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Abstract

A k-dominating set in a graph G is a set S of vertices such that

every vertex of G is at distance at most k from some vertex of S.

Given a class D of finite simple graphs closed under connected induced

subgraphs, we completely characterize those graphs G in which every

connected induced subgraph has a connected k-dominating subgraph

isomorphic to someD ∈ D. We apply this result to prove that the class

of graphs hereditarily D-dominated within distance k is the same as

the one obtained by iteratively taking the class of graphs hereditarily

dominated by the previous class in the iteration chain. This strong

relation does not remain valid if the initial hereditary restriction on

D is dropped.
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1 Introduction

A k-dominating set in a graph G is a set S of vertices such that every vertex
of G is at distance at most k from some vertex of S. Although the bulk of
literature on graph domination concentrates on the case k = 1 (that means
thousands of papers), there are many interesting theorems on general k, too.
We cite the survey [5] for a nice collection of results and references.

Here we are interested in the structure of k-dominating subgraphs. That
is, we look for conditions under which a graph surely admits a k-dominating
set that induces a subgraph belonging to a prescribed graph class D. Among
the requirements, connectivity will play a central role both for dominating
subgraphs and for the graphs to be dominated.

The main result of this paper is Theorem 3, dealing with graph classes
closed under connected induced subgraphs. It states that distance domina-
tion can be equivalently characterized with the recursive application of an
operator (‘Dom’, to be defined later). An auxiliary result along the proof,
that we call ‘Legged Cycle Lemma’ (Lemma 1), provides a necessary and
sufficient condition in terms of forbidden induced subgraphs, and hence may
be of interest in its own right, too.

1.1 Definitions and notation

We consider finite, simple graphs only. As usual, for a graph G we denote
by V (G) and E(G) the vertex set and the edge set, respectively. Moreover,
Pn and Cn denote the chordless path and cycle, respectively, on n vertices.

In this paper we shall deal with induced subgraphs. In this context a
graph G is said to be H-free if it does not contain H as an induced subgraph.
For a set H of graphs, the class of graphs which are H-free for every H ∈ H,
will be denoted by ForbH.

A vertex set S ⊆ V (G) is called k-dominating if for each v ∈ V (G) \
S there exists a w ∈ S such that the distance of v and w is at most k.
“Dominating” and “1-dominating” mean the same. An induced subgraph D
of G is k-dominating if its underlying vertex set V (D) is k-dominating.

Let D be a class of graphs. We say that D is compact if it is closed under
taking connected induced subgraphs. Moreover, D is concise if it is compact
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and contains connected graphs only.

A graph G is minimal not-in-D if it is connected, G /∈ D, and all of its
proper connected induced subgraphs are in D.

A graph G is D-dominated if there exists a dominating connected induced
subgraph D ∈ D in G. A graph G is hereditarily dominated by D if each of
its connected induced subgraphs is D-dominated.

The class Domk D consists of the graphs G for which every connected
induced subgraph H of G is k-dominated by some connected graph D ∈ D.
This Domk is an operator acting on graph classes. Subscript ‘1’ will be
omitted, i.e. Dom1D = DomD.

A connected graphG isminimal non-D-dominated if it is notD-dominated
but all of its proper connected induced subgraphs are.

To attach (to put) a leaf to a given vertex v of graph H means to add a
new vertex v′ to H such that v is the only neighbor of v′ in H . The leaf-graph
of a connected graph H is the graph obtained from H by attaching a leaf
to each of its non-cutting vertices. The leaves will be pairwise non-adjacent,
by definition. The leaf-graph of H will be denoted by F (H). For example,
F (K1) = K2 and F (Pn) = Pn+2 if n ≥ 2.

Here we remark that, in general, the class DomD contains disconnected
graphs, too; but the definition of the operator Dom allows this, and its
repeated application DomDomD will be well-defined.

For any operator Φ, operating on a set X and having its values in X , for
arbitrary x ∈ X and integer k ≥ 1, the notation Φk(x) means the element
obtained from x by applying Φ k times. We may also write Φ0(x) = x. For
example, if H is a connected graph and k ≥ 0 is any integer, F k(H) is the
graph obtained from H by attaching a pendant path of length k to each
non-cutting vertex of H .

Let us denote by MkD the set of minimal connected forbidden induced
subgraphs for the class of graphs Domk(D) (also here, we simply write MD
for M1D). This MkD is well-defined because membership in Domk(D) is
an additive induced-hereditary property for all D and all k ≥ 1. (For the
general theory of hereditary properties, see the survey [4].)
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1.2 Some earlier results

Here we cite the main results of the papers [3], [1] and [7]. These will give the
base for the proof of Legged Cycle Lemma, and through that, for Theorem 3,
which will be stated in Section 2 and proved in Section 3.

The original problem, solved by these theorems was the following:

Given a (concise) class D of graphs, which are the minimal non-
D-dominated graphs?

The non-2-connected case of this problem was solved about a decade ago:

Theorem 1 (Cut-point Lemma [3]) Let D be a concise and nontrivial
class of graphs. A graph G with at least one cut-point is minimal non-D-
dominated if and only if it is isomorphic to a leaf-graph F (L), where L 6= K1

is a graph minimal not-in-D.

For the 2-connected case, recently both [1] and [7] gave a solution, inde-
pendently. To state the result, we need some further definitions.

For any class C of graphs, we denote by Θ(C) the minimum element of
the set {j : Pj /∈ C} if it is nonempty. The classes can be grouped into two
types from our point of view:

Type 1 All chordless paths are elements of D.

Type 2 Some path is not in D.

Theorem 2 (Main Theorem in [1, 7]) Let D be a nonempty concise
class of graphs, different from the class of all connected graphs.

(i) If D is of Type 1 then there is no 2-connected minimal non-D-dominated
graph.

(ii) If D is of Type 2 then the only 2-connected minimal non-D-dominated
graph is the chordless cycle Ct+2, where t = Θ(D).

Remark For non-compact classes, the original problem is also solved in [1]
and [7] (the former dealing with the 2-connected case only), but here we do
not use the general solution.
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2 The results

In [6] it was asked whether the following equation is true for every D :

Dom2D = DomDomD ? (1)

We may ask the same question for general k : For what classes D of graphs
is

Domk D = Domk(D) (2)

valid?

For arbitrary D, even (1) is not true, a counterexample is given in [2]
(Proposition 1, page 127). However, we shall prove

Theorem 3 If D is compact then the equation (2) is valid for all k.

We will derive Theorem 3 from the results mentioned in Section 1.2, using
the following statement, which is of interest in itself, too. To state it, we need
the notation

Fk := {F k(M) : M minimal not-in-D}.

Recall that Types 1 and 2 have been defined before Theorem 2. The next as-
sertion characterizes the class MkD of minimal connected forbidden induced
subgraphs of Domk(D).

Lemma 1 (Legged Cycle Lemma) Let D be a compact class.

(i) If D is of Type 1 then MkD = Fk.

(ii) Let D be of Type 2 and θ := Θ(G), where G is the class of connected
graphs in Domk−1(D). Then

MkD = Fk ∪ {F i(Cθ+2−2i) : 0 ≤ i ≤ k − 1}.

In the concluding section we will show that the condition of compactness
cannot be omitted, for any k ≥ 2.
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3 The proofs

Proof of the Legged Cycle Lemma

We apply induction on k. The class D is assumed to be compact; thus, by
the results mentioned above, the Lemma is true for k = 1. That is,

M1D = {F (M) : M minimal-not-in-D} if D is of Type 1 and

M1D = {Cτ+2} ∪ {F (M) : M minimal-not-in-D} if D is of Type 2 and
τ := Θ(D).

We now suppose that the Lemma is true for some k ≥ 1, and will prove it
for k + 1 =: l . We shall use the following simple observation, whose proof is
omitted.

Claim 1 Let D be compact. Then for any k ≥ 1, all of Domk D, Domk(D)
and D have the same type and, for Type 2, Θ(Domk D) = Θ(Domk(D)) =
Θ(D) + 2k. 2

Let now E := Domk(D). For the proof of the Lemma, we argue depending
on the type of E .

I. Suppose E is of Type 1.

By the induction hypothesis, Ml−1D = MkD = Fk.

Obviously, Doml(D) = Dom E . Let us observe that E is also compact,
thus, by the results quoted in Section 1.2,

MlD = ME = {F (L) : L minimal not-in-E} = {F (L) : L minimal
not-in-Doml−1(D)} = {F (L) : L ∈ Ml−1D}.

By the induction hypothesis, this is equal to

{F (L) : L ∈ {F l−1(M) : M ∈ MD}} = {F l(M) : M ∈ MD} = Fl .

Hence, we are done if E (and D) is of Type 1.

II. Suppose E is of Type 2, and let ν := Θ(E).

Similarly as in I, Doml(D) = Dom E . Referring again to Section 1.2, we
begin with the first equation in the proof for Type 1 and continue with a set,
adding a single cycle to the original one. In this way we derive
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MlD = ME = {F (L) : L minimal not-in-E} ∪ {Cν+2} = {F (L) : L minimal
not-in-Doml−1(D)} ∪ {Cν+2} = {F (L) : L ∈ Ml−1D} ∪ {Cν+2}.

This is equal to

{F (L) : L ∈ {F l−1(M) : M ∈ MD}∪{F i(Cθ+2−2i) : 0 ≤ i ≤ k−1}}∪{Cν+2}

where θ = θ(Domk−1(D)) = ν − 2. Thus we obtain

{F l(M) : M ∈ MD} ∪ {F j(Cν−2j) : 1 ≤ j ≤ k} ∪ {Cν+2} =
Fl ∪ {F j(Cν−2j) : 0 ≤ j ≤ k}.

Using Claim 1, we obtain just the list in the Legged Cycle Lemma and we
are done for II, as well.

Proof of Theorem 3

a) First, we show: Domk D ⊇ Domk(D).

We can use induction on k again. For k = 1 there is nothing to prove. Let
us consider a graph G in Domk+1(D). By assumption, G has a dominating
connected induced subgraph D ∈ Domk(D). Using the induction hypothesis,
D is in Domk D, that is, D has some k-dominating subgraph H ∈ D. This
H will be (k + 1)-dominating in G, and the assertion of a) follows.

b) Thus, for the proof of Theorem 3, it remains to show: Domk D ⊆
Domk(D).

To prove this, we need the Legged Cycle Lemma. If a graph is not in
Domk(D) then it contains some minimal forbidden subgraph with respect to
it, namely some graph G from the list of the Legged Cycle Lemma. We state
that no such G is in Domk D.

For a D of Type 1, it is enough to refute the membership in Domk D for
graphs in Fk. Consider any G = F k(M), where M /∈ D. A k-dominating
subgraph ∆ in G has to k-dominate every leaf and thus it has to contain at
least one vertex from each of the k-paths attached to the non-cutting vertices
of M . Hence, if ∆ is connected, then M ⊆ ∆. But this implies ∆ /∈ D since
D is compact.

7
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For a D of Type 2, the argument for graphs in Fk is the same as above,
therefore it is enough to deal with a graph G = F i(Cη) where η = θ− 2i+ 2
and 0 ≤ i ≤ k − 1. We see by Claim 1 that η ≥ Θ(D) + 2. Let us consider
a minimal k-dominating connected induced subgraph ∆ in G. The lower
bound on η implies Cη 6⊆ ∆, and so connectivity yields that V (∆) ∩ V (Cη)
induces a path, say P . Take those vertices on the cycle, which are farthest
from P . (This means two vertices if |V (Cη) \ V (P )| is even, and just one
vertex otherwise.) Consider the leaves at the ends of the pendant i-paths
attached to them. Since P k-dominates those leaves,

|V (P )| ≥ η − 2(k − i) = (θ − 2i+ 2)− 2(k − i) = θ − 2(k − 1) = Θ(D)

must hold, the last step implied by Claim 1. Consequently, P /∈ D and hence
∆ is not in D either.

This refutes the membership in Domk D for every graph on the list, and
completes the proof of Theorem 3. 2

4 Concluding remarks

As we have mentioned above, for k = 2 the equation (2) is not true in general.
Here we show that for any k ≥ 2, there exists some class D of graphs for
which (2) is not valid. By Theorem 3, such a class is not compact, of course.

For a given k ≥ 2, let G := F (C4k−1) and D = Dk := {H : diam(H) ≤
2k − 1}. With this notation we state

Proposition 1 G ∈ Domk D \Domk(D).

Proof

First, we show G ∈ Domk D.

Since diam(C4k−1) = 2k − 1, we have C4k−1 ∈ Dk and hence the cycle
k-dominates (and even dominates) all subgraphs of G that contain C4k−1.
On the other hand, if a connected induced subgraph H of G misses a vertex
v of C4k−1, then because of connectivity it also misses the pendant neighbor
v′ of v. Now, keeping the path P induced by the 2k vertices of C4k−1 at
distance at least k from v, we obtain a subgraph that k-dominates the entire
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G− v − v′. Hence, V (P ) ∩ V (H) k-dominates H , and the membership of G
in Domk D is established.

Second, we show G /∈ Domk(D).

Suppose, for a contradiction, that G ∈ Domk(D). Then G has a con-
nected induced dominating subgraph ∆, being in Domk−1(D). This ∆ con-
tains C4k−1 because each leaf v′ has to be dominated, and connectivity implies
that the neighbor v of v′ on the cycle is necessarily contained in ∆.

Omitting a vertex from the cycle, we obtain a path P ∼= P4k−2. The
shortest subpath (k− 1)-dominating P would have length = diameter = 2k.
Consequently, ∆ is not even in Domk−1D, a contradiction which completes
the proof of the second statement and Proposition 1, too. 2
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