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1. Introduction13

Data clustering is one of the most rapidly developing area of machine learn-14

ing. Among the several main stream techniques (see Jain (2010) for a detailed15

introduction), graph based clustering methods have gained a lot of attention16

since the previous decades in numerous engineering applications (see for exam-17

ple Geva and Sharan (2011), Benchettara et al. (2010), Boykov and Kolmogorov18

(2004), Cousty et al. (2009), Du et al. (2008)), due to the modeling capabili-19

ties of graphs, and the large number of available theoretical results in this field20

(Schaeffer (2007)).21

Considering the modeling, there are two major types of graph based clus-22

tering methods used in the field of pattern recognition: standard and bipartite23

graphs. Standard graphs model the objects to be clustered, bipartite graphs24

- with the two vertex classes - are eligible to model properties of the objects25

as well (Geva and Sharan (2011)). Some applications apply projection of the26

bipartite graph to standard graphs (e.g. Benchettara et al. (2010)).27

Frequently applied methods using the standard model are graph partition-28

ing and dense subgraph mining methods. Graph cuts (Boykov and Kolmogorov29

(2004), Danek et al. (2012), Cousty et al. (2010)), spectral partitioning, several30

MST-based clustering methods such as Zhou et al. (2011) belong to the parti-31

tioning methods. On the other hand, clique mining (Feige (2004)) is an example32

of density based methods.33

In case of bipartite graph models, there also exist partitioning methods which34

divide one or both vertex classes into disjoint subsets (e.g. modularity-based35
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methods, such as Barber et al. (2008)), however dense subgraph mining methods36

- e.g. biclustering, dense bipartite subgraph mining (Du et al. (2008), Jancura37

and Marchiori (2010)) - are applied more often.38

The advantage of the partitioning methods is their low computational cost39

(polynomial in the number of vertices). One of their drawbacks is that these40

algorithms are not able to deal with overlaps between clusters. Outliers cannot41

be handled either, therefore, pairwise similarities within a cluster cannot be42

ensured.43

Density based methods are designed to overcome these drawbacks, but with44

exponential running time in the number of vertices - in general. In case of45

restrictions of vertex degrees, or limitations on the expected cluster sizes, there46

exist more efficient algorithms.47

These methods are applied even if all the vertices are needed to be clustered.48

Dense subgraphs are considered as seeds of clusters, and the remaining vertices49

are clustered based on their similarities to the cluster seeds Du et al. (2008),50

Jancura and Marchiori (2010).51

However, for bipartite graphs it is also proven that for a wide range of edge52

weights even finding good approximations of the maximum weight biclique in53

polynomial time is impossible (Tan (2008)). Due to computational complexity54

issues, methods based on random sampling have become popular (Mishra et al.55

(2003), Suzuki and Tokuyama (2005)), but there are severe restrictions on the56

size of the clusters in order to find them with high probability.57

Despite the drawbacks, using bipartite graph based methods is important,58
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since besides clustering the objects, these have the potential of finding a subset59

of relevant properties as well, and with this gives a detailed description of the60

connection between the objects.61

Our goal is to design an algorithm, that has the ability of detailed cluster62

descriptions as bipartite graph based methods, but with polynomial running63

time, without restrictions on the size of the clusters or the vertex degrees, and64

application of randomized methods. The capability of handling overlaps be-65

tween clusters and outliers is also required. So the desired output is not only66

subsets of similar objects, but also subsets of properties, these objects (or a67

large fraction of them) agree on.68

We accomplish this by a three-phase algorithm, where both standard and69

bipartite graphs are applied. The input is an object-property matrix, where70

each row represents an object, showing which properties it has. This matrix71

is converted into a standard weighted model (object distance graph), and a72

bipartite model (object-property graph). Phase 1 is a modified MSF-based73

clustering method on the standard weighted graph to find the seeds of the74

clusters. These seeds are only subsets of the real clusters. Phase 2 consists of75

two seed-refining step - one is carried out in the standard model, the other one76

in the bipartite model. The role of Phase 3 is the clustering of objects based on77

their similarities to the seeds.78

The paper is organized as follows. In Section 2 some basic notations and79

definitions are presented. In Section 3 the steps of the proposed method are80

introduced. From Section 4 to 7 these steps are analyzed in details. Test results81
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of the algorithm are shown in Section 8. Section 9 presents the proof of a82

theoretical result for density bounds of subgraphs of bipartite graphs with size83

conditions.84

2. Terminology and notation85

Definition 1. An undirected graph G = (VG, EG) consists of the set of vertices86

or nodes (VG), and EG represents the edges.87

Definition 2. A bipartite graph G = (V,E) = (A,B,E) is a graph with two88

disjoint subset of vertices, such that A
⋃

B = V and every edge connects a vertex89

in A to one in B.90

Definition 3. Let G be a graph. If A is any subset of the vertex set, and v is91

any vertex, we denote by NA(v) the set of vertices adjacent to v in A.92

Definition 4. Density of graphs. For a graph G = (V,E) we define the density93

of G to be the quotient |E|

(|V |
2 )

. We also say that G has local density at least c94

(where c is any real number in the range 0 < c < 1) if each vertex has degree at95

least c(|V | − 1).96

Definition 5. Density of bipartite graphs. For a bipartite graph G = (V,E)97

with vertex bipartition P ∪Q = V , we define the density of G to be the quotient98

|E|
|P ||Q| . We also say that G has local density at least c (where 0 < c < 1) if each99

vertex v ∈ P has at least c|Q| neighbors in Q and each v ∈ Q has at least c|P |100

neighbors in P .101

Definition 6. A connected component of a graph is a maximal subgraph such102

that any two vertices within are connected by a path (through a sequence of103

neighboring vertices).104

Definition 7. An F = (VF , EF ) spanning tree of a G = (V,E) is a spanning105

subgraph (VF = V ) and a tree (connected, cycle-free). A minimum weight span-106

ning tree (MST) is a spanning tree with weight less than or equal to the weight107
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of any other spanning tree. If the graph is not connected it contains a minimum108

spanning forest (MSF).109

3. Steps of the proposed algorithm110

In this section we will give a short overview of the steps of the proposed111

algorithm (Figure 1).112

Phase 1 is a cluster-seed mining process. The input is the data matrix,113

which is used to build a distance graph. Each object is represented by a row114

in the matrix, and each column corresponds to a property. The vertex set of115

the distance graph consists of the objects, the edgeweights show the similarities116

of the property vectors of the objects. The seeds are found by a MSF-based117

method.118

Phase 2 is the refining of the seeds. The seeds are splitted if necessary, by a119

second MSF-based method. Then seeds are modeled in the bipartite graph with120

the corresponding properties. Properties that are not representative enough will121

be cut off. The output of this phase are the refined, bipartite seeds.122

Phase 3 consists of computing the characteristic vectors of the seeds, and123

clustering the objects based on these characteristics. The output of the al-124

gorithm will be an object-cluster matrix, (in which each element shows how125

strongly a given object belongs to a given cluster) and the cluster labels of the126

vertices.127

Our previous work (Keszler and Szirányi (2012)) was also based on using128

both standard and bipartite graphs on the same dataset. However, there are129
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Figure 1: Flowchart of the proposed algorithm.
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several important improvements presented in this paper. There was only one130

round of MSF applied. The second round is an important change, since with131

this and the stopping condition we can avoid clustering problems illustrated on132

Figure 2, such as detecting paths as cluster seeds. The selection of the stopping133

condition is also an improvement. The algorithm applied for refining the seeds134

is proved to be convergent with a polynomial running time on the number of135

vertices (Section 6.2.2). One of the most important improvements compared to136

the former paper are the theoretical results on the density bounds (Section 9).137

The advantage of this algorithm structure is that each phase or substep can138

be replaced by a different one without effecting the others.139

4. Mining seeds of clusters140

The first step of the seed mining phase is to build the distance graph of141

objects. The distance values are calculated from the similarities of the property142

vectors. In case of binary properties, the edgeweight is equal to the number of143

properties the two vectors do not agree on.144

The seed mining method is a modified MST-based (see Definition 7) clus-145

tering, using Kruskal’s algorithm.146

The basic idea behind clustering with MST is that the vertices connected147

by edges of small weight in the tree are likely to be in one cluster. Previous148

methods usually work by finding the MST, then cutting edges until a certain149

criteria is satisfied. This criteria can be a weight threshold (e.g. Chowdhury150

and Murthy (1997), Vathy-Fogarassy et al. (2006), Yujian (2007), Wang et al.151
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(2009), Zhou et al. (2011)), the number of clusters(e.g. Xu et al. (2001), Jia et al.152

(2008), Peter (2012), Müller et al. (2012), one of the methods in Grygorash et al.153

(2006)), the size of clusters (Laszlo and Mukherjee (2005)), or some intra-cluster154

properties (e.g. Karthikeyan and Peter (2011), Goura et al. (2011)).155

The above introduced papers were similar in the idea of first building the156

MST and then cutting edges by a clustering criteria. However, there exist a few157

bottom-up techniques as well.158

An example of the bottom-up method is described in Felzenszwalb and Hut-159

tenlocher (2004) and is applied for image segmentation. The output of this160

algorithm is a partition of the vertex set.161

Phase 1 of our algorithm also belongs to the bottom-up techniques. The main162

difference between our method and the one in Felzenszwalb and Huttenlocher163

(2004) is that our method is designed to handle outliers as well.164

Our suggestion is to stop adding the edges when we reach the desired weight165

threshold, instead of building the complete MST and then cutting off edges.166

First we select a subgraph of the original graph by keeping the edges under the167

weight threshold, then run the MST finding algorithm on each component of the168

resulting graph. The advantage of this solution is that in the weight thresholded169

graph each component can be processed in parallel.170

The construction of the weighted graph from the input matrix is done in171

O(n2 · d), where n,d are the number of objects and properties respectively. The172

running time of Phase 1 is O(|E| · log|E|), since the edges are need to be sorted.173

This is common in case of MSF-based methods.174
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The pseudo-codes to produce an MSF of a graph (Algorithm 1), and to find175

seeds in the weight-thresholded graph are presented below (Algorithm 2). If no176

threshold value is given, wth = avge∈E(w(e))+stde∈E(w(e)) will be used, where177

avg is the average value, std is the standard deviation of the edgeweights.178

Algorithm 1 MSF(G = (V,E)) — Minimum weight spanning forest

Require: Distance graph G = (V,E)

Ensure: F = (VF , EF ), a MSF of G.

1: F = ∅ {initialization}

2: E = SortEdgeWeights(E) {sorts edgeweights in increasing order}

3: for i = 1; i++; i ≤ |E|) do

4: if ei ∈ E : F
⋃

ei is cycle-free then

5: F = F
⋃

ei

6: print F

The next two sections will present in details the second phase, where the179

seeds will be modified. First, a second MSF building step is carried out (Section180

5), then the new set of seeds are processed in the bipartite graph (Section 6).181

5. Refining the seeds - Building the 2nd MSF182

Here, we apply a second MSF-building step, see Algorithm 3. The second183

MSF round is carried out by running Algorithm 2 on each seed found by the first184

round (Figure 1, Phase 2, step 1). The input of Algorithm 3 is a seed, and the185

corresponding MST. The edges of this MST will be removed, and the algorithm186

will be run on the remaining edge set. The new stopping condition will be187
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Algorithm 2 FINDSEED(G,wth) — For finding cluster seeds in the distance

graph

Require: Distance graph G = (V,E), wth edge weight threshold (optional)

Ensure: G′ = (V ′, E′), such that V ′ = V , and ∀e ∈ E′ : w(e) ≤ wth; and

F = (VF , EF ), a MSF of G′.

1: if wth is not given, wth = avge∈E(w(e)) + stde∈E(w(e)); V
′ = V ;E′ = ∅.

{initialization}

2: while ∃e ∈ E : w(e) ≤ wth do

3: E′ = E′
⋃

e

4: F=MSF(G′ = (V ′, E′)) {calling Algorithm 1}

5: print G′, F

calculated from the edge set of the first MST. The output of the algorithm run188

on a seed will be a set of new seeds, since the original one might be splitted.189

The threshold modification and the edge deletions are done in O(|E|) for a190

seed, and it can be carried out in parallel for each seed, so the running time of191

this step is O(|E|).192

In Zhong et al. (2010) the authors also present a method of applying MST193

building twice. The input of the second MSF algorithm is the original graph194

without the edge set of the first MST. A second graph is built from the two195

MST edge set, and vertices are separated by graph-cut.196

Test results of the seed mining process, and the seed modification process in197

the weighted standard graph are presented on Figure 2. The input dataset is a198

weighted graph, the output are the seeds after the second round of MSF mining.199
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Algorithm 3 MODIFYSEED(G′, F ) — For refining seeds in the distance

graph

Require: {C1, C2, ..., CNC
}:= components of G′ (the output of Algorithm 2)

Ensure: S = {S1, S2, ...} set of cluster seeds

1: for i = 1; i++; i ≤ NC) do

2: F2i = ∅ {initialization of the MSF for each component in G′}

3: wth2 = avge∈EF
(w(e)) + stde∈EF

(w(e))

4: for i = 1; i++; i ≤ NC) do

5: F2i =FINDSEED((VCi
,ECi

\ EF ), wth2) {calling Algorithm 2}

6: print S

The artificial input test datasets are illustrated on Figure 2(a). These test200

sets were constructed based on the typical distance based clustering problems201

mentioned in Zhong et al. (2010) and in Zahn (1971).202

On Figure 2(b-e) the results of the first (left figures with red edges) and203

second (right figures with black edges) MSF rounds are shown for each input204

graph. After the second round, only the dense regions remain connected. The205

method can handle outliers (in contrast to graph partitioning methods), and206

applicable in case of cluster seeds of different sizes.207

The drawback of several MST-based methods is that paths with small dis-208

tances between the neighboring vertices are detected as clusters. With our209

approach, these types of subgraphs will not be detected as dense regions, see210

Figure 2(e). This is the result of the modified threshold value in case of the211

second MSF round.212
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The second frequently appearing drawback of this type of algorithms, is213

that overlapping clusters cannot be handled. This problem will be dealt with214

in Phase 3 (see Section 7). At this phase, the cluster seeds are disjoint subsets215

of the vertex (object) set.216

Note that an object connected strongly to its neighboring objects might be217

removed after the second MSF iteration. However, if this object belongs to that218

dense region, it will be re-clustered in Phase 3. Examples will be presented in219

Section 8.220

6. Refining the seeds - Modifying the seeds in the bipartite graph221

The seed mining phase, and the first step of the seed refining process is222

finished. The next step is to model each seed as a bipartite graph, for further223

analysis. One vertex class will be formed by the objects of the seed, and the224

other one by the corresponding properties. The analysis consists of finding225

objects and properties that do not belong strongly enough to the seed. This is226

done by dense bipartite subgraph mining within each seed (Figure 1, Phase 2,227

step 2).228

6.1. Previous methods229

Since finding bipartite cliques (bicliques) or counting them is an NP-complete230

problem (Kutzkov (2012)), some relaxations are need to be made in order to231

achieve lower computational complexity. Otherwise only exponential running232

time algorithms exist, for example Zhang et al. (2008).233
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In Du et al. (2008) the authors present a method with a two-level clustering:234

first a seed mining step is carried out, then the remaining vertices are clustered.235

A bipartite graph is used for both steps, and the seeds are defined as the max-236

imal bicliques. The running time of their method is O(|E|2) on sparse graphs,237

however it is exponential in general. Other solutions, such as Tanay et al. (2002)238

or Dourisboure et al. (2009) reach polynomial running time by assuming lim-239

ited (constant) vertex degrees. In Geva and Sharan (2011) the biclique mining240

process is completed with a greedy expansion step. But within the seed identi-241

fication step, only small subsets of vertices are taken into consideration. If it is242

not necessary to gain overlapping clusters, further simplifications can be made243

(Suzuki and Wakita (2009)).244

The size of the cluster might also be interesting, as in case of biclustering245

gene expression data (Mitra and Banka (2006)). If the expected size of the246

cluster is large enough compared to the whole dataset, random sample based247

methods are also applicable, e.g. Mishra et al. (2003).248

6.2. Our dense bipartite subgraph mining method249

We present known density bounds of subgraphs in bipartite graphs, then we250

introduce our dense bipartite subgraph mining method with a corresponding251

new theoretical result. The Dense Bipartite Subgraph lemma presents a lower252

bound on the reachable density value of a subgraph in a bipartite graph, with253

size conditions, however in applications this limit can be significantly higher.254

Our approach for finding seeds is also a two-level method, such as Du et al.255

(2008), however for the first phase a standard graph is used, and the cluster seeds256
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in their method form complete bipartite subgraphs (bicliques). Our method is257

applicable regardless of the size or number of clusters. The running time of our258

method is quadratic in the number of vertices, see Section 9.259

The final seeds will still be disjoint considering the object side of the bipartite260

graph, however overlaps between the property sets of the seeds might occur. On261

Figure 3 (b) the first seed shares properties with the second and the third one.262

6.2.1. Density bounds of subgraphs in bipartite graphs263

It is well known in graph theory that every graph of average degree d contains264

a subgraph of minimum degree at least d/2, and this bound is tight. Bipartite265

graphs with analogous properties can also be constructed.266

Below we investigate the situation where, instead of prescribed minimum267

degree, we need to find a subgraph in which every vertex is required to be268

adjacent to at least a prescribed proportion of the other vertex class of the269

subgraph (Definition 5), and at least a positive given fraction is selected from270

each vertex class of the initial graph. Without the condition on the cardinalities271

of vertex classes, the problem would be rather simple because selecting any272

vertex together with its neighbors we obtain a subgraph (star) in which all273

vertices are completely joined with the other vertex class.274

Dense Bipartite Subgraph Lemma. Let c, r, and c′ be reals such that275

0 < r < c < 1 and c′ ≤ c−r
1−r

. Then every bipartite graph G = (V,E) with276

density at least c contains a bipartite subgraph G′ = (V ′, E′) with local density277

at least c′, such that |P ∩V ′| ≥ r|P | and |Q∩V ′| ≥ r|Q|, where P and Q denote278
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the vertex classes of G. Moreover, a subgraph G′ satisfying these conditions can279

be found in polynomial (more precisely, quadratic) time. (The proof is presented280

in Section 9.)281

6.2.2. Modifying the seeds in the bipartite graph282

To obtain the final seeds, density restrictions are made for each vertex indi-283

vidually in both vertex classes of the seeds (local density condition, see Definition284

5).285

We apply Algorithm 4 on each seed, based on the principle that vertices (both286

objects and properties) not satisfying the degree constraint are successively287

removed. Note that removal changes the order of the corresponding vertex288

class, hence the situation may become better or worse for a vertex in the other289

class, depending on whether it was non-adjacent or adjacent to the vertex just290

removed. A check is performed, and deletions are only made if the density has291

grown.292

The dense bipartite subgraph mining will be run on each seed, in parallel.293

After this step of the seed refining phase, each object will have a given proportion294

of the properties within each seed, and the same holds for the subset of properties295

belonging to that seed.296

Once the algorithm stops, the degree constraints are automatically satisfied297

(otherwise the latest round of the while loops decreased n′ and a further round298

will be performed). Hence, we need to show in the proof that this happens299

before any of the situations |P ′| < r|P | and |Q′| < r|Q| occurs.300
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Algorithm 4 DENSEBIP(c, r, c′) — Large locally dense bipartite subgraph

(assuming 0 < r < c < 1 and 0 < c′ ≤ c−r
1−r

)

Require: Bipartite graph G = (V,E) with vertex classes P,Q and density at

least c

Ensure: Bipartite subgraph G′ = (V ′, E′) with vertex classes P ′ ⊆ P , Q′ ⊆ Q,

|P ′| ≥ r|P |, |Q′| ≥ r|Q|, and local density at least c′

1: P ′ := P , Q′ := Q {initialization}

2: n′ := |P ′|+ |Q′|

3: while ∃x ∈ P ′ : |NQ′(x)| < c′|Q′| do

4: P ′ := P ′ \ {x}

5: while ∃x ∈ Q′ : |NP ′(x)| < c′|P ′| do

6: Q′ := Q′ \ {x}

7: if |P ′|+ |Q′| < n′ then

8: return to 2

9: print P ′, Q′
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The running time of this step of Phase 2 is quadratic in the number of301

vertices of the bipartite graph modeling each seed (see Section 9). In case of an302

input matrix with size n× d, the running time of this step is O((n+ d)2). The303

process can be run in parallel on each seed as well.304

The overall running time of Phase 2 (including Section 5) is O(|E|)+O((n+305

d)2) = O((n+ d)2), since |E| = O(n2).306

This section completes the steps of the seed finding and refining phases of307

the algorithm. The last phase will be the clustering, where objects outside the308

seeds can also be clustered.309

7. Clustering the objects310

The output of Algorithm 4 is the final set of bipartite seeds. In this section311

we will present the idea of calculating the characteristics of clusters based on312

the seeds, and the method of calculating membership values for each object. As313

the final output, the algorithm provides an object-cluster matrix, in which each314

element represents the strength of connection between each object-cluster pair.315

For each cluster, the characteristics is derived from the corresponding seed.316

In case of an S = {OS , PS , ES} seed, where OS ,PS and ES represents the set317

of objects, set of properties and set of edges respectively, the characteristics is318

calculated in the following way:319

CS(i) =























∑

oj∈OS

Mij/|OS |, if pi ∈ PS

NULL, otherwise,

(1)
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where M is the input object-property matrix.320

The membership values for the objects are derived from the similarities be-321

tween the cluster characteristic vectors and their property vectors. The simi-322

larities are evaluated only for the properties belonging to the seeds. The mem-323

bership value of object i with respect to the cluster with seed Sj is calculated324

as follows:325

µij =
∑

pk∈PSj

|Mik − CSj
(k)| (2)

If an object reaches a membership value as high as the minimum membership326

values of the objects of the corresponding seed, it will be clustered. The rest327

of the objects will not be clustered automatically. The minimum of the mem-328

bership values necessary for clustering depends on the application. Since an329

object might reach the threshold of clustering in case of more than one cluster,330

overlaps might occur.331

Since each object belongs to at most one seed, the time complexity of calcu-332

lating the characteristics is O(n · d). (As Phase 2, this can be run in parallel on333

each seed.) Clustering the objects is done in O(n2 · d), which is the algorithmic334

complexity of this phase.335

With parallelization the overall running time of the three-phased method is:336

O(|E| · log|E|) +O(n+ d)2 +O(n2 · d) = O(n3) +O(n+ d)2 +O(n2 · d).337
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8. Test results338

In this section test results on synthetic and real-world datasets are also339

presented.340

8.1. Synthetic example341

An artificial test dataset is introduced on Figure 3a. The dataset was con-342

structed in order to demonstrate the effectiveness of our method in finding343

similar objects, and in selecting relevant subset of properties (dense bipartite344

subgraphs).345

The bipartite graph (26 objects, 24 properties) contains 2 bicliques (O11−O15346

and O16 − O20), and one with additional properties (O1 − O10). The fourth347

subgraph is a counter example (O21 −O26). These subgraphs are marked with348

black, the remaining edges (gray) were selected randomly.349

On Figure 3 the results of the seed mining and refining steps are presented.350

The three dense regions were detected by our method, with the automatic351

threshold used in Algorithm 2 and 3. On Figure 3b the output of the second352

MSF round is shown: the seeds are highlighted in bold. Note that some ob-353

jects of the dense regions were not selected (second seed), and the seeds contain354

additional properties.355

The latter problem is solved in Phase 2 by applying Algorithm 4. The356

parameter r was set to 0.75, that is, at least 75% of the properties and objects357

in each seed are needed to be kept. (This setting depends on how dense and358

large subgraphs do we want to gain as clusters.) The output of this seed refining359
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step is presented on Figure 3c. The additional loosely connected properties were360

ruled out in case of the second and third seeds, however some remained in case361

of the first.362

However, we still have lost objects, that should have been selected by the363

seed-finding step. This problem was mentioned at the end of Section 5, and is364

solved by Phase 3 of the algorithm. In case of each seed the characteristics and365

the membership values of each object-cluster pair were calculated. The results366

are presented on Figure 3d. Besides the original seed vertices, other objects are367

also clustered.368

8.2. Application related datasets369

8.2.1. Test results on DIMACS datasets370

The method was also tested on real-world datasets (free-access DIMACS371

datasets (Dolphins (Lusseau et al. (2003)), Jazz (Gleiser and Danon (2003)),372

Football (Girvan and Newman (2002))), see Tables 1 and 2.373

The Dolphins dataset describes the interaction between 62 dolphins. The374

object-property matrix is constructed as follows: the ith row shows the dolphins375

which the ith dolphin is interacting with (1 - interaction, 0 - no interaction). Our376

goal is to find subgroups of dolphins with dense connection systems. The Jazz377

dataset contains the co-operating network of 198 jazz musicians (2742 edges).378

The Football dataset describes the network of football games between 115 teams.379

The goal in both cases is finding dense regions within the dataset. In the head380

of each subtable the average density of the corresponding dataset is also noted.381

21



Table 1 presents the results on the Dolphins dataset. The gained cluster382

seeds after the 2nd MSF round (Phase 2, step 1 of our method) are significantly383

denser compared to the average density of the dataset (Table 1a). The density384

of the final seeds (output of Phase 2) have been further increased. The results385

corresponding to the stopping condition for Algorithm 2 are highlighted in bold.386

The final clusters (Phase 3) are presented in Table 1b with the identifier of the387

dolphins. The dolphins appearing in both clusters are highlighted in bold.388

Note that the seed refining steps of Phase 2 resulted in an increased density.389

Furthermore, the cluster density values of the suggested stopping condition are390

higher or at least as high as other settings below and above this threshold. The391

capability of handling outliers and overlaps between clusters are also illustrated392

in Table 1b.393

Test results of the other two datasets are presented in Table 2.394

8.2.2. Comparison with other methods395

Our algorithm was compared to other clustering methods by using the com-396

monly tested Southern Women dataset (Freeman (2003)), in what the social397

activities (14 events) of 18 women was documented, see Figure 5. The advan-398

tage of our method compared to Barber et al. (2008) and Suzuki and Wakita399

(2009) is the capability of handling overlaps between clusters, see Figure 5d.400

Du et al. (2008) also detects overlapping clusters, but the resulting densities are401

significantly lower than our results. However, their method clusters all objects,402

while ours detect outliers that did not correspond strongly enough to the clus-403

ters. The advantage of our seed mining method is that the seeds do not need404
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Table 1: Test results on real-world datasets.

Results with the stopping condition for the MSF building phase, see Algorithm

2) are highlighted in bold. Results of lower and higher threshold values are

shown before and after this, respectively. The size parameter r was set to 0.75

(see Dense Bipartite Subgraph Lemma). The density of the final seeds are

significantly higher than the average density of the dataset. Columns: number

of seeds (N), number of objects within each seed (size), density after first refining

step, final seed size and density.

(a) Dolphins dataset - Results of the two seed

refining steps (see Phase 2).

Dolphins dataset - Average density 0.0827

Seeds - 2nd MSF round Final seeds

N objects density objects density

5

3 0.11 3 0.15

4 0.15 4 0.20

2 0.129 2 0.17

2 0.129 2 0.17

6 0.131 6 0.173

2

9 0.11 9 0.15

18 0.129 18 0.17

1 47 0.10 47 0.125

(b) Dolphins dataset - Results of

Phase 3 (final clusters). Dol-

phins appearing in both clusters

are highlighted in bold.

Seed Dolphins in two clusters

1st 19,22,24,25,30,46,51,52

2nd 14-19, 34-41, 44-46, 51
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Table 2: Further test results on real-world datasets. Notation is the same as in

Table 1

(a) Football dataset

Football dataset - Average density 0.0927

Seeds - 2nd MSF round Final seeds

N objects density objects density

11

8 0.096 8 0.126

10 0.096 10 0.126

11 0.093 11 0.123

4 0.089 4 0.118

8 0.094 8 0.124

9 0.094 9 0.124

11 0.1 11 0.13

2 0.096 2 0.126

9 0.1 9 0.13

10 0.092 10 0.12

2 0.091 2 0.12

9

18 0.096 18 0.126

12 0.094 12 0.124

13 0.09 13 0.12

12 0.093 12 0.122

8 0.093 8 0.124

9 0.094 9 0.124

11 0.98 11 0.13

9 0.093 9 0.122

9 0.99 9 0.13

(b) Jazz dataset

Jazz dataset - Average density 0.1399

Seeds - 2nd MSF round Final seeds

N objects density objects density

1 62 0.24 62 0.30

1 128 0.186 128 0.235

1 162 0.16 122 0.16

1 162 0.16 162 0.20
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to be complete subgraphs, therefore it is applicable in the presence of noise as405

well.406

The method of Du et al. (2008) was compared to ours on the example de-407

scribed in Section 8.1. Figure 4c presents the result of their method. The seeds408

in their version are maximal bicliques, and the figure shows the 14 largest ones.409

In this case the final clusters were the seeds themselves. The results clearly show,410

that although their clusters are denser than ours, they split the vertices into too411

many parts. In contrast with their method, ours is capable of contracting seeds412

(in Phase 3).413

Another comparison was carried out on the Dolphins dataset presented in414

Section 8.2.1. The adjacency matrix of the bipartite graph and some examples415

of the seeds found by (Du et al. (2008) are presented on Figures 4d and 4e. Since416

the graph is sparse, and the overlap between the neighborhood of the dolphins417

is small, the biclique-enumeration based method finds a large number of small418

seeds. Due to the number of these seeds, only some of the largest are shown.419

Our method found two clusters, and the results were detailed in Table 1.420

As a conclusion, the advantage of our method compared to modularity-based421

techniques is that it is able to find overlapping clusters or outliers as well. On422

the other hand, compared to the two-level biclique-mining method it is more423

suitable to work in case of noise or in sparse graphs, since our method can424

detect a dense subgraph (compared to the average density of the graph) even if425

it does not contain maximal bicliques. Also note that in case of dense graphs,426

enumerating all bicliques would be quite inefficient, in contrast to ours that has427
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polynomial running time regardless of the density.428

9. Proof of the Dense Bipartite Subgraph Lemma429

Here we present the proof of the Dense Bipartite Subgraph Lemma.430

Suppose that the while loops are performed exactly k times during the431

algorithm. For i = 1, 2, . . . , k let pi and qi denote the number of vertices removed432

from P ′ andQ′, respectively, in the ith round of thewhile loops. (Some of them,433

namely p1, pk, and/or qk may be zero.) Let us further denote p := |P |, q := |Q|,434

p′ := |P ′|, q′ := |Q′|. By assumption, |E| ≥ cpq. We observe that435

• removing the pi vertices from P ′, fewer than c′pi(q−
∑

1≤j<i qj) edges are436

deleted;437

• removing the qi vertices from Q′, fewer than c′qi(p−
∑

1≤j≤i pj) edges are438

deleted.439

These are direct consequences of the conditions given in lines 3 and 5 of the algo-440

rithm. When the algorithm stops, |Edel|, the number of edges deleted altogether441

is less than442

|Edel| <
∑

i≥1

c′pi(q −
∑

1≤j<i

qj) +
∑

i≥1

c′qi(p−
∑

1≤j≤i

pj) (3)

The right hand side can be rewritten as443

c′(p1q + q1(p− p1) + p2(q − q1) + q2(p− p1 − p2) + . . .

+ pk(q − q1 − · · · − qk−1) + qk(p− p1 − · · · − pk)) (4)
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With further rearrangements, using that p =
∑

i≥1
pi+p′, and q =

∑

i≥1
qi+

q′ we get:

|Edel| <c′((p− p′)q + (q − q′)p−

− (p1 + · · ·+ pk)(q1 + · · ·+ qk))

|Edel| < c′((p− p′)q + (q − q′)p− (p− p′)(q − q′))

|Edel| < c′(pq − p′q′) (5)

Thus, the number of edges remaining in G′ is

|E′| > cpq − c′(pq − p′q′) = (c− c′)pq + c′p′q′. (6)

This |E′| cannot exceed p′q′, hence after rearrangement we obtain

(c− c′)pq < (1− c′)p′q′,

c− c′

1− c′
<

p′q′

pq
. (7)

On the other hand, if at least one of the inequalities p′ < rp and q′ < rq is

valid, then we necessarily have p′q′ < rpq (because p′ ≤ p and q′ ≤ q always

hold). Consequently, in that case we would have

c− c′

1− c′
< r,

c− c′ < r − rc′,

c− r < c′(1− r),

c′ >
c− r

1− r
, (8)
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contradicting the assumption of the lemma. Thus, both p′ ≥ rp and q′ ≥ rq444

are valid.445

The conditions for executing the steps purely depend on vertex degrees,446

which can be evaluated in linear time; moreover, at most (1 − r)|V | vertices447

can be removed (i.e., k ≤ (1 − r)|V | holds for the number of rounds for the448

while loops). Thus, the overall running time of the algorithm is polynomial449

(quadratic).450

10. Conclusions451

We have introduced a dense subgraph mining method in bipartite graphs452

using the advantages of both the standard and the bipartite graph models. The453

algorithm consists of three main phases: a seed mining in a standard graph, a454

seed refining phase both in the standard and bipartite model and a clustering455

phase. Our method is applicable for clusters of any size, and the number of456

clusters is not need to be fixed either. It is able to detect overlapping clusters457

and outliers in bipartite graphs such as dense bipartite mining methods (in458

contrast with graph partitioning techniques), but with polynomial running time.459

Test were run on synthetic and real-world datasets as well, presented in Section460

8. Besides the clustering method, new theoretical results on density bounds461

of subgraphs in bipartite graphs with size and local density constraints are462

discussed as well. In the future, further analysis and tests on the optimal size463

of clusters will be carried out for more application areas.464
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(a)

(b) (c)

(d) (e)

Figure 2: Test results of seed mining process. The four input graphs (a), and

the result of the seed mining process (b-e).The output of the first MSF building

phase are shown in red (left), the output of the second MSF building phase are

shown in black (right). Only the densest regions remain connected.

35



(a) Test graph (26 objects, 24

properties).

(b) Seeds: output of the second MSF building step (Phase 2, step 1).

(c) Seeds after the seed refining process (Phase 2, step 2). Overlaps occur between

the property set of the seeds.

(d) Final clusters(C1−C3). Cluster-membership values for objects O1−O26. Seeds are

marked in each cluster. O11, O12 and O14 were also clustered, besides the seed of C2.

Figure 3: The output of our method phase by phase on a test graph.
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(a) The adjacency matrix of the test

graph on Figure 3a (edges are marked by

dark gray cells).

(b) The output of our method, the three

clusters are marked in the adjacency ma-

trix.

(c) Results of (Du et al. (2008))on input Fig. 4a. The 14 largest clusters are marked

on three subfigures. Example: the light orange cluster on the right side is a biclique

of objects O4, O12 and properties p6, p13, p15. The data set is highly over segmented.

Figure 4
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(d) Adjacency matrix of the Dolphins

dataset. Dark cells denote the edges.

(e) Example cluster seeds of method Du

et al. (2008) on the Dolphins dataset,

marked by different colors.

Figure 4: Test results on the artificial dataset presented on Figure 3a and on

the DIMACS Dolphins dataset.
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(a) Barber et al. (2008) - No overlaps or outliers.

(b) Suzuki and Wakita (2009) - No overlaps or outliers.

(c) Du et al. (2008) - Overlaps are handled. The density of

clusters: 0.64, 0.66, 1 and 1.

(d) Result of our method. Overlaps are handled. The density

of clusters: 0.8, 0.89, 1 and 1. Outliers were detected.

Figure 5: Test results on the Southern Women dataset. The object set contains

18 women, the property set models 14 social event they attended.
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