
Scaling a Plagiarism Search Service on the BonFIRE

Testbed

András Micsik, Péter Pallinger

Department of Distributed Systems

MTA SZTAKI

Budapest, Hungary

{andras.micsik, peter.pallinger}@sztaki.mta.hu

Dávid Siklósi

Informatics Laboratory

MTA SZTAKI

Budapest, Hungary

{david.siklosi}@sztaki.mta.hu

Abstract—The KOPI Online Plagiarism Search Portal – a

nationwide plagiarism service in Hungary – is a unique, open

service for web users that enables them to check for identical or

similar contents between their own documents and the files

uploaded by other authors. As our recent result, we can also

detect cross-language plagiarism, but with a highly increased

computational demand. The paper describes our experiment with

the BonFIRE testbed to find a suitable scaling mechanism for

translational plagiarism detection in a cloud federation.

Keywords—cloud federations; cloud testbeds; scaling; elastic

computing; plagiarism search

I. INTRODUCTION

The KOPI Online Plagiarism Search Portal [1] of SZTAKI
has been a well-known, operational service since 2004 for
English and Hungarian languages. For professors and teachers
KOPI gives the opportunity to compare theses and home
assignments to all documents uploaded before, or to various
document sets openly accessible on the Internet. Students can
check their own written works to see if the amount of citation
has exceeded the limit set by their home institution. They can
also protect their theses by uploading them to the system under
their names.

Recently, an innovative feature – cross-language plagiarism
detection – was implemented within KOPI, for the first time in
the world [2]. For example, with the cross-language feature it is
now possible to find paragraphs taken from English Wikipedia
and translated into Hungarian. This new technique is costly in
terms of processing and data storage; therefore we sought
solutions for scaling our service using cloud technologies. The
paper describes our experiments for the evaluation of scaling
solutions using the outstanding testing and monitoring facilities
of BonFIRE.

BonFIRE [3] offers a multi-site testbed with heterogeneous
cloud resources, including compute, storage and networking
resources, for large-scale testing of applications, services and
systems targeting the Internet of Services community.

BonFIRE provides a test platform with an API and a portal
both supporting the uniform management of compute nodes,
data blocks and network connections in the federated
environment of 7 clouds. Among the specific features of
BonFIRE one can found bandwidth control for network,

integration with Amazon, and a ubiquituous monitoring
framework, which is of prime importance for us.

The next section of the paper describes the architecture and
preparations for the KOPFire experiment, section 3 analyzes
the possible scaling actions, while section 4 describes the
concrete scaling solution and its measurement. Section 5
explains aspects of fault tolerance in the solution, followed by a
conclusion.

II. KOPI ARCHITECTURE FOR SCALING

The new cross-language plagiarism search feature of KOPI
(introduced in 2011) requires a lot more resources than the
original single-language service. We needed to see the
possibilities for making the service faster and more adaptive
using clouds and their federations. The KOPFire experiment
started with the design of the experiment. Before the design is
presented we need to explain the data flow of the KOPI
service.

Fig. 1. Overview of request processing in the experiment

The KOPI service works asynchronously: it accepts
requests in the form of uploaded documents, which are checked

KOPI Frontend

KOPI Engine

Fulltext Cluster

1. Document
upload

2. Collect new document

3. Fulltext queries

Request queue

4. Prepare and send
result

Document index

micsik
Typewriter
Accepted at 2013 IEEE International Conference on Cloud Computing Technology and Science

for copied content over various databases. After this, a report is
sent to the user containing the copied parts and their original
sources. Processing of incoming user requests is based on a
queue, from which processing nodes take out requests and put
back results after processing.

The steps of processing user requests are shown in Fig. 1.
First, a user uploads a document, which is stored as a request
on the KOPI Frontend, a simplified version of the KOPI portal.
The KOPI Engines regularly poll the frontend for new requests
to be processed. When a KOPI Engine gets a request, it starts
processing the document, and during this, it sends many
fulltext queries to the Fulltext Cluster consisting of several
virtual machines and index data blocks. With the results of the
fulltext queries the KOPI Engine compiles the results of
plagiarism search. Finally, the result is sent back to the
Frontend, which means it is ready for download by the user. In
the results, the user receives a list of potentially copied parts in
his document together with their sources and the probability of
plagiarism.

Fig. 2. Basic experiment setup

The service has been modelled in the BonFIRE
environment according to Fig. 2., and has been set up and
tested at three BonFIRE locations: EPCC, INRIA and HLRS.
The Experiment controller is the main entry point for managing
and running experiments. This contains several custom scripts
developed specifically for the BonFIRE experiments. The
KOPI Frontend is a simplified web frontend for KOPI, which
imitates receiving requests from users and maintains the queue
of documents to be processed. The number of KOPI engines
acquiring jobs from the queue can be scaled arbitrarily, also
across clouds. Fulltext Clusters can be scaled as a whole, where

each cluster contains an aggregator host and several hosts
running the fulltext query engines. The fulltext index is
partitioned into index blocks, where each index block is
mounted by a single query engine. Thus fulltext queries are
run in parallel over all index partitions (i.e. all Fulltext Engines
in the cluster), and the results are collected and merged by the
Fulltext Aggregator node in the cluster.

The cooperation between nodes in the architecture is based
on the frontend and configuration settings at each node. The
address of the Frontend and available Fulltext Clusters are
configured in each KOPI Engine. The KOPI Engine not only
asks for new document, and sends results to the Frontend, but
also reports periodically about its progress, so that the Frontend
knows the percentage of the document processed so far. Based
on this, the Frontend can calculate the amount of work yet to
be done on all documents in the queue.

As an approximation we can assume that the KOPI Engine
issues some fulltext queries for each sentence in the document
while processing. For this, it selects randomly one Fulltext
Cluster from the list. Due to the implementation, the queries
cannot be sent in parallel, but the result of each fulltext query
must be received before doing any further processing.
Typically, finishing a document this way takes 20 to 50
minutes (depending on document size). The migration of a
running process to another KOPI Engine is not solved as it
would be too complex because of the large number of
intermediate results to be moved. Therefore, a document can
either be finished or put back into the queue in which case the
intermediate processing results are lost.

The Fulltext Aggregator connects to all Fulltext Engines
according to its local configuration. Nodes running Fulltext
Engines must have the index partition mounted as a separate
data storage block, which can be done via local mount or via
remote NFS to the shared NFS server of BonFIRE. The
number of threads running inside the fulltext query process can
also be locally configured.

The overall question is how to scale KOPI Engines and
Fulltext Clusters in order to stabilize the end-to-end response
time of the service. The response time consists of the waiting
time in the queue and the processing time at one of the KOPI
Engines. As vertical scaling is infrequently supported by
current clouds, we need to limit ourselves to horizontal scaling
solutions. Furthermore, replacing component nodes with faster
virtual machines (VMs) is not a viable option, as VM setup is
slow and running processes should not be interrupted. With
horizontal scaling, the processing time depends on the speed of
the Fulltext Cluster, but basically it can hardly be influenced in
a given setup, as long as the Fulltext Clusters are not
overloaded. Therefore, we need to focus on manipulating the
waiting time of document requests. For this task, first we need
to understand the effects of individual scaling actions and also
the time needed to perform these scaling actions.

III. SCALING ACTIONS

The Fulltext Cluster was created in two variants for the
experiment based on a smaller and a bigger index. The small
index contains 5 index partitions of 2.1 GB size. The big index
has 10 partitions of 10.7GB size. Each partition has a dedicated

FT

Engines
FT

Engines

Query

Engine

KOPI

Frontend

Query
Engine
KOPI

Engines

Fulltext

Engines

Experiment
controller

BonFIRE

API

Fulltext

Engines

Location 2

KOPI

Engines

Location 1

Index

blocks
Index

blocks

Index
blocks
Index
blocks

Fulltext Clusters

Fulltext

Aggregator

Fulltext

Aggregator

VM and one aggregator node per cluster, which collects and
merges the results from index partitions. Therefore, the small
cluster contains 6 VMs and the big cluster contains 11 VMs.

The time needed to create a cluster varied by cloud location
in a range of 2.5-7 minutes for the small cluster, and 9-12
minutes for the large cluster. Stopping a cluster requires to
issue the delete commands for all VMs which usually took 22-
65 seconds. However these time values may further increase in
case the cloud is overloaded.

It is worth to mention, that cluster creation requires that all
index partitions are uploaded to the cloud and available as a
mountable storage block. This is done only once when
including a new cloud to the scaling environment, but the full
upload time can take 3-12 hours in case of the big index. This
is a considerable delay which forbids the quick expansion to
new clouds as a remedy for sudden bursts in usage.

Creating a KOPI engine is simpler, yet it can take 50 to 120
seconds depending on the current load in the cloud.

It is also important to see the relations of various
configuration settings with the overall speed of processing. We
found that the processing time is roughly linear to the
document size, although there may be big differences when
document language or style differs. We also observed that there
is little regularity in response times for fulltext queries issued
in the background while processing a document.

0 200 400 600 800

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

cps

D
e
n
s
it
y

Fig. 3. The normalized distribution of cps values measured in a KOPI Engine

We needed some way to characterize the speed of
processing documents; therefore we introduced a new metric:
characters per second (cps); which tells us how many
characters of a document have been processed in a second. In a
fairly stable work context the cps measured at a single KOPI
Engine has a clear trend (Fig. 3).

We ran several experiments to measure the overall speed of
possible setups. First, the number of threads within each
fulltext query engine can be configured. Compute nodes with 2
cores and 2 GB RAM have been used for Fulltext Engines, and
we found that the query performance is optimal with 4 threads
in this case.

The overall processing speed of KOPI Engines is maximal
in case the number of KOPI Engines using the cluster equals to
the threads running in the query engine process (Fig. 4),
although a small deviation from this causes no serious
degradation of performance. Fig. 4 also shows that there is not
much difference in speed between locally and NFS mounted
index partitions.

Regarding the KOPI Engine nodes the number of document
checking processes depends on the memory available, so a
small VM instance with 1GB RAM can tolerate up to 4
processes, but running just 1 or 2 processes is the safest.

Further measurements revealed that the round-trip time of
network communication between different clouds is about
30ms, which means that effectively it is almost the same to
have component in a local or in a remote cloud. Furthermore
we did not need controlled network bandwidth between clouds
as the data transferred between nodes is typically small (some
hundred kilobytes at most). However there is significant
difference in the speed of I/O and VM management operations
among the clouds in the federation.

Fig. 4. Processing speed for several workers using one fulltext cluster

IV. SCALING ALGORITHMS

The scaling solution was implemented using the Ruby
Restfully add-on for BonFIRE which provides easy
manipulation of resources via the BonFIRE API as well as easy
access to monitoring data from the BonFIRE Aggregator
running Zabbix. The script configures and runs controlled
experiments while collecting monitoring data at the same time.

A scaling experiment is initiated by setting the desired
limits for the number of clusters, number of KOPI Engines,
measurement intervals, etc. and selecting a queue sample (i.e. a
sample usage pattern recorded) and a scaling algorithm. Then
the KOPI Frontend and other initial components are configured
and document processing is started. During the experiment,
the important metrics are collected frequently from the
BonFIRE Aggregator. The scaling algorithm is run in a loop:

• A decision is made about necessary scaling of KOPI
Engines.

• KOPI Engines are scaled.

• Fulltext Clusters are scaled according to the current
number of KOPI Engines. The goal is to have a cluster
for every 4-5 KOPI Engines.

• The status of document processing is checked: if all
documents are done then the experiment is finished. If
there are documents with no progress for longer time,
the environment is checked for errors.

• Waiting a configurable amount of time (typically two
minutes) before next scaling decision.

In the Frontend additional measures were implemented,
some of them were collected by Zabbix, some of them were
fetched on-demand by the scaling script. The former group of
measures include the queue size, the current cps, the number of
characters altogether in the queue, etc. The latter group
contains data helping decision making and fault tolerance: list
of engines that seem to stopped working, time of latest report
from any engine, etc.

0 5 10 15 20 25

0
1

2
3

4
5

6

greedy

time

n
u
m
b
e
r

queue size

kopi engines

Fig. 5. Processing documents with ‘greedy’ scaling

0 5 10 15 20 25 30

0
1

2
3

4
5

6

step

time

n
u
m
b
e
r

queue size

kopi engines

Fig. 6. Processing documents with ‘stepper’ scaling

This general framework can serve for various scaling
solutions. We have chosen some threshold-based techniques as
characterized in [4]. The natural option is to scale based on the
queue size which means the number of documents for which
processing has not finished yet. Our ‘greedy’ algorithm tries to
start the processing of all documents in the queue, within a

given maximum allowed for compute nodes. A sample run is
presented in Fig. 5, showing the change in queue size and
number of running KOPI engines over time (on a minute scale)
until all documents are processed. A more traditional ‘stepper’
algorithm scales up or down with a single KOPI Engine in one
cycle (Fig. 6), also based on the queue size. We also thought
about scaling based on the size of all documents in the queue,
but this won’t help as we cannot speed up the processing of a
single large document by scaling up.

Another approach for scaling can be based on the
processing speed. In case we want to achieve a certain
processing speed (cps) for all documents in the queue, we can
set the following goal:

desired_cps * queue_size = measured_cps * engine_size

where engine_size is the suggested number of KOPI Engines
currently. In order to smooth the oscillation of cps,
measured_cps should be an average of measured values in a
longer time window. A sample run of our ‘speed’ algorithm is
shown in Fig. 7. For this algorithm, the desired cps value has to
be given as a parameter.

0 5 10 15 20 25

0
1

2
3

4
5

6
speed

time

n
u
m
b
e
r

queue size

kopi engines

Fig. 7. Processing documents using a processing speed based scaling

0 10 20 30 40

0
1

2
3

4
5

6

fix

time

n
u
m
b
e
r

queue size
kopi engines

Fig. 8. Processing documents with a fix number of KOPI Engines

For comparison, we also provide a method without any scaling,
which runs a given number of KOPI Engines (Fig. 8).

Samples taken from the usage statistics of the real service
were used to test and tune the scaling algorithms. Fig. 9 shows
a comparison of the implemented scaling algorithms on a
sample of 14 documents with a processing time of roughly 1.5
hours. The time label means the total completion time of the
whole sample queue in seconds. The cost is calculated as the
sum of the cores used per minute. The maximum difference
between the completion times is around 10%, while the
maximum difference in costs is around 11%. Further
experiments showed that the winner varies greatly based on the
usage pattern.

For example, Fig. 10 presents another comparison of the
scaling algorithms on a different 30 minutes long test run. On
this shorter period there is a clear winner in speed: the greedy
algorithm, which is 33% faster than the slowest solution
running a single fixed KOPI Engine. It should be noted, that
winner in cost category is the “fix 3” algorithm, although the
greedy algorithm has just slightly more cost. The second
sample proves that in some cases there can be large differences
in the performance of the scaling algorithms. It requires further
research to approximate the optimal scaling algorithm
depending on the current queue characteristics. On one side
this depends on the future of the queue, which is quite
unpredictable as it does not match any of the usual workload
conditions (on-off etc.). On the other hand, the samples suggest
that on the long run the time or cost differences become quite
small.

0

1000

2000

3000

4000

5000

6000

7000

greedy stepper speed 100 speed 130 speed 160 fix 2 fix 3

time

cost

Fig. 9. Comparison of various scaling algorithms on a 1.5 hours sample

The technique used for scaling is closest to threshold-based
techniques such as RightScale [5], where the thresholds are not
fixed, but calculated from queue statistics. The increment and
decrement steps are not fixed either. The waiting period after a
scaling operation is naturally ensured by waiting for the scaling
operation to finish. Our technique has similarities with control
theory using a feedback controller [6]. The stepper, greedy and
speed algorithms implement typical fixed gain controllers,
where the current state (queue size, processing speed, number
of engines working, etc.) is used to generate control actions to
the system with the goal of maintaining selected QoS
parameters of the system. Control theory also gives us future

directions for improvement such as adjusting controller tuning
parameters on-the-fly or switching between scaling algorithms
dynamically (reconfiguring control). We did not use any
predictive or learning approaches [7] such as time-series
analysis or reinforcement learning, because we think the usage
of our service is largely unpredictable, and it lacks fix patterns
as well. Furthermore, if we expand our service to many new
customers, then previously collected patterns or prediction
models become obsolete with great probability.

0

500

1000

1500

2000

2500

3000

3500

4000

greedy stepper speed

100

speed

130

speed

160

fix 1 fix 2 fix 3

time

cost

Fig. 10. Comparison of various scaling algorithms on a 0.5 hours sample

V. FAULT TOLERANCE

The engines processing documents periodically report their
status to the document queue. However, this report may come
quite infrequently as the engine may wait for 3-6 minutes to get
reply from an overloaded fulltext cluster. Overall, it can take
10-15 minutes until we can surely state that there is a problem
with the processing of a certain document. If the problem is
corrected earlier and the engine is stopped, we loose all
previous processing done on the document, so even 30-40
minutes of processing work can be lost.

After detecting the problem, we still don’t know the root of
the problem, which can be quite many. Therefore a continuous
state checking was added to the experiment controller, which
goes over each running component and checks its correct
operation. The checking process can detect and correct the
following errors:

• The KOPI engine failed or it is not accessible,

• The document checking process died on the KOPI
Engine,

• The addresses of Fulltext Clusters are not properly set
in the KOPI Engine,

• The Fulltext Aggregator failed or it is not accessible,

• The aggregator process on the Fulltext Aggregator node
is not running,

• The addresses of fulltext engines are not properly set in
the aggregator,

• A Fulltext Engine failed or it is not accessible,

• The query engine process is not running on a Fulltext
Engine,

• The query engine process is running, but provides
incorrect answers on a Fulltext Engine.

The checking period can be freely set, and the check may
take 0.5 to 7 minutes depending on the number of components
and the load of used cloud environments.

VI. CONCLUSIONS

We presented the solutions and measurements of automatic
scaling experiments of a real service in a cloud federation
testbed. We will be able to exploit the know-how and also
concrete code parts in the real service.

The result of the scaling experiments with KOPI helps us to
provide better response times for the service, so that we can
avoid situations when days are needed to process waiting
documents. Furthermore, we can estimate the time needed to
finish documents, and thus we can also influence the cost and
quality of our service by automatic scaling.

The availability of the service can also be increased with
the new fault tolerance mechanism which automatically checks
and replaces or restarts failed components.

.All these results help us in further growing our user base
and establish new business relationships.

ACKNOWLEDGMENT

This work has been supported by BonFIRE, an EC
supported 7

th
 Framework Programme ICT project (FP7-

257386).

REFERENCES

[1] KOPI Online Plagiarism Search Portal, http://kopi.sztaki.hu

[2] M. Pataki, “A new approach for searching translated plagiarism”, 5th
International Plagiarism Conference, 16-18 July 2012, Newcastle, UK

[3] EC FP7-ICT BonFIRE Project, http://www.bonfire-project.eu/

[4] T. Lorido-Botrán, J. Miguel-Alonso, J. A. Lozano, “Auto-scaling
Techniques for Elastic Applications in Cloud Environments”, UPV/EHU
Technical Report: EHU-KAT-IK, 2012.

[5] RightScale Cloud Management, http://www.rightscale.com/, 2012

[6] T Patikirikorala, A Colman, “Feedback controllers in the cloud”, 17th
Cloud workshop at Asia Pacific Software Engineering Conference
(APSEC 2010), 2010.

[7] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs and R. M.
Badia, "Semantic Resource Allocation with Historical Data Based
Predictions", in proceedings of the IARIA First International Conference
on Cloud Computing, GRIDs, and Virtualization, 2010.

