
Akos Balasko
Zoltan Farkas
Peter Kacsuk

BUILDING SCIENCE GATEWAYS
BY UTILIZING THE GENERIC
WS-PGRADE/GUSE WORKFLOW SYSTEM

Abstract Enabling scientists to use remote distributed infrastructures, parametrize

and execute common science-domain applications transparently is actual and

a highly relevant field of distributed computing. For this purpose a general so-

lution is the concept of Science Gateways. WS-PGRADE/gUSE system offers

a transparent and web-based interface to access distributed resources (grids,

clusters or clouds), extended by a powerful generic purpose workflow editor

and enactment system, which can be used to compose scientific applications

into data-flow based workflow structures. It’s a generic web-based portal so-

lution to organize scientific applications in a workflow structure and execute

them on remote computational resources. As the portal defines nodes as black-

box applications uploaded by the users, it does not provide any application

specific interface by default. In this paper we show what kind of tools, APIs

and interfaces are available in WS-PGRADE/gUSE to customize it to have an

application specific gateway.

Keywords distributed computing, workflow systems, Science Gateway

2013/06/07; 00:13 str. 1/19

Computer Science • 14 (2) 2013 http://dx.doi.org/10.7494/csci.2013.14.2.307

307



1. Introduction

Science gateways are popular solutions to enable scientists to run commonly used

scientific applications with its own parametrization. Generally, science gateways are

connected to large computational and data resources to deal with long term or com-

putation intensive applications. The gateways provide a web interface, tailored to

the needs of the targeted community, and hide all complexity of the underlying sub-

systems. They focus on a specific scientific area by collecting its commonly used

applications. According to the user’s requirements, these applications can be exe-

cuted independently or they can be organized in a workflow structure. The main

advantages of the gateway solutions are the accessibility, the transparency, the cus-

tomizable interface, and the fact that they can minimize the user knowledge necessary

to run applications on distributed systems.

This paper is organized in the following way. Community requirements and

a taxonomy according to them are detailed in the Introduction, then we compare the

available solutions in the Related work. Section 3 is a short introduction about the

WS-PGRADE/gUSE system, in Section 4 we focus its customization tools, then in

Section 5 we show the results achieved and conclude the paper. Acknowledgements

end the paper.

1.1. Community requirements

Members of a scientific community can be organized in two groups. Normal scientists

would like to focus on their own research area, they have needs, but they don’t have the

time or capacity to learn techniques and processes that are completely different than

their interest. They would like to use scientific applications without bothering of their

local computer and caring about licences, all of complexity must be hidden from them.

Team of technical Supporters have the ability to identify the needs of Scientists, and to

fit needs with possible solutions. They are able to provide computational resources,

scientific applications that can be executed on them, and to share composition of

applications as workflows. In the followings to be able to compare the available

science gateway technologies, a basic taxonomy is introduced containing the most

important properties of a science gateway from the user’s point of view.

1.2. Taxonomy

According to the community requirements, three different aspects are identified: shar-

ing, because the users must know what is the benefit of using the gateway; complexity

of execution, to show that gateway provides scientific applications for simple execu-

tion, or complex composition of them; and interface, which can be created building

on the given gateway technology.

Sharing. Science Gateways provide access for community members to common hard-

ware resources and/or applications. Usually, these software are pre-installed on the

2013/06/07; 00:13 str. 2/19

308 Akos Balasko, Zoltan Farkas, Peter Kacsuk



infrastructure but they can come from another trusted machine (e.g. from a Repos-

itory or the Science Gateways itself). In most of the cases gateways provide access

to a shared distributed, HPC, or cloud infrastructures to let the scientists run their

measurements. The main advantage of sharing applications is to enable users to use

the set of applications, which has an institutional license, difficult interface, or large

computational requirements which makes it impossible to use them against large data

on a local machine.

Complexity. An application which is going to be shared can be a simple stand-alone

application, or a composition of these application organized in a workflow structure.

Since managing the execution of simple applications by the gateway is much easier

than enacting a complex applications’ workflow structure, therefore the gateways can

be separated according to the complexity of the execution management to Simple Job

and Workflow.

Interface. According to their interest and taste, communities have different demands

for a science gateway. In many cases communities are using a convenient and familiar

interface, and – besides they would like to feel the benefits of the new shared resources

and/or applications – they would not change it to learn a new one. To serve this case,

gateways should provide a solution to establish their functionalities with an existing

interface via a common and standardized way. In the classification we denote this

case as Existing. Some communities do not need to have a completely different and

specialized interface for each application, therefore a generic interface can be generated

automatically or semi-automatically. This case is called Automatic. The last class

defined contains gateways, which provide opportunity to customize or replace their

default user interface by a completely self-developed one, but opens an API to exploit

the system’s functionalities. These are called Fine-tuned gateways.

2. Related work

Science gateways can be developed in two ways. We can develop the whole framework

from scratch or we can use one of the available web-based portal solutions, which

provide tools or APIs to create a customized interface. An example of the first case

is CIG Seismology Web Portal [1] that enables seismologists to request seismograms

for any given earthquake, and simulates them on the Teragrid infrastructure. Much

more gateways were developed based on existing generic portal frameworks, because

in this way the duration of the development can be decreased, and such gateways

based on a highly supported framework are more sustainable.

As it is introduced in [2], EnginFrame is a generic cloud Portal that provides

access to Applications, Data, and the HPC compute farm (grid, cluster or cloud)

through a standard web browser, developed by NICE. It can be customized for specific

community needs, e.g. as it is described in [3], the framework was used to create

a community-used web-based interface on the top of iRods Data Grid. It is integrated

with different workflow engines [6] such as Taverna [4] or Kepler [5] to enable the users

2013/06/07; 00:13 str. 3/19

Building Science Gateways by utilizing . . . 309



to organize their applications in complex structures. Since it does not contain a native

workflow enactment system, in our taxonomy Enginframe is capable to submit jobs

only.

Vine Toolkit [7] provides a general set of extensible APIs written in JAVA to ease

creating web applications hiding real applications executed on distributed infrastruc-

tures for creating science gateways as is described in [8].

Another approach to build an interface that provides the basic functionality re-

quired for executing distributed applications is SAGA [9], which offers a standardized

programming interface without any GUI support needed to create an application-

domain science gateway. Since its just a specification, it is implemented in many

programming languages such as Python, C++ or JAVA.

The Lunarc Application Portal [10] provides easy access to grid resources for

commonly available applications like MATLAB. The portal provides easy to use forms

for each supported application where single and multiple jobs can be created and

submitted to the grid. Functions for controlling and monitoring jobs are also available.

GridSpace [11] offers a generalized interface for scientists to develop their scien-

tific applications and to execute them on a distributed system. Beside the framework

has a possibility of sharing applications (experiments in their terminology), and allows

the users to define an interface specifically for adding, typing, selecting or uploading

inputs for a new execution.

The DECIDE [12] science gateway is customized from the SAGA API. The sci-

ence gateway of the DECIDE project helps the early diagnosis and research on brain

diseases. MosGrid gateway [13], customized from the WS-PGRADE [14] portal frame-

work, aims to support users in all fields of simulation calculations. Users can access

data repositories,where information on molecular properties are stored then simula-

tion jobs can be submitted into the Grid. Moreover, the users are supported at the

analysis of their calculation results via a specific web-based interface.

Table 1 shows the evaluation of the frameworks and tools in our taxonomy. As it

can be seen, all of them provide an API to create application specific interface, the only

difference is the abstraction level of these APIs. As Vine Toolkit and SAGA support

JSDL job submission, they can be used for existing interfaces, however, they don’t

contain possibilities for native workflow enactment (Kepler is connected to them).

None of them has the facility to generate interface automatically, developers must

create, compile and deploy interfaces by hand for each.

In this paper we are focusing on the generic purpose workflow management sys-

tem WS-PGRADE portal. The SCI-BUS FP7 project aims to serve scientific commu-

nities around Europe by demand-specific science gateways based of WS-PGRADE.

On this score, and as this generic purpose portal framework contains various func-

tionalities, it is ideal to extend it with a customization tool so that each gateway

could fit its own community’s requirements. In this paper we show what possibili-

ties, interfaces are available in WS-PGRADE to be able to convert it into a science

gateway.

2013/06/07; 00:13 str. 4/19

310 Akos Balasko, Zoltan Farkas, Peter Kacsuk



Table 1

Evaluation of frameworks against the taxonomy.

Sharing
Execution

management
Interface Framework

H
a
rd

w
a
re

S
o
ft

w
a
re

S
im

p
le

J
o
b

W
o
rk

fl
ow

E
x
is

ti
n
g

A
u
to

m
a
ti

c

F
in

e-
tu

n
ed

3 3 3 EnginFrame

3 3 3 3 3 Vine Toolkit

3 3 3 3 3 SAGA

3 3 3 3 3 LUNARC Application portal

3 3 3 3 3 GridSpace

3. WS-PGRADE/gUSE – general introduction

WS-PGRADE portal based on the gUSE (grid User Support Environment) service

set is the second generation P-GRADE portal that introduces many advanced fea-

tures both at the workflow and architecture level compared to the first generation

P-GRADE portal [14]. The major lesson we learnt from the usage of the P-GRADE

portal was that there are different kinds of user communities and they require dif-

ferent kind of user interfaces to reach various types of DCIs. Based on this lesson

the whole concept of the P-GRADE portal was redesigned and a multi-tier service

architecture was being developed that can support various user types and various

DCIs. The Architectural tier enables access to many different kinds of DCIs through

the DCI Bridge job submission service as shown in Figure 1.

The DCI Bridge is a web service based application that provides standard access

to various distributed computing infrastructures (DCIs) such as: grids, desktop grids,

clusters, clouds and service based computational resources (it connects through its

DCI plug-ins to the external DCI resources). When a user submits a workflow, its job

components can be submitted transparently into the various DCI systems using the

OGSA Basic Execution Service 1.0 (BES) interface. As a result, the access protocol

and all the technical details of the various DCI systems are totally hidden behind the

BES interface. The standardized job description language of BES is JSDL.

The Middle tier contains those high level gUSE services that enable the manage-

ment, storing and execution of workflows.

In the regard of the focus of this paper we must mention that gUSE contains

a component called Repository to allow users to share workflows within the portal

internally. During this sharing process, users can set read-only permissions for any

property of a workflow configuration, which means that others, who import the work-

2013/06/07; 00:13 str. 5/19

Building Science Gateways by utilizing . . . 311



flow, cannot modify them. In the terminology of gUSE this kind of workflows are

called templates.

Finally, the Presentation tier provides the graphical WS-PGRADE user interface

of the generic DCI gateway framework. This layer can be easily customized and

extended according to the needs of the science gateway to be derived from WS-

PGRADE/gUSE.

Figure 1. Multi-tier architecture of WS-PGRADE/gUSE.

WS-PGRADE/gUSE system extends the DAG-based workflow concept with ad-

vanced parameter study features through special workflow entities, (generator and col-

lector jobs, parametric files), condition-dependent workflow execution and workflow

embedding support, moreover it extends the concrete workflow concept of P-GRADE

with new concepts and objects like graph (abstract workflow), workflow instance,

template, application and project.

Among the WS-PGRADE/gUSE design concepts another important requirement

was to enable the simultaneous handling of a very large number of jobs even in the

range of millions without compromising the response time at the user interface. In

order to achieve this level of concurrency of job handling the workflow management

back-end of WS-PGRADE portal is implemented on the Service Oriented Architec-

ture (SOA) concept and is supported by gUSE and with the DCI Bridge service as

shown in Figure 1. gUSE is a set of services with well-defined interface protocols to

realize the workflow management back-end of the WS-PGRADE portal. Since the

workflow concept of WS-PGRADE is much more sophisticated than in the P-GRADE

the Condor DAGMan workflow engine is replaced with a newly developed workflow

engine, called as Zen, which can manage very large number of job executions. Further

information about the complete system, its structure and its functioning is published

in [15], while publication [16] introduces the DCI-Bridge component in detail.

2013/06/07; 00:13 str. 6/19

312 Akos Balasko, Zoltan Farkas, Peter Kacsuk



Opportunities available for the system to be able to customize it to a Science

Gateway are concluded and evaluated in Table 2. An integrated possibility for cus-

tomization and dynamic interface generalization is called End User Interface; com-

pletely new interfaces which exploit functionalities (e.g. workflow submission) of gUSE

can be developed with using Application Specific Module (ASM). Remote API is for

submitting and enacting workflows from client-side. And as DCI-Bridge implements

a standard BES interface, it can be invoked externally for executing a job.

Table 2

Evaluation of WS-Pgrade against the taxonomy.

Sharing
Execution

management
Interface Framework

H
a
rd

w
a
re

S
o
ft

w
a
re

S
im

p
le

J
o
b

W
o
rk

fl
ow

E
x
is

ti
n
g

A
u
to

m
a
ti

c

F
in

e-
tu

n
ed

3 3 3 DCI-Bridge

3 3 3 Remote API

3 3 3 3 End-User Interface

3 3 3 3 ASM

4. Customization interfaces of WS-PGRADE/gUSE

Science gateways based on WS-PGRADE/gUSE can serve different demands, ac-

cording to the community requirements about the computation power needed, the

complexity of the applications to be submitted and the specificity of the interface to

fit the community needs and to meet its terminology. If the community needs just

a generic, but simple interface, WS-PGRADE/gUSE can be tailored automatically

for each application by setting it to the End-User Mode (detailed in 4.1). If the

community would like to have a completely new web-based interface, they can use

an Application Specific Module to develop a portlet connected to the core system

to access and use the applications defined there previously. This concept hides all

default interfaces of WS-PGRADE/gUSE from the users. Subsection 4.2 details this

possibility.

The next scenario is if the community has a conventional interface, but they would

like to use the workflow management and execution system of WS-PGRADE/gUSE.

In this case they can use Remote API detailed in 4.3. The last one, where the com-

munity would like to extend their computational possibilities with other middlewares

to submit particular jobs to be executed. This scenario is covered by the standard

interface of the DCI Bridge detailed in 4.4.

2013/06/07; 00:13 str. 7/19

Building Science Gateways by utilizing . . . 313



4.1. Generate interface for a workflow

In most cases applications do not require specific interfaces (e.g. a visualizer, or

external tools for adding inputs), therefore the most common functionalities can be

identified in a general case. Besides, because of the structure of the workflow all

input fields are known exactly by the system, a generic interface can be created

automatically to be able to modify these fields and to manage the workflow execution.

This interface is called as the End User Interface of WS-PGRADE, which enables

modifying some basic properties of already existing workflows by hiding most of the

workflows’ details.

In this solution users are not allowed to create new workflows, but they have

access to the local repository to import already developed workflows. After import-

ing a shared workflow, the generic End User Interface will generate an interface dy-

namically based on the imported workflow’s different properties with read and write

permission.

Figure 2 illustrates an End User interface generated for a workflow shown on its

left hand side. Its first job has 5 input ports, 4 of them are set to be modifiable,

therefore the interface generates four input fields for file upload (receptor.pdb, dock-

ing.pdb, docking.gpf, ligand.pdb). Besides this, and the last job requires a number

as command line argument for which two extra input fields are generated (number of

work units, maximum number of best results).

Figure 2. End User interface generated for AutoDock application.

As is shown in Figure 3, the auto-generated interface is an integrated feature in

WS-GRADE, it can be enabled by configuration of the portal itself, and it does not

require any programming skills by the developers or by the portal administrators to

be able to have an application specific Science Gateway.

2013/06/07; 00:13 str. 8/19

314 Akos Balasko, Zoltan Farkas, Peter Kacsuk



Figure 3. Structure of EndUser mode in the WS-PGrade.

4.2. Customize interface for a workflow

4.2.1. Concept

Users of WS-PGRADE define their applications as workflows. They can share their

applications among each other by exporting them to the repository. Following this

way, other users can import such applications and execute or modify them in their

user space. Concept of Application Specific Module (ASM) that solves the problem

of customization is based on this scenario. In this case two different user roles can be

defined: the Application Developer, who created and shared the application, and the

End Users, who import and execute it. Or analogously, Application Developers are

administrators, or scientists with developer skills; and the End Users are those, who

just use their product.

Using this solution development of science gateways technically means the de-

velopment of web applications that produce a transparent interface, handle the inter-

action coming from the users, and, according to them, call the internal components.

This calling mechanism is simplified by ASM as it hides complex algorithms and web-

service calls and provides these functionalities as simple Java methods covering the

whole life-cycle of the workflow in aspect of End Users. ASM contains a method to get

the list of Application Developers, the applications shared by a particular Developer,

and to import a particular workflow.

To guarantee that the workflow will do the same that the Developer wanted orig-

inally, End Users have restricted possibilities to manipulate the workflow. Especially

they cannot modify the workflow structure by adding or removing a node, or they

cannot replace the program placed in a node, but they can upload and attach a new

input file, set or modify command line arguments, etc.

Finally, End Users can manage the workflows; they can submit them to a dis-

tributed resource, check the execution, download their outputs or delete them.

2013/06/07; 00:13 str. 9/19

Building Science Gateways by utilizing . . . 315



gUSE can be extended with an interface that hides the complexity of the inner

abstraction levels, and inner callings of different core services. Without this compo-

nent, one or more difficult web-service callings should be constructed each time when

a customized portlet should get or pass information from/to the portal. In order

to avoid this complexity Application Specific Module(ASM) API covers all of these

internal information accesses by a simple call of well-parametrized JAVA methods.

Figure 4. Concept of ASM.

4.2.2. API

The functionalities provided by ASM can be separated into three different subsets:

(i) methods covering application management issues, (ii) methods that can be used

for input/output manipulation and (iii) methods to handle user activities during

execution such as aborting or rescuing applications. According to this classification,

methods are detailed in Table 3.

Within the set of methods for application management, as it is shown in the first

part of the table, there are several methods available for getting information from

workflows stored in the local repository: getting a list of application developers, get-

ting list of applications according to a specified developer id, importing an application

to local user space and getting a list of applications that have already been imported.

The set of Input/Output Manipulation covers various methods, shown in the

middle part on the table, to handle different input cases such as uploading a file to

a specified port, setting a file that is currently exists on the portal server, or setting

command-line parameters for a job. Some methods of this set contain possibilities to

fetch the outputs of the calculations.

The set of Execution methods contains methods not only for workflow submission,

but for many other activities like methods for getting workflow execution status in

simple or in detailed format, for aborting or for rescuing a workflow. These methods

are detailed in third part of the table.

2013/06/07; 00:13 str. 10/19

316 Akos Balasko, Zoltan Farkas, Peter Kacsuk



T
a
b

le
3
.

C
o
m

m
o
n

m
et

h
o
d
s

o
f

A
S
M

A
P

I.

F
u
n
c
t
io

n
s

P
a
r
a
m

e
t
e
r
s

R
e
t
u
r
n

v
a
lu

e
s

D
e
s
c
r
ip

t
io

n

g
e
t
W

o
r
k
fl

o
w

D
e
v
e
lo

p
e
r
s

t
y
p
e
:

e
n
u
m

e
r
a
t
io

n
,

p
o
s
s
ib

le
v
a
lu

e
s

a
r
e

“
A

p
p
li

c
a
t
io

n
”
,

“
W

o
r
k
fl

o
w

”
,

“
G

r
a
p
h
”

A
r
r
a
y

o
f

S
t
r
in

g
s

G
e
t
s

t
h
e

li
s
t

o
f

a
p
p
li

c
a
t
io

n
d
e
v
e
lo

p
e
r
s

t
h
a
t

h
a
v
e

e
x
p
o
r
t
e
d

a
t

le
a
s
t

o
n
e

a
p
p
li

c
a
t
io

n
t
o

t
h
e

g
U

S
E

A
p
p
li

c
a
t
io

n
r
e
p
o
s
it

o
r
y

in
t
h
e

g
iv

e
n

t
y
p
e

g
e
t
A

S
M

W
o
r
k
fl

o
w

s
S
t
r
in

g
u
s
e
r
Id

L
is

t
o
f

A
S
M

W
o
r
k
fl

o
w

o
b

je
c
t
s

R
e
t
u
r
n
s

a
li

s
t

o
f

a
p
p
li

c
a
t
io

n
s

h
a
s

b
e
e
n

a
lr

e
a
d
y

im
p
o
r
t
e
d

b
y

t
h
e

u
s
e
r

id
e
n
t
if

ie
d

b
y

u
s
e
r
Id

Im
p
o
r
t
W

o
r
k
fl

o
w

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
n
e
w

W
o
r
k
fl

o
w

N
a
m

e
,

S
t
r
in

g
d
e
v
e
lo

p
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

T
y
p
e
,

S
t
r
in

g
w

o
r
k
fl

o
w

N
a
m

e

V
o
id

Im
p
o
r
t
s

a
n

a
p
p
li

c
a
t
io

n
(
id

e
n
t
if

ie
d

b
y

w
o
r
k
fl

o
w

N
a
m

e
)

e
x
p
o
r
t
e
d

b
y

d
e
v
e
lo

p
e
r
Id

,
fr

o
m

t
h
e

g
U

S
E

A
p
p
li

c
a
t
io

n
r
e
p
o
s
it

o
r
y

t
o

s
p
a
c
e

o
f

u
s
e
r
Id

.

T
h
e

a
p
p
li

c
a
t
io

n
w

il
l

b
e

n
a
m

e
d

a
s

n
e
w

W
o
r
k
fl

o
w

N
a
m

e
.

D
e
le

t
e
W

o
r
k
fl

o
w

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
V

o
id

R
e
m

o
v
e
s

t
h
e

w
o
r
k
fl

o
w

c
a
ll

e
d

w
o
r
k
fl

o
w

Id
fr

o
m

s
p
a
c
e

o
f

u
s
e
r
Id

.

g
e
t
F

il
e
t
o
P

o
r
t
a
lS

e
r
v
e
r

u
s
e
r
Id

,
w

o
r
k
fl

o
w

Id
,

jo
b
Id

,
p
o
r
t
Id

V
o
id

D
o
w

n
lo

a
d
s

t
h
e

fi
le

a
s
s
o
c
ia

t
e
d

t
o

t
h
e

p
o
r
t
Id

o
f

jo
b
Id

c
o
n
t
a
in

e
d

b
y

w
o
r
k
fl

o
w

Id
,

t
o

t
h
e

p
o
r
t
a
l

s
e
r
v
e
r
.

u
p
lo

a
d
F

il
e
t
o
P

o
r
t
a
lS

e
r
v
e
r

F
il

e
It

e
m

fi
le

,
u
s
e
r
Id

,
fi

le
N

a
m

e
V

o
id

U
p
lo

a
d
s

fi
le

t
o

a
t
e
m

p
o
r
a
r
y

s
p
a
c
e

o
f

u
s
e
r
Id

a
n
d

n
a
m

e
s

it
fi

le
N

a
m

e
.

p
la

c
e
U

p
lo

a
d
e
d
F

il
e

S
t
r
in

g
u
s
e
r
Id

,
F

il
e

fi
le

O
n
P

o
r
t
a
lS

e
r
v
e
r
,

S
t
r
in

g

w
o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,
S
t
r
in

g
p
o
r
t
Id

V
o
id

A
s
s
o
c
ia

t
e

t
h
e

fi
le

t
h
a
t

h
a
s

b
e
e
n

a
lr

e
a
d
y

u
p
lo

a
d
e
d

t
o

p
o
r
t
a
l

s
e
r
v
e
r
,

t
o

t
h
e

p
o
r
t
Id

o
f

jo
b
Id

c
o
n
t
a
in

e
d

b
y

w
o
r
k
fl

o
w

Id
.

g
e
t
R

e
m

o
t
e
In

p
u
t
P

a
t
h

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
p
o
r
t
Id

S
t
r
in

g
R

e
t
u
r
n
s

t
h
e

c
u
r
r
e
n
t

r
e
m

o
t
e

in
p
u
t

p
a
t
h

a
s
s
o
c
ia

t
e
d

t
o

a
s
p
e
c
if

ie
d

jo
b

a
n
d

p
o
r
t
.

s
e
t
R

e
m

o
t
e
In

p
u
t
P

a
t
h

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
p
o
r
t
Id

,
S
t
r
in

g
n
e
w

R
e
m

o
t
e
P

a
t
h

V
o
id

S
e
t
s

r
e
m

o
t
e

in
p
u
t

p
a
t
h

t
o

n
e
w

R
e
m

o
t
e
P

a
t
h

fo
r

p
o
r
t
Id

o
f

jo
b
Id

c
o
n
t
a
in

e
d

b
y

w
o
r
k
fl

o
w

Id
.

g
e
t
R

e
m

o
t
e
O

u
t
p
u
t
P

a
t
h

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
p
o
r
t
Id

S
t
r
in

g
R

e
t
u
r
n
s

t
h
e

a
c
t
u
a
l

r
e
m

o
t
e

in
p
u
t

p
a
t
h

a
s
s
o
c
ia

t
e
d

t
o

a
s
p
e
c
if

ie
d

jo
b
/
p
o
r
t
.

s
e
t
R

e
m

o
t
e
O

u
t
p
u
t
P

a
t
h

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
p
o
r
t
Id

,
S
t
r
in

g
n
e
w

R
e
m

o
t
e
P

a
t
h

V
o
id

S
e
t
s

t
h
e

r
e
m

o
t
e

in
p
u
t

p
a
t
h

a
c
c
o
r
d
in

g
t
o

t
h
e

s
t
r
in

g
a
d
d
e
d

a
s

p
a
r
a
m

e
t
e
r
.

g
e
t
C

o
m

m
a
n
d
L

in
e
A

r
g

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

S
t
r
in

g
R

e
t
u
r
n
s

t
h
e

a
c
t
u
a
l

c
o
m

m
a
n
d

li
n
e

a
r
g
u
m

e
n
t

s
e
t

fo
r

jo
b
Id

o
f

w
o
r
k
fl

o
w

Id
.

s
e
t
C

o
m

m
a
n
d
L

in
e
A

r
g

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
c
o
m

m
a
n
d
li

n
e

V
o
id

S
e
t
s

c
o
m

m
a
n
d

li
n
e

a
r
g
u
m

e
n
t

fo
r

jo
b
Id

o
f

w
o
r
k
fl

o
w

Id
.

g
e
t
R

e
s
o
u
r
c
e

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

A
S
M

R
e
s
o
u
r
c
e
B

e
a
n

R
e
t
u
r
n
s

t
h
e

c
u
r
r
e
n
t

r
e
s
o
u
r
c
e

t
o

w
h
e
r
e

t
h
e

jo
b

is
b
e
in

g
s
u
b
m

it
t
e
d
.

s
e
t
R

e
s
o
u
r
c
e

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

S
t
r
in

g
t
y
p
e
,

S
t
r
in

g
g
r
id

,
S
t
r
in

g
r
e
s
o
u
r
c
e
,

S
t
r
in

g
q
u
e
u
e

V
o
id

S
e
t
s

a
r
e
s
o
u
r
c
e

s
p
e
c
if

ie
d

b
y

g
r
id

,
r
e
s
o
u
r
c
e

a
n
d

q
u
e
u
e
.

g
e
t
N

o
d
e
N

u
m

b
e
r

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

S
t
r
in

g
R

e
t
u
r
n
s

t
h
e

v
a
lu

e
o
f

t
h
e

r
e
q
u
ir

e
d

n
u
m

b
e
r

o
f

n
o
d
e
s

if
t
h
e

g
iv

e
n

jo
b

is

a
n

M
P

I
jo

b
.

s
e
t
N

o
d
e
n
u
m

b
e
r

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
,

S
t
r
in

g
jo

b
Id

,

in
t

n
o
d
e
n
u
m

b
e
r

V
o
id

S
e
t
s

t
h
e

n
u
m

b
e
r

o
f

t
h
e

r
e
q
u
ir

e
d

n
o
d
e
s

t
o

n
o
d
e
n
u
m

b
e
r

fo
r

jo
b
Id

.

g
e
t
D

e
t
a
il

s
S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
W

o
r
k
fl

o
w

In
s
t
a
n
c
e
B

e
a
n

R
e
t
u
r
n
s

d
e
t
a
il

e
d

s
t
a
t
u
s
e
s

o
f

e
a
c
h

jo
b

o
f

w
o
r
k
fl

o
w

Id
t
h
a
t

is
b
e
in

g

s
u
b
m

it
t
e
d
.

s
u
b
m

it
S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
V

o
id

S
u
b
m

it
s

a
p
p
li

c
a
t
io

n
n
a
m

e
d

w
o
r
k
fl

o
w

Id
.

r
e
s
c
u
e

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
A

S
M

S
e
r
v
ic

e
R

e
s
c
u
e
s

a
n

a
p
p
li

c
a
t
io

n
n
a
m

e
d

w
o
r
k
fl

o
w

Id

a
b
o
r
t

S
t
r
in

g
u
s
e
r
Id

,
S
t
r
in

g
w

o
r
k
fl

o
w

Id
A

S
M

S
e
r
v
ic

e
A

b
o
r
t
s

t
h
e

a
p
p
li

c
a
t
io

n
n
a
m

e
d

w
o
r
k
fl

o
w

Id

2013/06/07; 00:13 str. 11/19

Building Science Gateways by utilizing . . . 317



As portlets in general are deployed in portlet containers that supervise the most

common user activities and manage user sessions, ASM does not have to provide any

security feature with the exception of issues related to the underlying infrastructures

and complex systems. To provide these, ASM uses inner-level solutions of gUSE

requiring proxy certificates. These certificates will be created and used with the help

of dedicated Certificate portlets by the end-users who – similarly to the members of

other user groups – have account to the portal.

4.3. Using own interface to execute a workflow

4.3.1. Concept

gUSE system can be extended to let the community send a complete workflow via

HTTP protocol circumventing the original WS-PGRADE interface. Technically this

extension is a new web-service component called Remote API, which should be de-

ployed to the portal server, and be registered among the general gUSE components.

Detailed structure is shown on Figure 5.

Figure 5. Structure of remote access of gUSE.

In this solution, members of a community do not have to register to the WS-

PGRADE portal, namely they don’t have to have a valid user account on the portal.

It means that they can not develop their own workflow, they have to use workflows

that were developed previously in a general way by valid portal users, and all the

workflows must be available on the client machine.

If the workflow nodes are going to be executed on a DCI, which requires au-

thentication (username and password in the case of clusters, or X509 user proxies

for grids), it must be present on the client machine as well, next to the workflow

(structure, binaries and its inputs).

As the users are unauthenticated in the portal’s view, the API call creates a new

temporary user before every execution, and the workflow will be submitted on behalf

2013/06/07; 00:13 str. 12/19

318 Akos Balasko, Zoltan Farkas, Peter Kacsuk



of this temporary user. After downloading the outputs of the workflow, this tempo-

rary user and all of its joint files and database rows are erased. It shows the main

disadvantage of this solution, since the users’ execution are not stored on the portal,

the users cannot retrieve outputs which have already been downloaded once.

As it would be really insecure to open a servlet for connection from anywhere,

the clients need to know a password set previously with the server to establish the

connection.

4.3.2. Provided functionalities

Remote API is implemented as a simple servlet, in the followings we describe its

available functions and their parametrization.

We assume that a complete workflow including its binaries and inputs is placed

on the client machine from where the execution is going to be started. In the original

folder structure each job has its own folder named as the job itself containing the

executable named as “executable.bin” (since all executable called like this, resolving

naming conflicts is required) and inputs in the following structures: inputs/portNum-

ber/number, where “inputs” is a static text, portNumber is the number of the given

port set in the workflow structure, and the number started from zero will store the

exact file, or (that’s why it is numbered) a set of files. One more thing to do is to move

the workflow’s inputs and executables into one folder and compress them into a zip

archive. Then, we need to create a file and define the concrete mappings between the

files and the entities (port association or jobs’ executables) in the workflow structure.

It is a simple text file, which contains key/value pairs separated by newlines, in the

following format:

• If the file is an input file: inputfilename=workflowName/jobName/portNumber.

• If the file is an executable: exename=workflowName/jobName.

Finally, we have to have files for authentication if the target computational re-

sources require this, and compress them into a particular file (e.q. certs.zip).

Table 4 shows the possible functions and their parameters required from the

users. Technically each call of Remote API means to call the servlet itself, but with

different parametrization. Parameter “m” defines the method itself, the next one is

the password agreed between the server and the client, “id” denotes the identifier

of the workflow submitted, “wfdesc” means a file notation to the description of the

workflow structure, “inputzip” does it with the compressed inputs, “portmapping”

with the mapping file and “certs” with the compressed file of the authentication files.

To show using Remote API in practice, we use a Linux-based application called

cURL, which implements HTTP protocol and capable to call servlets from console.

For instance a workflow submission using cURL, if gUSE extended by Remote API

is available on http://my.own.guse.hu/remote; we agree in the password string

“password”; the workflow structure is stored in workflow.xml; inputs are compressed

in inputs.zip; mappings are described in portmapping.txt; files of authentication are

collected in certs.zip; looks like this:

2013/06/07; 00:13 str. 13/19

Building Science Gateways by utilizing . . . 319



T
a
b

le
4
.

F
u
n
ct

io
n
s

p
ro

v
id

ed
b
y

th
e

R
em

o
te

A
P

I.

P
a
ra

m
et

er
s

F
u
n
ct

io
n
s

Submission

Status

Information

Detailed

Status

Information

Suspend

Rescue

Abort

Download

m
su

b
m

it
in

fo
d
et

a
il
si

n
fo

su
sp

en
d

re
sc

u
e

st
o
p

d
ow

n
lo

a
d

p
a
ss

3
3

3
3

3
3

3
id

3
3

3
3

3
3

w
fd

es
c

3
in

p
u
tz

ip
3

p
o
rt

m
a
p
p
in

g
3

ce
rt

s
‽

‽
R

et
u
rn

v a
lu

e

w
o
rk

fl
ow

id
en

ti
fi
er

W
o
rk

fl
ow

S
ta

tu
s:

su
b
m

it
te

d
;

ru
n
n
in

g
;

fi
n
is

h
ed

;

er
ro

r;

su
sp

en
d
ed

;

n
o
t

va
li
d

d
a
ta

W
o
rk

fl
ow

S
ta

tu
s;
∀

jo
b

∈
N

o
d
es

:

jo
b
:i
n
it

=
A

;

ru
n
n
in

g
=

B
;

fi
n
is

h
ed

=
C

;

er
ro

r=
D

T
R

U
E

o
r

F
A

L
S
E

T
R

U
E

o
r

F
A

L
S
E

T
R

U
E

o
r

F
A

L
S
E

A
zi

p
fi
le

th
a
t

co
n
ta

in
s

th
e

o
u
tp

u
t

a
n
d

lo
g

fi
le

s

2013/06/07; 00:13 str. 14/19

320 Akos Balasko, Zoltan Farkas, Peter Kacsuk



curl -k -F m=submit -F pass=password -F wfdesc=@workflow.xml -F

inputzip=@inputs.zip -F portmapping=@portmapping.txt -F certs=@certs.zip

http://my.own.guse.hu/remote

4.4. Using own interface to submit jobs

Let us assume that our community does not need any workflow to have, therefore they

do not require a complete workflow management system. However, they have a couple

of single scientific applications used as frequently as they need more computational

power for serving the grown load. To extend existing resource set for a single job

submission, a component of the WS-PGRADE/gUSE system called DCI Bridge can

be used, which provides a standard interface to submit jobs into different middlewares

transparently.

4.4.1. Concept

DCI Bridge accepts standardized JSDL job description documents. These documents

are based on a well-defined XML scheme containing information about the job inputs,

binaries, runtime settings and output locations. The core JSDL itself is not powerful

enough to fit all needs but fortunately it has a number of extensions. For example,

DCI Bridge makes use of the JSDL-POSIX extension.

Figure 6. Structure of native access of DCI-Bridge.

Besides the JSDL-POSIX extension, DCI Bridge makes use of two legacy exten-

sions: one for defining execution resources and one for proxy service and callback

service access. The execution resource extension is needed both for the core DCI

Bridge in order to define specific execution resource needs and for the Metabroker

service. The proxy service extension is needed for jobs targeted to DCIs which rely

2013/06/07; 00:13 str. 15/19

Building Science Gateways by utilizing . . . 321



on X.509 proxy certificates for job submission. The callback service extension is re-

quired if status change callback functionality is needed: the DCI Bridge will initiate

a call to the service specified in the extension upon every job status change.

User credential handing of DCI Bridge is based on content-based approach instead

of a channel-based one. This means that user credentials (proxies or SAML assertions)

are not handled by the communication channel, but are rather specified in the JSDL

extension mentioned earlier. This approach allows DCI Bridge to implement various

DCI-dependent credential handling options within the different DCI plugins instead

of relying on the capabilities of the servlet container running the DCI Bridge service.

4.4.2. Functionalities

To communicate with DCI-Bridge in a native way, we need to implement an interface

to invoke DCI-Bridge service via BES interface, an other to provide certificates, and

one for retrieving statuses of the jobs submitted. Sample interface implementations

are detailed in the Developer Cookbook of the WS-PGRADE available on the portal’s

Sourceforge page [17].

5. Results and conclusions

As results we can show some available science gateway operating for different commu-

nities based on solutions developed for WS-PGRADE. Swiss Grid Proteomics gateway

was developed in cooperation between ETH Zurich, SystemsX and MTA SZTAKI and

its recent version is based on WS-PGRADE and the ASM concept. HP-SEE Portal

[18] also uses functions of ASM and with its help it provides a science gateway for

bio-informatics with an application called DiseaseGene which makes an in-silico map-

ping between the genes coming from the different model animals and searches for

unexplored potential target genes. In an ongoing project SCI-BUS, VisIVO applica-

tion uses Remote API to submit complete workflows to be executed on gLite-based

resources, to create customized views of 3D renderings from astrophysical data tables

from mobile devices [19, 20, 21]. Industrial partner 4DSoft uses native DCI-Bridge

interface for infrastructure testing purposes. End User interface is used in AutoDock

[22] portal to allow bio-scientists to run molecular docking simulations powered by

the EDGeS@home volunteer desktop grid.

To demonstrate the adoptability and the flexibility of WS-PGRADE/gUSE sys-

tem extended by the customizing possibilities shown in this paper, we can show

some of the science gateway installations focusing on the different middlewares they

are connected to. Since the core portal solution supports many middlewares, large

variety of resources can be connected to a science gateway that is based on WS-

PGRADE/gUSE. For instance Swiss Grid Proteomics gateway uses PBS clusters to

execute applications, HP-SEE Portal serves its users by providing access to resources

via ARC middleware for execution. MosGrid Science gateway [23] based on WS-

PGRADE/gUSE is connected to a UNICORE-based distrubuted infrastructure. All

of these connections are covered by the core portal solution, therefore the developers

2013/06/07; 00:13 str. 16/19

322 Akos Balasko, Zoltan Farkas, Peter Kacsuk



of the gateway can focus on the interface itself, they do not take care of accessing the

underlying infrastructure.

In this paper we presented interfaces, APIs, internal and external tools developed

for WS-PGRADE to open it for customization to create a science gateway instance.

We set up a basic taxonomy for comparing different science gateway tool sets and

APIs, then we showed how can gUSE/WS-PGRADE serve all possible requirements

by providing easy-to-use and generic interfaces to use.

Acknowledgements

The research leading to these results has partially been supported by the European

Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agree-

ment no 283481 (SCI-BUS).

References

[1] https://geodynamics.org/portals/seismo/ (accessed at 10.11.2012)

[2] Torterolo L, Porro I et al: Building Science Gateways with EnginFrame: a Life

Science example. Proc. of International Workshop on Portals for Life Sciences,

Edinburgh, United Kingdom, September 14–15, 2009.

[3] Venuti N., Torterolo L. et al: A Service-Oriented Interface to the iRODS Data

Grid. Proc. of the International Worshop on Science Gateways, Catania, Italy,

September 20–21, 2010.

[4] Hull D., Wolstencroft K. et al: Taverna: a tool for building and running workflows

of services. Nucleic Acids Research, p. 34, 729–732, 2006.

[5] Ludäscher B., Altintas I. et al: Scientific workflow management and the Kepler

system: Research Articles. Concurrency and Computation: Practice and Experi-

ence, 18(10): 1039–1065, 2006.

[6] Bartocci E, Cacciagrano D et al.: A Grid infrastructure for managing workflows

in bioinformatics applications. Proc. of the NETTAB2006, Santa Margherita,

pp. 38–44. 2006.

[7] Dziubecki P., Grabowski P. et al: Easy Development and Integration of Science

Gateways with Vine Toolkit. Journal of Grid Computing, pp. 1–15, 26 October

2012.

[8] Dziubecki P. et al: Nano-Science Gateway development with Vine Toolkit and

Adobe Flex. Proc. of the International Worshop on Science Gateways, Catania,

Italy, 2010.

[9] Goodale T., Jha S. et al: SAGA: A Simple API for Grid Applications. Compu-

tational Methods in Science and Technology, 12(1): 7–20, 2008.

[10] Lindemann J., Sandberg G.: An extendable GRID application portal. Advances

in Grid Computing-EGC 2005, pp. 322–325, 2004.

2013/06/07; 00:13 str. 17/19

Building Science Gateways by utilizing . . . 323



[11] Guba la T., Bubak M.: GridSpace – Semantic Programming Environment for

the Grid. Parallel Processing and Applied Mathematics. vol. 3911, p. 172–179,

Springer Berlin Heidelberg, 2006.

[12] Ardizzone V., Barbera R. et al: The DECIDE Science Gateway. Journal of Grid

Computing, pp. 1–19, 2011.

[13] S. Gesing, I. Márton, et al.: Workflow Interoperability in a Grid Portal for Molec-

ular Simulations. Proc. of the International Worshop on Science Gateways, Cata-

nia, Italy, September 20–21, 2010

[14] Kacsuk P.: P-GRADE portal family for Grid infrastructures. Concurrency and

Computation: Practice and Experience, vol. 23, issue 3, pp. 235–245, 2012.

[15] Kacsuk P., Farkas Z. et al.: WS-PGRADE/gUSE Generic DCI Gateway Frame-

work for a Large Variety of User Communities. Journal of Grid Computing, vol. 9,

no. 4, pp. 479–499, 2012.

[16] Kozlovszky M., Karoczkai K. et al: Enabling generic distributed computing in-

frastructure compatibility for workflow management systems. Computer Science,

vol. 13, pp. 61–79, 2012.

[17] gUSE portal package and source code: http://sourceforge.net/projects/

guse/ (accessed at 19.08.2012)

[18] HP-SEE Portal:

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5

(accessed at 19.08.2012)

[19] Becciani U., Costa A. et al: VisIVO: A Library and Integrated Tools for Large

Astrophysical Dataset Exploration. Astronomical Data Analysis Software and Sys-

tems vol. 461, pp. 505, 2012.

[20] Massimino P., Bandieramonte M. et al: Learning Astrophysics through Mobile

Gaming. Astronomical data analysis software and systems XXII, Astronomical

Society of the pacific, 2012

[21] Costa A., Becciani U. et al: VisIVOWeb: A WWW Environment for Large-

Scale Astrophysical Visualization. Publications of the Astronomical Society of

the Pacific, vol. 123, issue 902, pp. 503–513, 2011.

[22] Autodock Portal:

https://autodock-portal.sztaki.hu/ (accessed at 10.11.2012)

[23] Gesing, S., Herres-Pawlis, S. et.al.: A Science Gateway Getting Ready for Serving

the International Molecular Simulation Community. Proc. of the EGI Commu-

nity Forum 2012 / EMI Second Technical Conference, Munich, Germany, 26–30

March, 2012.

Affiliations

Akos Balasko
Laboratory of Distributed and Parallel Systems, MTA SZTAKI, Budapest, Hungary,
balasko@sztaki.mta.hu

2013/06/07; 00:13 str. 18/19

324 Akos Balasko, Zoltan Farkas, Peter Kacsuk



Zoltan Farkas
Laboratory of Distributed and Parallel Systems, MTA SZTAKI, Budapest, Hungary,
zfarkas@sztaki.mta.hu

Peter Kacsuk
Centre for Parallel Computing, University of Westminster, London, United Kingdom,
kacsuk@sztaki.mta.hu

Received: 20.11.2012

Revised: 9.01.2013

Accepted: 11.02.2013

2013/06/07; 00:13 str. 19/19

Building Science Gateways by utilizing . . . 325


