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Abstract

The variable-geometry suspension system is in the focus of the

paper. The advantages of the variable-geometry system are the

simple structure, low energy consumption and low cost. Dur-

ing maneuvers the variable-geometry system modifies the cam-

ber angle of the front wheels in order to improve road stability.

The system affects both the chassis roll angle and the half-track

change. Moreover, the tracking error of the reference yaw rate

can also be reduced. In the paper the challenges and possibili-

ties of the variable geometry suspension system are analyzed.
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1 Introduction

In recent decades several new researches and development

tendencies have evolved [13]. The automotive industry put

emphasis on urban mobility and transport, alternative fuels,

electrification of the vehicle safety applications in co-operative

systems, suitable materials, environment-friendly and efficient

manufacturing. In some of these systems the driver is supported

by assistance systems to meet the performance specifications.

Several important journal and conference papers have been pre-

sented in this topic, see e.g. [20],[16].

A new possibility in automotive safety control is variable ge-

ometry suspension systems. The suspension determines such

critical components as the height of the roll center and the half

track change. The advantages of the variable geometry suspen-

sion are the simple structure, low energy consumption and low

cost compared to other mechanical solutions such as an active

front wheel steering, see [3, 9]. Since various safety and econ-

omy properties of the vehicle are determined by the suspension

geometry it has significant influence on the control design. The

control input of variable geometry systems is camber angles of

the front and rear wheels, with which the driver is supported

to perform the various vehicle maneuvers, such as a sharp cor-

nering, overtaking or double lane changing. The control system

must guarantee various crucial vehicle performances such as tra-

jectory tracking, roll stability and geometry limits.

Several papers for various kinematic models of suspension

systems have been published. A review of the variable geom-

etry systems was presented by [19]. The control system varied

the leverage ratio between the spring/damper unit and the road

wheel assembly. A nonlinear model of the McPherson strut sus-

pension system was published by [4]. By using this model the

kinematic parameters such as camber, caster and king-pin angles

were examined. The kinematic design of a double-wishbone

suspension system was examined by [18]. Seeking to meet the

performance requirements often leads conflict situations and re-

quires a compromise considering the kinematic and dynamic

properties, see [21]. The vehicle handling characteristics based

on a variable roll center suspension was proposed by [12]. A

rear-suspension active toe control for the enhancement of driv-
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ing stability was proposed by [6]. The main focus on these

methods is on the construction solution and the control design

has received little attention. However, besides performances, the

control design must handle important tasks such as disturbance

attenuation and robustness against uncertainties.

In our project, which focuses on the integrated vehicle control

systems, the variable geometry suspension system has several

possibilities, see [8]. It has been shown that suspension con-

trol design is in interaction with the construction of the system

[15]. Therefore it is possible to formulate a common control

and construction design task, which leads to an optimal variable

geometry suspension systems [14]. In this paper some further

aspects of the design of variable geometry suspension system

are presented.

This paper is organized as follows. In Section 2 the motiva-

tion of the variable geometry suspension system is presented. In

Section 3 the possibilities of the variable geometry suspension

system, i.e., the effects of suspension construction, are analyzed

in more detail. In Section 4 the effects of the suspension sys-

tem on the performance specifications are analyzed. Finally, in

Section 5 the concluding remarks are summarized.

2 Motivation example

In this section a motivation example of the efficiency of a vari-

able geometry suspension is proposed. Fig. 1 shows a double-

wishbone suspension with three different arrangements of sus-

pension arms. The positions of arms have an important role

in vehicle dynamics. Different aims in suspension design re-

sult in different suspension constructions. Fig. 1(a) illustrates a

construction of a variable-geometry suspension which is able to

minimize the roll angle of the chassis. The second construction

(Fig. 1(b)) minimizes the half-track change, while it is possible

to reach minimal actuation using a third suspension Fig. 1(c)).

The effects of different suspension types in variable geometry

suspension control can be seen in Fig. 2. In this motivation ex-

ample the aim is to track a predefined reference yaw-rate signal.

In a double-wishbone suspension the control input is the lateral

movement of the chassis connection point of the upper arm (ay),

which induces a change in the wheel camber [14]. According to

simulations it is confirmed that the control system of Suspension

1 is able to reduce the roll of the chassis compared to the other

suspension types (Fig. 2(a)). The half-track change of the sus-

pensions is illustrated in Fig. 2(b). It is shown that the variable-

geometry suspension controller can achieve reduced half-track

change if Suspension 2 is used. Fig. 2(c),(d) show control input

ay and the wheel camber of the system. Minimal control input

is actuated in Suspension 3.

Although all of these suspension types result in different roll

angles, half-track changes and control inputs, they can track the

predefined yaw-rate signal accurately, see Fig. 2(e). After these

statements the following questions have arisen: How is it recom-

mended to design the construction of the suspension to improve

the performances of the controlled system? What is the rela-
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constructed to active systems easily. Besides, the positions of

arms of these suspension types depend on the movement of the

tire and the chassis, therefore it is possible to formulate their

kinematic relationships without complex high-fidelity Finite El-

ement Methods.

The kinematic model of the variable-geometry suspension

based on the double wishbone suspension system is presented

in Fig. 3. In this type of suspension the actuator is positioned in

point A, therefore point A is able to move in the lateral direction.

This actuation affects the modification of wheel camber angle.

In the kinematic modeling of the double-wishbone suspension

the masses, inertias and the elasticity of the construction ele-

ments are ignored, and the arms of the suspension are modeled

as bar elements. The suspension is analyzed in a coordinate sys-

tem which is fixed to the chassis. Consequently the rolling of the

chassis and the road irregularities have the same effect in terms

of the moving of the wheel compared to the chassis. The deduc-

tion of the formalization of the wheel camber angle depends on

the geometric position of the suspension points, road irregular-
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Although all of these suspension types result in dif-
ferent roll angles, half-track changes and control inputs,
they can track the predefined yaw-rate signal accurately,
see Figure 2(e). After these statements the following
questions have arisen: How is it recommended to design
the construction of the suspension to improve the perfor-
mances of the controlled system? What is the relation-
ship between construction and control design? What are
the main factors in variable geometry suspension system
design?

3 Construction aspects

In this section the effects of suspension construction are
analyzed.
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ities and the input of the mechanism. The vertical forces of the

suspension are considered as an indirect way in the modeling

of the suspension movements. The effects of the movement of

the chassis are similar to those of road irregularities. The trans-

formation of the double-wishbone suspension parameters to the

parameters of a quarter-car model is presented by [17].

Another possible suspension construction is illustrated in

Fig. 4. In this case the control input is the lateral movement

of point C. However it is a possible construction for variable

geometry system, it also has a disadvantage. In a double wish-

bone suspension there are two lateral arms, which transfer lat-

eral loads, while McPherson system has only one. Subsequently

the actuator in point C in the McPherson system must actuate an

increased force compared to the double wishbone one.
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3.1 Suspension types

Variable geometry suspension systems can be built in
several constructions. In this paper two of them are pre-
sented: the double-wishbone and the McPherson sus-
pension. Both suspensions are widely used in passenger
cars, and they can be reconstructed to active systems
easily. Besides, the positions of arms of these suspen-
sion types depend on the movement of the tire and the
chassis, therefore it is possible to formulate their kine-
matic relationships without complex high-fidelity Finite
Element Methods.

The kinematic model of the variable-geometry suspen-
sion based on the double wishbone suspension system is
presented in Figure 3. In this type of suspension the ac-
tuator is positioned in point A, therefore point A is able
to move in the lateral direction. This actuation affects
the modification of wheel camber angle. In the kine-
matic modeling of the double-wishbone suspension the
masses, inertias and the elasticity of the construction el-
ements are ignored, and the arms of the suspension are
modeled as bar elements. The suspension is analyzed in
a coordinate system which is fixed to the chassis. Con-
sequently the rolling of the chassis and the road irreg-
ularities have the same effect in terms of the moving of
the wheel compared to the chassis. The deduction of the
formalization of the wheel camber angle depends on the
geometric position of the suspension points, road irreg-
ularities and the input of the mechanism. The vertical
forces of the suspension are considered as an indirect way
in the modeling of the suspension movements. The ef-
fects of the movement of the chassis are similar to those
of road irregularities. The transformation of the double-
wishbone suspension parameters to the parameters of a
quarter-car model is presented by [17].
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3.2 Front-rear wheels

An important point in the analysis of the variable-
geometry suspension is the efficiency of the position of
controlled suspension. Nonzero wheel camber affects the
lateral force in the tire-ground contact, which is formu-
lated by the next expression at small side-slips [15]:

Fy = Cγγ (1)

where γ is the wheel camber angle, Cγ is a coefficient
which represents the stiffness of the camber. The lateral
dynamics of vehicle is extended with (1), thus linearized
tire model is the following:

Fy,i = Ciαi + Ci,γγ, (2)

where i ∈ [1, 2] represents the front and rear suspen-
sions, Ci is cornering stiffness, αi is the side-slip angle
and Ci,γ relates to front and rear Cγ . Consequently, it
is possible to actuate both the front and the rear sus-
pensions. Therefore it is necessary to analyze if there
is any difference between the actuation in the front and
rear suspensions.

The efficiency of wheel camber actuation is analyzed
using a high-fidelity vehicle simulation software in order
that the complex Pacejka Magic-formula tire model is
compared to the formulated control oriented linear tire
model. The tire parameter of linear model C1,γ is ap-
proximated by using a least square method from simu-
lated signals when changing the front and rear camber
angles. Front and rear wheel parameters Cγ are esti-
mated at different velocities, see Figure 5. Note that the
value of parameter C1,γ is higher than that of C2,γ . It
demonstrates that the efficiency of the front wheel cam-
ber angle on lateral vehicle dynamics is more significant
than the rear wheel camber angle. This factor explains
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There is another aspect of suspension control on the
rear wheels. [11] proposes a system architecture in which
the suspension geometry is modified to realize active toe
angle on real wheels. In this concept the goal is to im-
prove driver performances using a driver assistance sys-
tem: the driver steers the front wheels and a controller
assists the driver during the rear wheel toe angle modi-
fication.

3.3 Double effect: camber & toe angles

The geometry of the suspension determines the rota-
tion of the wheel at camber modification. In the case
of double wishbone suspension at camber modification
the wheel rotates around an axis, which is determined
by the steering track-rod end and the connection point
of the lower arm, see Figure 6. It means that the posi-
tion of the track-rod end has an important role in the
rotation of the wheel. Angle ε represents the angle of
the axis, around which the wheel rotates at actuation.
The consequence of angle ε is the relationship between
the camber angle and the toe angle. During actuation
there is camber angle modification and an additional toe
angle. It means that a suitable suspension geometry can
improve the lateral force on the tire not only by the cam-
ber angle, but also by the toe angle.

The angle ε is determined by the position of the track-
rod end and connection point of the lower arm. The
lower arm position can be determined by other suspen-
sion construction performances [1], therefore it is neces-
sary to influence the height and length of the track-rod.
The length of track-rod plays a role in steering design [5],
therefore the height of track-rod is chosen to influence
wheel rotation. An appropriate choice of this height can
improve the lateral force in the tire-road contact with
the common camber and toe angle.
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In both systems it is necessary to determine force resis-
tances, which influence the necessary power of the actu-
ator.

The in-built hydraulic actuator must compensate for
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ber angle. In order to modify the camber angle of the
rotated wheels it is necessary to generate energy against
the gyroscopic effect. The torque of the rotation of the
wheel around its longitudinal axis is formulated by the
following assumption:
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where Jw is the inertia of the wheel on the rotation axis,
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modified. Since in most cases the tire can not be pushed
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the tire-road contact point induces the movement of the
chassis. It means that the hydraulic cylinder must in-
crease the potential energy of the system and compen-
sate for the energy dissipation of the damper. The for-
mulation of this resistance depends on vehicle roll dy-
namics, see [15].

The lateral movement of actuator cylinder can result
in a lateral movement of tire-road contact area in the
plane of the road, see Figure 6. In Section 3.3 the im-
portance of ε is established in the aspect of lateral forces.
The rotation of the wheel also induces the movement of
the tire-road contact area, which results in increased tire
wear. The position of the rotation axis influences the po-
sition of the wheel, and during it the movement of the
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rear wheels. [11] proposes a system architecture in which
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to generate energy against the gyroscopic effect. The torque of
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Mgy = 2Jwv/rwγ̇ (3)

where Jw is the inertia of the wheel on the rotation axis, v is the

velocity of the vehicle and rw is the wheel radius.

During camber actuation the position of the wheel is modi-

fied. Since in most cases the tire can not be pushed into the

road (except sand), the vertical movement of the tire-road con-

tact point induces the movement of the chassis. It means that the

hydraulic cylinder must increase the potential energy of the sys-

tem and compensate for the energy dissipation of the damper.

The formulation of this resistance depends on vehicle roll dy-

namics, see [15].

The lateral movement of actuator cylinder can result in a lat-

eral movement of tire-road contact area in the plane of the road,

see Fig. 6. In Section 3.3 the importance of ε is established in

the aspect of lateral forces. The rotation of the wheel also in-

duces the movement of the tire-road contact area, which results

in increased tire wear. The position of the rotation axis influ-

ences the position of the wheel, and during it the movement of

the tire-road contact. An increased lateral movement of the con-

tact area requires increased frictional energy E f ric, which must

be generated by an actuator force. E f ric depends on the position

of the wheel rotation axis:

E f ric = f (ε) (4)

In this section several factors of variable geometry suspension

actuator forces have been proposed. When the wheel camber

angle is modified, the electro-hydraulic cylinder must actuate

energy to equalize the mentioned resistances. It is also deduced

that resistances depend on the construction of the suspension.

4 Performances and design aspects

4.1 Performance specifications

In this section the performance specifications concerning both

the construction of the variable-geometry suspension and the

design of the control are formulated. In normal cruising ma-

neuvers the steering control assists the driver in following the

trajectory, while the variable-geometry suspension control also

focuses on other performances. It minimizes the chassis roll an-

gle by modifying the roll center of the vehicle. Moreover, the

half-track change can also be minimized by using the variable-

geometry suspension system. Consequently, the performance

requirements are related to the yaw-rate tracking, the roll angle

and the half track change. Besides, control input must also be

reduced.

Trajectory tracking

In the trajectory tracking control the vehicle must follow the

reference yaw rate. The goal is to minimize the difference be-

tween the reference yaw rate and the measured yaw rate of the

vehicle:

z1 = |ψ̇re f − ψ̇| → min (5)

Minimization of chassis roll angle

It has also been shown that the roll center depends on con-

troller actuation and road disturbances. The height of the roll

center has an important role in the vertical dynamics of the ve-

hicle, it determines roll motion. A possible way to minimize the

chassis roll angle is the minimization of the height of the roll

center hM . In this case the difference between the roll center and

the center of gravity must be minimized:

z2 = |hCG − hM,st | → min (6)

In the aspect of z2 performance it can be established that the

height of roll center in steady state is determined by the sus-

pension construction. Besides, the vertical movement of the roll

center is determined by tz and ay, where ay is control input. It

means that the minimization of the roll center is determined by

the construction and control of the suspension simultaneously.
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Half-track change minimization

An additional important economy parameter is the half-track

change ∆B = f (tz, ay). The lateral movement of the contact

point is relevant from the aspect of tire wear [7], when the sus-

pension moves up and down while the vehicle moves forward.

By using an appropriate variable geometry control these unnec-

essary movements can be eliminated:

z3 = |∆B| → min (7)

Control input minimization

During the control tasks it is necessary to prevent large con-

trol input, which is the lateral movement of a suspension arm ay

depending on the suspension construction. It has construction

limits, therefore the fourth performance focuses on the mini-

mization of the input displacement:

z4 = |ay| → min (8)

4.2 Suspension construction and control design

In the case of a variable geometry suspension the previous

performances must be guaranteed. The performance vector of

the system is:

Z =
[
z1 z2 z3 z4

]T
(9)

It is necessary to design an appropriate construction and a con-

troller for suspension system which is able to guarantee z per-

formances simultaneously. However, the minimization of each

performance requires different control inputs. Therefore it is

necessary to find a design technique, which is able compute a

construction and a controller, by which it is possible to achieve

a balance between performances. It is realized by the weight-

ing of performances, see [14]. Then a cost function J , which

depends on weights Wi, suspension control K and some con-

struction variables h j is formulated. The optimization task of

the variable geometry suspension system design is the follow-

ing:

min
K,h j

J(Wi,K, h j) (10)

5 Conclusion

In the paper the challenges and possibilities of the variable

geometry suspension system have been analyzed in detail. The

interaction between suspension construction and control design

has been presented and several aspects for the construction ef-

fects have been analyzed. The performance specifications have

also been presented and the optimization task has been formal-

ized.
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