
Data Bridge: solving diverse data access in scientific
applications

Zoltán Farkas and Péter Kacsuk and
Ákos Balasko and Krisztián Karóczkai

MTA SZTAKI
Hungary, 1518 Budapest, Pf. 63.

Email: zoltan.farkas@sztaki.mta.hu

Marc Santcroos and Silvia Olabarriaga
AMC

The Netherlands, 1100 DE Amsterdam, PO Box 22700
Email: m.a.santcroos@amc.uva.nl

Abstract—The nature of data for scientific computation is
very diverse in the age of big data. First, it may be available
at a number of locations, e.g. the scientist’s machine, some
institutional filesystem, a remote service, or some sort of database.
Second, the size of the data may vary from a few kilobytes
to many terabytes. In order to be available for computation,
data has to be transferred to the location where the computation
takes place. This requires a diverse set of middleware tools that
are compatible both with the data and the compute resources.
However, using this tools requires additional knowledge and
makes running the experiments an inconvenient task. In this
paper we present the Data Bridge, a high-level service that can
be used easily in scientific computations to perform data transfer
to and from a diverse set of storage services. The Data Bridge
not only unifies access to different types of storage services, but
it can also be used at different levels (e.g., single jobs, parameter
sweeps, scientific workflows) in scientific computations.

I. INTRODUCTION

There are many different distributed computing infrastruc-
tures (DCIs) that users would like to access from scientific
workflows and science gateways. In order to hide the different
APIs needed to access these very different DCIs such as
grids, clouds, clusters, desktop grids, and supercomputers, we
have developed the DCI Bridge service [1] and connected it
to the WS-PGRADE/gUSE science gateway framework. As
a result, application-oriented science gateways, which were
developed by the customization of the WS-PGRADE/gUSE
framework, can currently access all these types of DCIs
transparently from the nodes of WS-PGRADE workflows. As a
consequence workflows can be ported between DCIs by simply
re-configuring them for another infrastructure.

Many of these scientific applications manipulate a large
amount of data of different types, for example medical images
or DNA sequences. The data is stored on different types of
storage systems, like a local file system, a distributed or shared
file system, some sort of service catalog, or in a database
system. Access to these data might be difficult, as detailed
knowledge and specific tools are needed to fetch or upload
the data. Although easy-to-use (web) interfaces might be
available for the individual systems, using them in combination
is required in complex processing systems such as scientific
workflows. In order to provide access to a diverse set of storage
resources, the system needs to be aware and provide support
for data access using the different APIs of each storage service.

Our approach for solving this problem is very similar to the

concept of the successful DCI Bridge. In the scope of the SCI-
BUS project [2], we designed a new service called the Data
Bridge service, which provides a unified interface for accessing
different storage services, e.g., HTTP, FTP, GridFTP [3], SRM
[4] and Amazon S3 [5]. In the current paper we describe the
main concepts and features of this new service.

The organization of the paper is as follows: we first
present an overview of related work, and then we gather the
requirements towards the system. Afterwards we present the
Data Bridge in detail and show how a complex scenario can
be supported. Finally, we discuss our preliminary results, and
present our current and future work.

II. RELATED WORK

OGSA-DAI [6] provides a web service for accessing dif-
ferent data resources such as relational or XML databases, files
or web services. The data can not only be queried and updated,
but modified and transformed as well. The OGSA-DAI service
was used in many different projects.

The Storage Resource Broker (SRB) [7] offers a middle-
ware that provides clients a uniform access to a diverse set of
storage resources. Two type of “drivers” are available: file-type
drivers (for example UNIX filesystems) and DB-type drivers
(for example IBM DB2 and Oracle databases).

The integrated Rule-Oriented Data-management System
(iRODS) [8] is a scalable grid software solution for managing
files in the order of hundred million and total size in the
order of petabytes. It is capable of making use of a number of
authentication mechanisms, supports a wide range of physical
storages, and has support for metadata attributes.

jSAGA [9], the Java implementation of the Simple API for
Grid Applications (SAGA) Open Grid Forum (OGF) specifica-
tion [10] provides a Java API to access different grid services,
including storage services as well. jSAGA provides an easily
extensible platform for accessing FTP, GridFTP, iRODS, SRB,
LFC service.

Globus Online [11] offers a service for managing data
available on GridFTP endpoints. It has a web interface, it
is also usable through command-line tools, and it provides a
REST API as well. Users of Globus Online can monitor their
data transfers, which have automatic error recovery.

The presented tools and services offer varying features,
but because of their different scopes, all of them have their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48293488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


weaknesses outside of their intented purposes, for example,
they only support a limited variety of storage services (OGSA-
DAI, SRB, Globus Online), do not provide an API (iRODS),
are not available as a service (jSAGA), or are based on a
too heavy software stack (OGSA-DAI, SRB). Our aim with
the Data Bridge is to mix the advantages of these tools in a
lightweight service.

III. REQUIREMENTS TOWARDS THE SYSTEM

In this section we present some use cases for the Data
Bridge service. The three main considerations are the follow-
ing: easy-to-use user interface to browse and manage data
stored on a storage resource; transfer of data between different
types of storage resources, and finally data handling from
compute resources.

Figure 1 covers the high-level needs of users concerning
ease of use: a convenient user interface is necessary for end-
users so that they can browse, download and upload data from
and to the storage resource. Moreover, users should be enabled
to select data for running experiments on the DCI. In case
of web portals, such interfaces are typically implemented as
a portlet, thus the user interface can be built as a viewing
portlet (Storage View) that uses functions exposed by a Data
Bridge service to access the various storage resources. The
same interface can also be used to upload and download data
from and to the user’s own machine to and from the selected
storage. The advantage of using the Data Bridge service
clearly appears if storage resources of multiple types should
be accessed: instead of interfacing with multiple storage APIs
from the storage browsing graphical interface, the developer
of the Storage View component should access only the Data
Bridge service.

Figure 2 covers the case where large amount of data needs
to be transferred from a given storage resource to another stor-
age service, considering the generic case of Storage services
located in different DCIs. This is particularly necessary in case
the experiment, or even a single job, runs on an infrastructure
that is different from the one where the data is stored on.
In such case the data needs to be transferred from the original
storage location to the storage location of the compute resource
to ensure high data transfer rate during data processing time. In
Figure 2, the user is requesting the Data Bridge to perform the
copy operation, but this can also be initiated programmatically
by the workflow management system, for example. The Data
Bridge has access to both Storage 1 and Storage 2, and
performs the copy. However, would the Data Bridge have no
access to Storage 2, it could make use of an other Data Bridge
in a hierarchical organization.

The third use case covers the needs of handling data in jobs:
once a job has been started on a compute node, the job may
need to access data on a storage service for input or output.
The Data Bridge can be used in this case as a unified interface
to get or put the data. As shown in Figure 3, a wrapper script
fetches input files for the job before the job is actually started,
and it uploads the output files of the job to target storage after
the job has been executed. Such wrapping methods can be used
to make storage-aware legacy applications without the need to
modify the application itself. As a consequence, using the Data
Bridge with this wrapped execution offers a convenient way

User's 
machine

Storage View

Action Action Action Action

Data Bridge client

Data Bridge Service

Browse Upload

Storage Service

Fig. 1. Storage browsing and data upload

Data Bridge

Storage 1 Storage 2

Fig. 2. Transfer between different storage types

Data Bridge 
Service

Storage Service

Pre-processing

Execution

Post-processing

Wrapper

Compute node

Fig. 3. Using the Data Bridge from a Compute node

to provide access to a diverse set of storage resources for any
kind of application.

IV. DATA BRIDGE

In this section we present the Data Bridge design in detail.
First we show the high-level architecture, and then we present
the different components in more detail.



Amazon S3Data Bridge

Initiate 
upload Redirection

Actual data 
transfer

Fig. 4. Data transfer redirection

The Data Bridge itself is implemented as a web application
exposing a number of operations for managing the data located
on different storage. For the client, two main interfaces are
available: one web service interface for initiating operations,
and one servlet interface for performing any necessary data
up- and download.

Whenever possible, the Data Bridge is making use of data
redirection to minimize its network traffic: if the destination
storage is able to accept data through a simple HTTP protocol
(GET, PUT or POST methods), file up- and download requests
sent to the Data Bridge are redirected to the storage. Thus, the
data won’t be transferred through the Data Bridge, but will be
transferred directly between the client and the storage service.
The outline of this redirection in case of a client initiating
upload to an Amazon S3 storage is shown in Figure 4: first
the client connects to the Data Bridge initiating data upload.
Next, the Data Bridge responds with a redirection to URL
where the targeted Amazon S3 can accept the data, and finally
the client sends the data directly to the S3 storage.

Although we originally considered including support for
metadata attributes of databases in the Data Bridge, the first
version is limited to flat files on Storage services that organize
their data in a hierarchical structure, such as files and direc-
tories. In the rest of this paper we refer to the actual data as
file, and to the location of the data as directory.

A. High-level architecture

Figure 5 shows the high-level architecture of the Data
Bridge. Five main components or component groups can be
distinguished: the Public interface and HTTP Servlet accept
requests from external components; the Adaptor Manager
arranges the execution of the requested operations; the Adaptor
Interface, along with the different Adaptors, communicate
with the different Storage systems supported by the Data
Bridge; and the Temporary URL queue, which temporarily
stores incoming data put and get requests. Depending on the
incoming requests, the different Threads perform the requested
operation by making use of the relevant adaptor through the
generic Adaptor interface. We describe the different interfaces
and components in detail.

Public interface

Adaptor interface
Adaptor 1 Adaptor 2 Adaptor 3 Adaptor n

Worker 
Thread 1

Worker 
Thread 2

Worker 
Thread m

Thread Pool

Adaptor Manager

Storage 
1

Storage 
2

Storage 
n

Storage 
3

Data Bridge Adaptor

Data Bridge 
Service

HTTP Servlet

URI URI URI

Temporary URL queue

Fig. 5. Data Bridge architecture

B. Interfaces

There are two interfaces in the Data Bridge: the Public
interface and the Adaptor interface. These interfaces expose
the same set of operations, but through different technologies:
the Public interface offers a Web service, whereas the Adaptor
interface describes a Java API that the different adaptors should
implement.

The following operations are supported by the interfaces:
list, mkdir, delete, get, put, and copy. The operations use URIs
as their argument where applicable. The URI is an abstract Java
object that all the adaptors should extend in order to contain
all the necessary information to reference and handle the data
to be managed on that particular type of Storage service. For
example, in case of an HTTP adaptor the URI object should
contain an URL, or in case of a GridFTP adaptor the URI
object should contain a GridFTP URL and all the necessary
credentials (X.509 proxy certificate) to access the data. An URI
may represent either a file or a directory. All the operations
return either a result or an error message depending on the
success of the operation.

The list operation can be used to list the contents of a
directory entry, represented as an URI, and returns a list of
URIs found under the given entry. If the URI argument of the
operation references a file, the operation returns a single entry
with the URI of that file. Otherwise, the list of entries found
in the given directory is returned.

The mkdir operation can be used to create a directory entry.
The URI should represent a non-existing entry.

The delete operation can be used to recursively delete a
directory or a file represented by the URI. That is, if the URI
refers to a file, the file is removed. If the URI refers to a
directory, the entire contents of the directory is removed. Upon
termination, the function returns the list of URIs that were
tried, either with a success or failure indicator (in the latter
case, the appropriate error message is appended).

The get operation can be used to register a file download
request. The only argument to the function is the URI,
which should represent a file. The result of the operation is
a temporary unique Data Bridge URL (using UUID), that
can be accessed by the HTTP GET method to get the data



belonging to the file referenced by the URI. So if one wants
to fetch a file from a storage service using the Data Bridge,
first the get operation should be called to get a temporary
HTTP GET URL from the Data Bridge, and if the registration
has been successful, HTTP GET can be used to actually fetch
the data. Figure 5 shows how these temporary URLs are
organized in the data bridge.
The detailed usage of the get operation is as follows: first
the client uses the get operation of the Data Bridge’s Public
interface with the URI to the data to download. This will
result in putting the URI into the Temporary URL queue of
the Data Bridge, with a unique ID. This ID prefixed with
the HTTP servlet’s URL is returned as the result of the get
operation. Next, the client invokes an HTTP/GET method to
the Data Bridge’s HTTP servlet by using the temporary URL
to actually have the data downloaded: this will make the
HTTP servlet look up the URI belonging to the temporary
URL, and will make use of the relevant adaptor to actually
stream the data as a response to the HTTP/GET method. If
the data on the given storage can be fetched using HTTP
GET, the HTTP servlet instead of streaming the data through
the Data Bridge, will redirect the client to the HTTP URL
where the data can be fetched from the storage directly. Thus,
whenever possible, the data should be streamed directly from
its source, and not through the Data Bridge.
We have decided to implement the get operation following this
two-phase approach due to the way how data is accessed from
scientific workflows’ jobs: before the jobs of the workflow are
submitted, a component (for example the workflow system
or job submission component) can register the file up- and
download requests to the data bridge. Once this is done, the
component can submit the actual jobs encapsulated in simple
wrappers that are capable of fetching and uploading the data
using simple HTTP methods (for example wget of cURL
can be used to perform these tasks). Thus, the somewhat
complex operation of invoking the web service interface is
detached from the actual data transfer, so this latter task can
be performed really simply.

The put operation is very similar to the get operation.
The only difference is that in order to actually have the data
uploaded, the client has to invoke an HTTP/POST method for
the temporary URL returned by the put operation of the Public
interface, and stream the data to be uploaded to the given
temporary URL, or to the redirected storage URL is HTTP
PUT is supported by the storage.

The get and put operations in a simple scenario are shown
in Figure 6. In this case, before the submission of a job’s that
uses a data storage, the workflow system’s data management
registers the job’s down- and upload request through the Data
Bridge’s Public Interface. After this is done, the temporary
URLs associated with the input and output files are sent to the
job sumbission component that is responsible for preparing
an appropriate wrapper, that is capable of fetching input files
before running the actual executable, and uploading the pro-
duced output files after the actual executable has terminated.
The wrapper can be really light-weight, as it simply has to use
HTTP GET and POST methods to fetch and upload input and
output files, respectively.

The Temporary URL queue is periodically invalidated by

Workflow system

Execution node

Prefetch

Upload

Execute

D
at

a 
B

rid
geP

ub
lic

 I
nt

er
fa

ce
H

T
T

P
 S

er
vl

et

Job submission
component

Storage

Data
Management
Component

Fig. 6. Two-phase get and put operations

the Data Bridge, entries older that specified in a configuration
file are removed, resulting in an HTTP/404 (not found) status
code.

Finally, the copy operation can be used to copy data
from one location to an other. It accepts three arguments:
the source URI, the destination URI, and the optional URL
of a destination Data Bridge service. If the optional URL of
the destination Data Bridge service is not specified, the Data
Bridge service serving the copy operation should be capable
of handling both the source and destination URIs, that is it
should have all the relevant adaptors enabled. If the optional
URL of the destination Data Bridge service is specified, the
Data Bridge service serving the copy operation will make use
of its Data Bridge adaptor to issue a put operation to the
destination Data Bridge service using the destination URI and
the data served by the source URI’s adaptor to perform the
copy operation. This way, the Bridge services can be used in a
master-slave scenario, where master Data Bridge can use slaves
to perform the actual transfers to the selected target storage. Of
course, third party transfer should be used whenever possible
to minimize the amount of data transferred through the Data
Bridge service. For example, the GridFTP protocol enables
third party transfers.

C. Components

The remaining components of the Data Bridge that haven’t
been explained are the Adaptor Manager, the Thread Pool, the
Worker Threads, the Adaptors, the Temporary URL queue and
the HTTP Servlet.

The task of the Adaptors is to implement the Adaptor inter-
face for a given type of storage service, and are responsible for
actually communicating with storage service of the given type.
In order to minimize the necessary implementation work, we
have choosen to use jSAGA wherever possible to implement
the different Adaptors. The advantage of using jSAGA is that
is already provides a unified API to access files located on
different types of storages, like FTP, GridFTP or SRM. It is
important to note that the Adaptor Interface is not the same
as the interface offered by jSAGA, thus in order to implement
support for a storage type not handled by jSAGA, one does
not have to implement that support in jSAGA itself.

The Worker Threads are responsible for performing the



operations requested through the Public interface with the dif-
ferent Adaptors through using the Adaptor interface. Actually,
the web service framework used (JAX-WS) starts different
threads for the different web service requests, thus the Worker
Threads simply start processing the requested operation once
a call to the web service interface comes in. If follows from
this, that the Thread Pool is a simple pool for the Worker
Threads, also managed by the web service framework. The
Adaptor Manager is responsible for managing the execution
of requested Public interface operations through the Worker
Threads.

Finally, the Temporary URL queue and the HTTP Servlet
are responsible for actually serving and storing data belonging
to previously registered get and put requests as described
earlier. That is, if a get or put method is requested through
the Public Interface, the affected URIs are registered in the
Temporary URL queue, and the temporary URL is returned as
the response to the get or put methods. As described earlier,
after this cliens can invoke the HTTP Servlet through simple
HTTP GET and POST methods to actually down- or upload
the data, using the temporary URLs registered earlier.

V. SUPPORTING SCIENTIFIC WORKFLOWS WITH THE DATA
BRIDGE

In this section we describe a complex usage scenario of
the Data Bridge, in which end users of a science gateway
are running experiments on a local PBS cluster that processes
data residing on an Amazon S3 storage. Figure 7 shows the
outlines of the infrastructure. As shown in the figure, WS-
PGRADE/gUSE is used as the science gateway framework,
where users are accessing two user interfaces in the form
of portlets: the Storage Browsing portlet for browsing the
storage and selecting input and output data for the scentific
experiment, and the Workflow management portlet, that can
be used to parametrize and run the workflows belonging to the
experiments. As it is shown in the figure, the Storage Browsing
portlet is communicating with the Data Bridge to expose the
browsing and data selection functionality. Once the workflow
has been configured and submitted, its nodes are processed
by the WFI (WorkFlow Interpreter) component of gUSE. This
component is responsible for scheduling nodes of the workflow
for execution. Once a job is about to be submitted, it is sent
to the DCI Bridge job submission service, that uses the Data
Bridge to register the jobs’ data down- and upload requests. In
this scenario, the DCI Bridge is running wrappers to handle the
data, with an optional redirection to the storage to minimize the
necessary amount of network traffic through the Data Bridge.

The steps for running an experiment from the user’s point
of view are as follows: uploading input data to the storage
(Amazon S3) or search for it, configuring the experiment’s
workflow to use the selected data, run the workflow, and upon
termination, get the results. For this, the user simply has to
use the Storage Browsing portlet for data management and
selection, and the Workflow management portlet for workflow
configuration and experiment execution.

What is hidden from the user in this case is the complex
interaction of the other components presented in Figure 7
that arrange the execution. The Storage Browsing component
in the background makes use of the Data Bridge’s Public

Amazon S3Worker 
nodeWorker 

nodeWorker 
nodeWorker 

node

Worker 
nodeWorker 

nodeWorker 
nodeWorker 

node

Data 
Bridge

Local cluster (PBS)

DCI Bridge

WS-PGRADE/gUSE
Storage Browsing 

portlet
Workflow 

management portlet

WFS ...

...

WFI

Fig. 7. Scientific workflow execution scenario

interface and HTTP servlet to browse and manage data stored
on the Amazon S3 storage. Once the input data for the
experiment is selected, its location is saved to the workflow’s
configuration, and the workflow is submitted. At this point, the
WFI (WorkFlow Interpreter) is responsible for arranging the
workflow’s execution in the form of jobs.

Once a job is about to be submitted, the DCI Bridge checks
if the job is using any input or output files that can be managed
only with the help of the Data Bridge (for example, because
they reside on the Amazon S3 storage). For such files, the DCI
Bridge makes use of the Data Bridge’s get and put operations
to get the temporary URLs that can be used by simple tools
(like wget or cURL) to download and upload the data. That
is, the DCI Bridge doesn’t do any data transfer, it simply
invokes the get and put operations to have the temporary
URLs registered. For all these temporary URLs, appropriate
handling sections are created in the job’s wrapper script, that
will actually perform the input files’ download, and the output
files’ upload from and to the Amazon S3 storage through
making use of the Data Bridge’s HTTP servlet on the Worker
node. Finally, the job is submitted to the cluster.

Once a submitted job starts on a Worker node, the wrapper
script created by the DCI Bridge will fetch any input files from
the Amazon S3 storage by using the appropriate temporary
URLs (if the data is directly available from the S3 service, the
Data Bridge’s HTTP servlet will redirect the client to S3 to
get the data directly from there). Next, as all the input files for
the job are available locally, the real executable is started. And
finally, once the real executable has finished, any output files
destinated to the S3 storage are uploaded using the appropriate
temporary URLs.

Thus, as it can be seen, data is handled in two phases:
the DCI Bridge only registers data put and get requests to
have temporary URLs available for data up- and download),
and the actual data transfer always happens where the job is
actually running, always making directly use of the storage
service whenever possible.

Finally, if the workflow has been processed with some
result, the user may use once again the Storage Browsing
portlet to check the produced results, given that the user has
configured the workflow to store the results on the S3 storage.



VI. CONCLUSIONS

In the paper we have presented a service-oriented approach
to provide a unified, easy-to-use way to manage data stored
on different types of storage services in the form of the Data
Bridge. We have presented a number of data management
scenarios (data browsing, data fetching/uploading, and data
migration). Based on the needs of these scenarios, we have
presented the architecture of the Data Bridge so it satisfies
these needs.

The Data Bridge operates as a stand-alone web service that
is able to perform basic operations on storages, namely listing,
creating, removing, downloading, uploading and copying data
files. All these operations are available as simple web service
operations supported by a very simple servlet in case of the
upload and download operations. The detached composition of
the web service (for initiating operations) and the HTTP servlet
(for performing data up- and download) enables the easy usage
of the service from scientific workflows, where data transfer is
initiated by the workflow management system, and the actual
data transfer happens where the job is actually running, with
the help of simple HTTP clients (like wget or cURL).

We have presented the architecture of the Data Bridge
in detail: we have shown all the interfaces, and highlighted
internal components as well. The different interfaces (the
Public Interface and the Adaptor Interface) operate at different
levels: the Public Interface is exposed to the Data Bridge’s
clients as a web service, whereas the Adaptor Interface is a
Java interface the different Adaptors responsible for actually
communicating with the storages of different types should
implement. This organizations offers a pluggable architecture,
where implementation for new storage Adaptors becomes
a relatively easy task. As already mentioned, the different
Adaptors should interface with the different storage resources,
and here we’re making use of the unified jSAGA API where
possible to minimize necessary development. Finally, in the
architecture the Temporary URL queue serves as a volatile
storage for registered file up- and download requests, thus
helps to implement decoupling the actual data transfer from
the invocation of the web service calls.

We have also presented a complex scenario which covers
two of the cases presented in the Requirements section. This
complex scenario is about configuring and running scientific
experiments in the form of WS-PGRADE/gUSE science gate-
way framework workflows, that operate on data available in a
cloud storage (Amazon S3). In this complex scenario users are
making implicitly use of the Data Bridge service: the Storage
Browsing portlet is used to browse, or up- and download the
data, the Workflow management portlet is used to specify
which data the experiment should be run on, finally, the DCI
Bridge and its job wrappers are making use of the Data Bridge
service to actually handle the data (download the data before
the job’s real executable is started, and upload produced data
after the job’s real executable has finished).

The complex scenario presented the usage of the Data
Bridge from WS-PGRADE/gUSE, but it is not tied directly to
any workflow system, meaning it can be used as a standalone
service, and can easily be integrated into an existing workflow
system or user interface to satisfy users’ needs.

Although the Data Bridge is a usable service in its current

form, the restriction to support storage services that organize
data into a hierarchical structure (that is, files in some sort
of directory structure) is rather strict. It follows from this
restriction, that for example metadata services or databases
are currently not supported by the Data Bridge. Fortunately
the abstract URI data reference object of the Data Bridge can
later be extended easily to support such data services as well.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 283481 (SCI-BUS)
and 312579 (ER-Flow).

REFERENCES

[1] Kacsuk, Peter and Farkas, Zoltan and Kozlovszky, Miklos and Hermann,
Gabor and Balasko, Akos and Karoczkai, Krisztian and Marton, Istvan:
WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large
Variety of User Communities, Journal of Grid Computing, vol 10, no
4, 2012

[2] SCI-BUS Project, https://www.sci-bus.eu/
[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.

Raicu, I. Foster: The Globus Striped GridFTP Framework and Server,
Proceedings of Super Computing 2005 (SC05), November 2005

[4] Arie Shoshani, Alex Sim, Junmin Gu: Storage Resource Managers:
Middleware Components for Grid Storage, Tenth Goddard Conference
on Mass Storage Systems and Technologies. 2002. p. 209.

[5] Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/
s3/

[6] Constantinos Karasavvas, Mario Antonioletti, Malcolm Atkinson, Neil
Chue Hong, Tom Sugden, Alastair Hume, Mike Jackson, Amrey Krause,
Charaka Palansuriya: Introduction to OGSA-DAI Services, Scientific
Applications of Grid Computing, Lecture Notes in Computer Science
Volume 3458, 2005, pp 1-12

[7] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, Michael Wan: The
SDSC Storage Resource Broker, Proceedings of the 1998 conference of
the Centre for Advanced Studies on Collaborative research, CASCON
’98, p. 5, 1998

[8] Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher A. Lee,
Richard Marciano, Antoine de Torcy, Michael Wan, Wayne Schroeder,
Sheau-Yen Chen, Lucas Gilbert, Paul Tooby, and Bing Zhu: iRODS
Primer: Integrated Rule-Oriented Data System, Synthesis Lectures on
Information Concepts, Retrieval, and Services, 2010, Vol. 2, No. 1 ,
Pages 1-143

[9] Sylvain Reynaud: Uniform Access to Heterogeneous Grid Infrastructures
with JSAGA, Production Grids in Asia, pp 185-196, 2010

[10] A Simple API for Grid Applications (SAGA), http://www.ggf.org/
documents/GFD.90.pdf

[11] Globus Online, https://www.globusonline.org/


