e-Science, pages 428–449.
Springer, 2007. ISBN: 978-1-84628-757-2.

33. Paul Damian Wells. A universal intermediate representation for massively parallel software development.
SIGPLAN Not., 39(5):48–57, May 2004.

34. W.P.D.I.X.M.L. WfMC. Process Definition Language (XPDL), WfMC Standards. Technical report,
WFMC-TC-1025, http://www. wfmc. org, 2001. http://www.wfmc.org/xpdl.html.

35. H. Zhang, X. Fan, R. Zhang, J. Lin, Z. Zhao, and L. Li. Extending BPEL 2.0 for Grid-Based Scientific
Workflow Systems. In Asia-Pacific Services Computing Conference, 2008. APSCC’08. IEEE, pages
757–762. IEEE, 2008.

ha
l-0

08
32

21
4,

 v
er

si
on

 1
 -

10
 J

un
 2

01
3

