
J Grid Computing
DOI 10.1007/s10723-013-9274-3

On Efficiency of Multi-job Grid Allocation
Based on Statistical Trace Data

Gábor Bacsó · Ádám Visegrádi ·
Attila Kertesz · Zsolt Németh

Received: 20 December 2012 / Accepted: 6 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The ever growing number of computation-
intensive applications calls for utilizing large-scale,
potentially interoperable distributed infrastruc-
tures. Nowadays, such distributed systems enable
the management of heterogeneous scientific work-
flows of considerable sizes, where job scheduling
and resource management is a crucial issue. In this
paper we focus on the challenges of scheduling
parameter sweep applications, a specific and com-
monly used type of workflows where ordering of
job executions is irrelevant. A parameter sweep
has a large set of independent job instances, called
a multi-job, submitted for execution in a single
step. In order to cope with the high uncertainty
and unpredictable load of resources, and the si-

G. Bacsó · Á. Visegrádi (B) · A. Kertesz · Z. Németh
MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary
e-mail: visegradi.adam@sztaki.mta.hu

G. Bacsó
e-mail: bacso.gabor@sztaki.mta.hu

A. Kertesz
e-mail: kertesz.attila@sztaki.mta.hu

Z. Németh
e-mail: nemeth.zsolt@sztaki.mta.hu

multaneous submissions of multi-job instances, we
propose a statistics-based brokering approach for
allocating jobs to resources so that the makespan
is minimised. Earlier studies claim that users’
predictions on job runtime are inaccurate and
unusable for scheduling. Our aim is to examine,
whether statistical trace data for the same purpose
is efficient compared to randomized allocation.

Keywords Grid computing · Grid scheduling ·
Allocation · Grid brokering · Workload traces

1 Introduction

Researchers of various disciplines ranging from
life sciences and astronomy to computational
chemistry, create and use scientific applications
producing large amount of complex data relying
heavily on compute-intensive modeling, simula-
tion and analysis. The ever growing number of
such computation-intensive applications calls for
the interoperability of distributed infrastructures
including private and public clouds, Grids and
clusters, generally modeled as Distributed Com-
puting Infrastructures (DCI). Scientific workflows
have become a key paradigm for managing com-
plex tasks and have emerged as a unifying mech-
anism for handling scientific data. Workflow ap-
plications capture the essence of the logic of
scientific process, providing means to describe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48293432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


G. Bacsó et al.

abstractly as data- or control-flows. During the
execution of a workflow, its jobs are mapped
onto resources of DCIs, to perform large-scale
experiments.

The combination of heterogeneous scientific
workflows, and their execution in a large-scale
system consisting of multiple DCIs, including aca-
demic and public Clouds were targeted by the
European SHIWA project [23] and its succes-
sor, ER-flow [24]. A large number of workflows
belong to the “parameter study” or “parameter
sweep” class where a large input range is explored
by applying algorithms on each item of the input
set independently [1, 2] hence, they are also called
multi-job applications. In this work we consider
this practically very important subset of workflows
and we entirely focus on multi-jobs.

Parameter study jobs or multi-jobs are typically
executed by submitting all instances simultane-
ously to the scheduling component, also called
broker, of the workflow management system that
makes the necessary assignments of resources to
job instances. Note that the temporal ordering of
execution is irrelevant in case of multi-jobs hence,
the mapping problem that comprises of scheduling
(when to execute) and matching (where to exe-
cute) is reduced to simple matching for the sake of
unambiguity we will call this aspect as allocation in
this paper. The broker carries out the allocation
task so that the distribution of the job instances
approximates optimum according to some criteria
that may be execution time, cost, power consump-
tion, quality requirements, resource usage just to
mention a few. We consider the most common cri-
terion, execution time more precisely, makespan
of the multi-job. Thus, the broker delivers an
allocation so that the entire set of job instances
finishes as early as possible. More details and
definitions of the infrastructure and the allocation
model are in Section 3.

This goal has been aimed at in many works, see
Section 2, and many sorts of allocation strategies,
algorithms and heuristics have been proposed. A
very common issue of all these approaches is the
lack or the imprecision of the (estimated) data
on task execution times. Earlier studies claim that
job runtime predictions of users are inaccurate
and unusable for Grid scheduling [16]. In order to
cope with the high uncertainty and unpredictable

load of these infrastructures and with the simulta-
neous submissions of multi-job instances, we pro-
pose a novel alternative, statistics-based broker-
ing approach. We base our allocation algorithm
on historical data on execution times and apply
probabilistic calculations. Our aim is to examine,
how much statistical trace data for predicting job
runtimes can improve some allocation methods
compared to baseline experiments. The proposed
methods are experimented by simulations realized
in GridSim and PythonSim.

Our main contributions are: (i) the design
of multi-job allocation algorithms managing re-
sources of multiple DCIs based on statistical trace
data, (ii) development of a proper simulation envi-
ronment that enables the examination of these al-
gorithms, and (iii) the evaluation of our proposed
approach using simulations.

The remainder of the paper is as follows: Sec-
tion 2 presents the related resource management
approaches; Section 3 describes our considered
model for Grid Allocation; Section 4 introduces
the allocation algorithms based on statistical ap-
proaches. Finally, Section 5 discusses the per-
formed evaluations, and the contributions are
summarized in Section 6.

2 Related Work

Our research is partly motivated by Lee et al.
in [16], who investigated the accuracy of users’
runtime estimates in batch scheduling systems.
Typically users provide such estimates in time-
limited infrastructures, i.e. their job is terminated
after a given amount of time. Hence, users may
overlook the potential benefits of accurate esti-
mates, which is an essential requirement for a
good schedule. The study concludes that even if
a tangible reward is granted for accuracy, there is
no substantial improvement in the overall average
accuracy. Our aim is to investigate the reliability
of runtime estimations calculated from trace files
of categorized jobs in real Grid systems.

Ramirez-Alcaraz et al. [19] have analyzed
different Grid allocation strategies depending on
the type and amount of information they require,
and they found that information about users’
runtime estimate and local schedules does not



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

help to significantly improve the outcome of the
allocation strategies. They concluded that quite
simple schedulers with minimal information re-
quirements can provide good performance. Prac-
tice seems to adapt to these findings, because too
complex, sophisticated scheduling algorithms are
rarely used in Grid brokers.

Hirales-Carbajal et al. [11] present an experi-
mental study of 22 deterministic non-preemptive
multiple workflow scheduling strategies in Grids.
While their objective is to schedule and execute
the whole workflow, and minimize its makespan,
we restrict ourselves to parameter study jobs of
such workflows.

Nevertheless, GridBot [25] represents an ap-
proach for execution of bags-of-tasks on multiple
Grids, clusters, and volunteer computing Grids.
It has a Workload Manager component that is
responsible for brokering among these environ-
ments, which is similar to our approach, but they
focus on tasks more suitable for volunteer Grids.

Oprescu et al. [20] propose a budget constraint-
based resource selection approach for Cloud ap-
plications. In this work they present a budget-
constrained scheduler called BaTS, which can
schedule bags of tasks onto multiple clouds with
different CPU performance and cost, minimizing
completion time with maximized budget. Their
scheduler learns to estimate task completion times
at run time, while we use estimations by statistical
calculations from real world trace files.

Cirne et al. [5] developed Workqueue with
replication (WQR) that keeps computing re-
sources busy so that if a node runs out of work and
would become idle, a copy of an unfinished task
is assigned to it. In such a way a second chance
is given for a faster execution: the two copies
of the same task compete. The approach does
not need any information about the tasks or the
resources and can dampen the effect of dynamic
loads and improve execution time by wasting
some (controlled limit) resources. Following this
idea Da Silva et al. in [6] also raise the question
of methods that require information compared to
WQR. WQR is however, iterative as opposed to
our single decision making for allocation.

Casanova et al. [4] focused on the very same
problem of scheduling parameter sweep applica-
tions on Grids, with particular attention to file

transfers and network performance. Also, their
motivation is in alignment with most of the papers
in this area: inaccurate predictions can largely
mislead scheduling. Their approach is modifying
existing heuristics so that they are adaptive in a
dynamic heterogeneous environment. The core of
the scheduling is a Gantt chart that is created and
updated periodically and keeps track of job and
resource assignments. Assignments are governed
by a heuristics called suf ferage where a task is as-
signed to a host if the task would “suffer” the most
if done otherwise; “suffering” is expressed as the
difference between the best and the second best
minimum completion times. A considerable com-
plexity is added in this model by taking into ac-
count file transfer and communication costs; this
lead to modifying the definition of the sufferage
algorithm.

Maheswaran et al. [17] addresses the issue of
mapping independent tasks onto heterogeneous
computing systems. They apply heuristics aiming
at optimizing for throughput, i.e. increasing the
finished task per time unit ratio. It considers Mini-
mum Completion Time (MCT), Minimum Execu-
tion Time (MET), Switching Algorithm (switches
between MCT and MET) and k-percent Best
(MCT on a subset of resources) as on-line heuris-
tics whereas Min-Min, Max-Min and Sufferage for
batch mode ones. Min-Min and Max-Min roughly
correspond to MCT and MET of on-line algo-
rithms. Their analysis revealed that batch schedul-
ing can outperform on-line scheduling for large
number of tasks on the other hand some on-
line scheduling may have lower computation time.
Within the batch scheduling class, Min-Min and
Sufferage were proven to be superior.

Menascé at al. [21] introduce further static
scheduling by combining an envelope (a selec-
tion of tasks and resources to be considered)
and a heuristics. In the paper they derived 6
static scheduling methods by crossing three task
selection and two processor selection heuristics;
these were compared with three dynamic ones.
They claim the superiority of static methods: these
are executed rarely hence, more sophisticated al-
gorithms can be realized without time penalty.
All these methods are based on task priorities
whereas, in our case we do not differentiate be-
tween task priorities.



G. Bacsó et al.

3 Our Model for Grid Allocation

The notion of historical data We are seeking a
mapping solution for assigning jobs of “parameter
study” type to resources so that the assignment
minimizes the makespan, i.e. minimizes the time
that takes the execution of the job that finishes
last. Job scheduling on a multiprocessor system
has been studied for more than 30 years and is
known to be NP-hard [26]. Scheduling in Grid
systems, become more complicated with multi-
organizational shared resources, therefore Grid
scheduling is also NP-hard [8, 22]. Solutions thus,
apply some sort of heuristics and approximations
as listed in Section 2.

Some of these methods are based on runtime
estimates and the inaccuracy of these estimates
is a perennial problem mentioned in the job
scheduling literature. Even if users are required
to provide these values, there is no substantial
improvement in the overall average accuracy [16].
Our approach tries to find alternative solutions
by gathering data from trace files and establishing
allocation on statistical properties. The basis for
this statistical approach are workload traces pub-
lished in the Parallel and Grid Workload Archives
[10, 18]. Some of the traces contain categoriza-
tion for jobs based on group, user and execution
identifiers, therefore we were able to perform
statistical analysis on refined and better structured
trace data and apply it to allocation algorithms.

The notion of resources Our approach optimizes
resource utilization of Grid systems consisting of a
given number of resources. We suppose that there
is a trace file available for the actual Grid system
we consider, which contains historical job exe-
cution data. We use statistical information from
these data to predict load on Grid resources. We
model resources with the notion of Distributed
Computing Infrastructure (DCI). This is a hypo-
thetical resource that can be realised either as
a cluster, Grid, desktop Grid or other types of
distributed computing system while provides a
unified and standard interface. In this way we
can model the infrastructure in an abstract way
without focusing on its actual physical realisation.
Hence, in this paper we call unit of computing in-
frastructure as “resource” but in reality it can be a

single processor (computer) or a set of processors
(a cluster). With respect to scheduling these re-
sources are the smallest units that can be observed
or controlled. Obviously, resources may contain
smaller (finer-grained) computing elements like
cores of a processor or processors of a cluster.
Albeit some models will take into account them,
these elements are managed by an operating sys-
tem or a middleware and are assumed hidden
from the scheduling or mapping agent. Note, that
in this way our solution is implementation in-
dependent: if the necessary information (traces,
historical data, etc.) on other DCIs (e.g. clusters
or clouds) are provided, our proposed approach
could be applied in those cases, too.

The notion of tasks In this paper we focus on
“multi-job”, a large set of tasks to be executed;
they logically form a single program but other-
wise they are completely independent, neither
communication nor synchronisation is between
tasks. This class of jobs forms a special case of
workflows where a broad fan of parallel branches
are executed in parallel. Typically they are “pa-
rameter studies” or “parameter sweep” applica-
tions running the same algorithm on different in-
put parameters. A similar notion of independent
tasks appear as bag-of-tasks (BoT) in the general
parallel programming literature but they slightly
differ from parameter sweep applications as (i)
tasks can be of arbitrary type as long as they are
independent hence, their sizes cannot be assumed
similar. Furthermore, we also assume that (ii) the
tasks to be executed are available at the same
moment, they are mapped in a batch-like fashion
at a single mapping event and task arrival times
are not applicable. Parameter sweep or parameter
study applications are a subset of BoT type.

The notion of the resource broker Executing a
user application in a Grid environment requires
several prerequisites. Users need to learn the in-
terfaces of the Grid services and need to describe
their application prior to submissions. Production
Grid systems may consist of hundreds of thou-
sands of resources (e.g. 240,000 processor cores in
EGI [7]), therefore it is not realistic to assess the
actual state of computing and storage resources
and select some for an application but there is a



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

clear requirement for automated resource discov-
ery. Special resource managers, also called as re-
source brokers are meant to solve this problem or,
in a more general sense the problem of scheduling.
As resource management is a key part of current
Grid middleware solutions, most middleware de-
veloper groups and projects have developed their
own tools for resource brokering.

4 Proposed Algorithms

In our examinations we consider the following
simplified Grid model: we have a heterogeneous
Grid system consisting of resources having some
workload simulated by real world traces. The goal
of our algorithms is to map jobs optimally to these
resources at a certain time of submission. These
jobs represent a multi-job of a parameter study
workflow, and they execute the same algorithm
over different input parameters. The quantities
used in the proposed algorithms are summarized
in Table 1.

4.1 Deterministic Case

Though the deterministic approach we discuss in
this subsection is a very simplified version of real-
ity, it is a good method (just from an algorithmic
point of view), to solve and use it for the non-
deterministic cases. Nevertheless, this is possible,
since we calculate with the expected values of the
random variables only.

The aim of Algorithm 1 is to distribute k
jobs (representing multi-jobs of a parameter study

Table 1 Summary of quantities used in the algorithms

n ∈ Z Number of all available nodes
k ∈ Z Number of jobs to be allocated
ki ∈ Z Number of allocated jobs on node i
t j ∈ R Execution time of a single job j
ci ∈ R Delay (waiting) caused by other jobs

(pre-load) on node i
x = (k1, k2, ...kn) Vector of number of allocated jobs

on node i
J Expected value of t j, E(t j)

Ri Running time (pre-load + own jobs)
on node i

T Makespan (total execution time)

workflow) on n resources (representing the nodes
of a heterogeneous Grid) so that resource i has
a certain pre-load ci – the number of jobs as-
signed to resource i already belonging to different
applications. Further jobs, running on resource
i are “our jobs”, ki is their number in a hypo-
thetical allocation, see Fig. 1. It is assumed that
both the jobs to be distributed and the other jobs
have unit execution times thus, ki jobs take ki

time and ci is equivalent to a delay of ci time
units. Furthermore, pre-loads ci are ordered in as-
cending order: c1 ≤ c2 ≤ c3... ≤ cn. A certain node
finishes its operation after Ri = ci + ki time units.
We define turnaround time T(x) = max

i,ki �=0
(Ri), the

maximum of the execution times for a certain job
distribution. The goal is to minimize T, i.e. find a
distribution x so that T = min

x
T(x). Algorithm 1

can be applied for any non-negative real numbers
ci and provides an optimum solution in this case.

Line 2 of Algorithm 1 initializes the result vec-
tor x, then in line 3 the index of the resource
with the highest load (n) is stored in u which will

Algorithm 1 Unit execution times



G. Bacsó et al.

Fig. 1 Pre-loads and job
distribution on n
resources

JobsAbove

JobsBelow

Preload

nu321

ci

ki

cu

keep track the number of required resources, see
Fig. 1. Line 4 checks if all jobs fit on u − 1 resource
so that the load levels are below cu, if so, u is
decremented and checked again. At the end of
loop, line 8, jobs are distributed on u − 1 resources
so that the level of load on each resource would
be cu. The assigned jobs add up JobsBelow in
line 11. The remaining jobs, not assigned to any
resource so far are JobsAbove calculated in line
12. These form Layers layers on top of cu load
on resources 1..u − 1 and an additional job on re-
sources 1..Lef tovers; these are calculated in lines
13–20, see also Fig. 1.

4.2 Non-deterministic Case

In the following the execution times of jobs will
not be uniform but will have a certain proba-
bilistic distribution and represented by their ex-
pected value J = E(t j) for all j. We can use this
method only when t j can be considered as random
variables with the same distribution. This is the
case when the statistical dispersion is small. Thus,
we obtain a good estimation of the real process.
Delay times on node i are γi. Hence, the total ex-
ecution time on node i is the sum of the expected
value of delay and the expected value of ki jobs,

Ri = E(γi) + ki ∗ J

Dividing by J we obtain

Ri

J
= ki + ci

where ci = E(γi)

J . This is the reason why we em-
phasize that cis are not restricted to integers in
Algorithm 1. Hence, Algorithm 1 is applicable
with these substitutions if standard deviation is
small. The turnaround time can be obtained as the
calculated turnaround multiplied by J.

Algorithm 2 Non-deterministic execution times

5 Evaluation of the Proposed Algorithms

In order to evaluate the previously introduced
algorithms, we propose four scenarios for exper-
iments as summarized in Table 2.

The ultimate problem we planned to address,
where the scheduler has no apriori knowledge
about the background load of the managed re-
sources, which case is known to be NP-hard. In
our model it is represented by Scenario 4, in
which we know an estimated run time for each
workload jobs in the system, which is still an NP-
hard case. In order to simplify this case, we reduce



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

Table 2 Experimental scenarios

Scenario Execution environment Pre-load jobs Submitted jobs (to be allocated)

1 n resources, 1 node per resource Uniform run time, arrival k jobs; uniform, deterministic run-time
and 1 processor per node as in trace file

2 <same as above> Arrival and run time as k jobs, run-time of independent identical
in trace file probability distribution

3 <same as above> Arrival and run time as k jobs, with
in trace file. Jobs grouped a) uniform, deterministic run-time
and expected value of run b) jobs grouped and expected value
time for each group is known of run time for each group is known

4 n resources, m node per resource <same as above> k jobs, uniform, deterministic run-time
and l processor per node

the uncertainty by concretizing some parameters
step-by-step. In Scenario 3 we restrict ourselves
to examine Grids having resources with a single
processor, and in Scenario 2 we consider only a
single estimated run time for all workload jobs –
both cases are still NP-hard. Then we arrive to
Scenario 1, where the exact run times are known,
and all these run times are the same. This last case
is not NP-hard anymore, so we can give an optimal
allocation for these simulations.

Having this in mind, our research approach
in the evaluations is the following: we start
with the easiest case, Scenario 1, and execute
simulations up to Scenario 3, while we focus
on the effectiveness of the algorithms in the
cases of increasing complexity. The measured re-
sults present, how the effectiveness changes from
certainly known run times to statistically esti-
mated ones compared to the randomized resource
selection.

Due to the largely different nature of Scenario
1 (exact solution is possible) and the other sce-
narios, we created two different simulation envi-
ronments to evaluate our proposed approach. The
first one is a Python-based simulator (capable of
handling artificially generated job data) that we
used for examining Scenario 1 and Scenarios 2
– these experiments are simplified in comparison
to real practical cases therefore, a simple light-
weight simulator is sufficient. The second one is
an extension of the well-known GridSim simulator
[3] applied to real-world experiments, which we
extended to cover Scenario 1, 3 and 4. The follow-
ing subsections describe these simulators and the
performed evaluations.

5.1 Simulations with PythonSim

We have created a specialized simulator that
allowed us to test and verify our model and
algorithms with artificially generated job data.
This simulator was designed to be closer to our
model than universal discrete event simulators;
this makes the implementation simple, fast and
reliable. Because of its speed, we were able to run
simulations of the Scenario 1 and Scenario 2, de-
scribed in Section 5, with many input parameters,
in a short time.

5.1.1 Simulation Environment

PythonSim is a simple discrete event simulator
with no support for message passing. It is imple-
mented in Python; and we used the Just-in-Time
compiler pypy to execute the simulations. Events
have timestamp and priority attributes, and can be
executed. Upon execution, events can store neces-
sary information, and may create new events; for
example, a job arrival event at ta will create a job
start event at ts = ta + waittime, which will in turn
create a job completion event at tc = ts + runtime
that will, on execution, save its timestamp tc as the
latest job completion time.

These events are stored in a priority queue,
in which they are ordered lexicographically on(
timestamp, priority

)
. The queue is initialized

with known events, based on the simulation to
be performed, and its parameters. Then, in it-
eration, the first event in the queue is executed
and removed from the queue, until the queue
becomes empty or an ’EndOfSimulation’ event is



G. Bacsó et al.

Fig. 2 Determining
multiple pre-load vectors
from a trace

executed. This simple, sequential implementation
of the simulation environment makes it fast and
free of race-conditions.

Simulation of allocation procedures were ex-
ecuted as a sequence of two “sub-simulations”,
both performed in this simulation environment.
In the first sub-simulation, we re-executed the
historical traces, generating pre-load vectors to
be used as input for the algorithms. Then, in the
second round, each pre-load vector was reused
in several simulations, performing job allocation
based on the pre-load and determining the re-
sulting makespan according to specific simulation
parameters.

5.1.2 Scope and Parameters

In these simulations, we focused on Scenario 1 and
Scenario 2 described in Section 5. We assumed
that the pre-load vectors generated were accurate
and deterministic. We also assumed that, at each
DCI, allocated jobs are executed in a FIFO man-
ner, on a single core; which means that neither
jobs arriving later nor already allocated jobs will
affect the execution time of jobs currently being
allocated. This is in contrast with our simulations

Table 3 Description of simulation parameters

Execution time ∈ {
1000, 5000, 10,000, original from trace

}

t0: Fixed 100 points in the trace, generated using random.org
�t: 1×, 5×, 10× multiple of the execution time; and 8 days

in the case when the original execution times were used
k ∈ {10, 100, 1000, 10,000}
(i.i.d.) Execution times of the k submitted jobs:

– Deterministic; 1000
– Gauss; μ = 1000, σ = 100
– Transformed Pareto: τ ∼ 500 ∗ (ξ); where ξ has a

Pareto distribution with scale= 1 and shape ≈
2 + 2−12.288. ⇒ E(τ ) ≈ 1000, and D(τ ) ≈ 100.
The Pareto distribution was chosen because it is
generally a good model of the execution time of jobs.

based on GridSim, described later in Section 5.2,
where we do not make these assumptions.

We have performed evaluations based on the
SHARCNET historical trace; using both artificial
execution times and the original execution times
provided in the trace to create pre-load vectors.
We determined 100 points randomly in time (t(i)0 ∈
[trace_start..trace_end], i ∈ [1..100]), from each
point a simulation was started, we let the simula-
tion run for �t seconds where the simulation was
interrupted, and we used the momentary state of
the execution queues as a pre-load vector (Fig. 2).

These pre-load vectors were used as input for
the job allocation algorithms. The number of jobs
to be allocated (k), and the distribution of their
execution times were the other parameters of the
simulation. The parameters used are described in
Table 3.

5.1.3 Simulation Results

Figure 3 shows the distribution of load in the
case where the original execution times were used.

Fig. 3 Boxplot of the 100, individually ordered pre-load
vectors



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

Each generated pre-load vector was individually
ordered, as the algorithms treat all DCI-s equally.
The results show that the all-time load on the
system exhibits a Pareto-like distribution; that is,
most of the DCIs in the system have little or
no load, the current load in the system is always
concentrated to a few DCIs.

Based on the generated pre-loads, we have
conducted several experiments to evaluate the
algorithms. For each pre-load vector, we have
simulated the allocation and execution of k jobs
using randomized allocation and Algorithm 1.

We have found that the results are hardly
affected by distribution of the length of the al-
located job (assuming i.i.d.). The results of the
deterministic and the Gaussian distribution-based
cases are indistinguishable; while the makespans
in the Pareto distribution-based case are only
slightly higher: the average makespan in the
Gaussian or distributed case was < 0.1 % smaller
than in the Pareto case. Figure 4 shows the aver-
age makespans and their linear regressions in the
Pareto case. Each line and the corresponding data
points represent the results of simulations based
on a specific setting for pre-load job length.

There are four overlapping results on the bot-
tom of this figure. In the first three cases (pre-
load job length ∈ {1000, 5000, 10000}) the results
of our algorithm almost line up, because the load
on most DCIs was low, allowing the algorithm
to produce low-makespan allocations. In the case
where the pre-load job length is 1000, the random

algorithm produced similar results to Algorithm 1,
as in this case, pre-load vectors were uniform.
If the pre-load is uniform, the random algorithm
approximates the optimal allocation well.

However, as the pre-load jobs’ length is in-
creased, pre-load vectors start to resemble the
boxplot in Fig. 3. That is, the vector becomes
non-uniform, in which case the random algorithm
cannot perform well. The two thin lines on Fig. 4
(case: random algorithm, pre-load job length ∈
{5000, 10000}) breaks away from the cluster as the
pre-load vectors become skewed in these cases.

The thick, solid line separated from the others
on Fig. 4 represents the result of the case, where
the original run-times were used as pre-load job
lengths. In this case, the pre-load vectors have
the distribution shown on the boxplot, with high
minimal loads, affecting the makespan of the jobs
allocated by Algorithm 1. On the other hand, the
maximal values are extremely high in this case,
which affects this algorithm much less than the
random algorithm. Using the random algorithm,
the makespan is so high, it is not displayed on this
figure—the two lines on Fig. 5a show the results
and their relation in this case.

Figure 5 shows all results where the execution
time of the allocated jobs exhibited a transformed
Pareto distribution. Each symbol in the diagram
shows the makespan of k jobs allocated based on
a particular pre-load vector. (Each visible symbol
in the diagram is actually the overlapping of many
close results.) The circle marks are the makespans

Fig. 4 Average
makespans in different
cases of the simulation



G. Bacsó et al.

(a) All results

(b) Results where makespan < 1.5e7

Fig. 5 Simulational results where execution time ∼ τ (see:
Table 3)

generated by the random allocation method, while
the cross marks are the result of Algorithm 1.
Lines in these diagrams represent the linear re-
gression model of the result sets; thick lines are
used for Algorithm 1, and the lines for the random
brokering case.

It is clear, that the results achieved with Al-
gorithm 1 are far better than that of the random
algorithm. The uniform results of the random
algorithm is because the makespan in this case
depends on the number of submitted jobs, the
number of DCI-s, and only the maximal element
of the pre-load vector; which, in our case, is higher
than the load of the allocated jobs by orders of
magnitudes. Note, that symbols lining up in a row
are not exactly level, but linearly increasing, which
can be seen with high zoom.

5.2 Simulations with GridSim

5.2.1 Simulation environment

For performing realistic and reproducible evalu-
ations, we have chosen the GridSim Toolkit [3]
to create a robust simulation environment. It sup-
ports modeling and simulation of heterogeneous
Grid resources, users, applications, brokers and
local schedulers in a Grid Computing environ-
ment. It provides primitives for the creation of
jobs (called Gridlets), mapping of these jobs to
resources, and their management, therefore re-
source brokers can be simulated to study allo-
cation algorithms. It provides a multilayered de-
sign architecture based on SimJava [12], a gen-
eral purpose discrete-event simulation package
implemented in Java. All components in GridSim
communicate with each other through message
passing operations defined by SimJava.

Within GridSim, resources consist of one or
more machines, to which workloads can be set.
As an extension of GridSim classes, we have
developed the ‘GridSimStatQueueBroker’, ‘Sim-
Workload’ and ‘SimulatorSetup’ entities in order
to enable the simulation of the previously men-
tioned scenarios. On top of these simulated Grid
infrastructures we can use the broker entities for
setting up brokers with various allocation policies,
the ‘SimWorkload’ entities are used for submit-
ting the workload jobs, while the ’SimulatorSetup’
component is responsible for parameterizing and
executing each experiment.

The ‘GridSimStatQueueBroker’ is an extended
‘GridUser’ entity:

– it can be connected to one or more resources;
– various allocation policies can be defined (pre-

defined ones: stat – resource selection based
on statistics, rnd – random resource selec-
tion, fcpu – resources having more free CPUs
or less waiting jobs are selected, nfailed –
resources having less machine failures are
selected);

– it has a queue with length k to store the sub-
mitted job instances;

– finally it stores the estimated waiting time for
the queues of each resource to a local database



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

(which can be based on real or statistically
estimated run times).

The ‘SimWorkload’ entities are extended
‘GridSim’ entities:

– they are used for submitting the workload jobs
from the trace files to the machines;

– they also report the submissions and the group
types of the submitted jobs to the broker, to
enable updates of waiting queue length for the
managed resources.

The ‘SimulatorSetup’ is an extended ‘GridSim’
entity:

– it can generate a requested number of gri-
dlets (jobs) with different run time (length) or
group identity;

– it is connected to the created broker and is
able to submit the generated jobs to it;

– finally, once the jobs are finished, it generates
a summary of them listing the simulated exe-
cution times.

We have also developed a scripting layer for the
simulator in order to automatize and easily para-
metrize the simulation runs, and to generate plots.

Table 4 shows the parameters of the performed
evaluation runs.

In order to address universality, we use real
user application execution traces as background
workload gathered both in parallel and produc-
tion Grid environments, published in available
archives [10, 18]. We have selected two work-
load trace files from the Grid Workloads Archive
(GWA) [13]: (i) the GWA-T-10 SHARCNET
file, which contains accounting records up to a
year from the SHARCNET clusters installed at
several academic institutions in Ontario, Canada,
and (ii) the GWA-T-1 DAS2 trace file contain-
ing records for almost two years provided by the
Advanced School for Computing and Imaging, the
owner of the DAS-2 system.

The main reasons for choosing these traces
were that they contain the largest number of
jobs, and include group identities for the logged
jobs: the SHARCNET denotes the Execution id
of the jobs, while the DAS2 denotes the Group,
User and Execution ids of all jobs. These cate-
gories mean that the considered job belongs to
the same group of users, or to the same user or
an instance of the same application, respectively.
These traces have been partitioned according to

Table 4 Evaluation
parameters for Scenarios
1, 3 and 4

Scen. Jobs Job Pre-load Start Delay
run time arrival and run time time time

1 10 100 SHNET: 100 18607865 10000
1000 SHNET:1000

100 5000 SHNET:5000 23077573
1000 10000 SHNET:10000 28937559

3/a 100 100 as in DAS2 traces 100 1000
868036

1000 500 6909476
500 12274286 69120

5000 1000 23077573

3/b 100 DAS2: EXE as in DAS2 traces 100 1000
6909476

1000 DAS2: USER 12274286
23077573

5000 DAS2: GROUP 28937559
10000 33331397

4 100 DAS2: USER as in DAS2 traces 6909476 1000
12274286

5000 23077573 69120



G. Bacsó et al.

Table 5 Average runtime of job instances in the simulations for Scenario 4

Eval. Res. type Num. jobs ID Cuttime Delay RND_RUNTIME_AVG STAT_RUNTIME_AVG

1 R1 100 11 12274286 1000 302.28 122.04
2 R1 100 11 23077573 69120 19650.95 128.05
3 R1 5000 11 23077573 69120 17548.03 6651.79
4 R1 5000 11 6909476 69120 37764.43 8972.83
5 R1 100 117 12274286 1000 351.39 259.99
6 R1 5000 117 12274286 1000 2820.46 2815.53
7 R1 5000 117 6909476 69120 38614.47 36228.38
8 R2 100 11 23077573 69120 2880.91 107.13
9 R2 100 11 6909476 69120 9694.18 105.12
10 R2 5000 11 23077573 69120 3512.61 2734.65
11 R2 5000 11 6909476 1000 15435.01 13734.96
12 R2 5000 11 6909476 69120 17116.31 10682.18
13 R2 100 117 6909476 69120 22493.29 104.15
14 R2 5000 117 12274286 1000 17959.22 16964.48

(a) Jobs: 10, runtime: 100, wlruntime: 100, Sharcnet (b) Jobs: 10, runtime: 10000, wlruntime: 10000, Sharcnet

(c) Jobs: 100, runtime: 10000, wlruntime: 10000, Sharcnet (d) Jobs: 1000, runtime: 1000, wlruntime: 1000, Sharcnet

Fig. 6 Plots for Scenario 1



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

the PartitionID fields, which denotes the machine
the jobs had been submitted to. We used these
partitioned files to feed the simulated resources
with background (workload) jobs. In this way we
created 10 files from SHARCNET, which we can
use to perform simulations on 10 resources. From
DAS2, we created 5 files, which we divided into 4
parts based on the logged time equally, to get 20
files to be used for simulating 20 resources.

We have created a statistical job runtime cate-
gorization based on the ids and the exact runtimes
found in the traces. For each id category (i.e. ex-
ecution, user and group) we have created a data-
base that contains the calculated mean runtime for
all jobs of the considered trace file with the same
id. We used these values in the simulations to esti-
mate the runtime of a given job by the broker. In

this way the broker (ie. ‘GridSimStatQueueBro-
ker’ entity in the simulator) knows an estimated
waiting time for all available resources in the sys-
tem based on these statistics at a given time in the
simulation, while the resources execute the jobs
based on the exact runtimes read from the original
traces. During the simulations the runtime of the
parameter study jobs are given explicitly, or with
an id that refers to the statistically calculated exe-
cution time (e.g. see the third columns of Tables 4
and 5).

5.2.2 Simulation results

We have executed numerous simulation runs with
all combinations depicted in Table 4. The follow-

(a) Allocation based on USER id (b) Allocation based on EXE id

(c) Allocation based on GROUP id

Fig. 7 Plots with detailed job execution times for Scenario 3: 1000 jobs with 500 runtime, DAS2 workloads



G. Bacsó et al.

(a) Allocation based on USER id (b) Allocation based on EXE id

(c) Allocation based on GROUP id (d) Allocation based on USER id

(e) Allocation based on EXE id (f) Allocation based on GROUP id

Fig. 8 Plots with detailed job execution times for Scenario 3: 100 jobs with 100 (a–c) and 500 (d–f) runtime, DAS2 workloads



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

(a) Allocation based on USER id (b) Allocation based on EXE id

(c) Allocation based on GROUP id

Fig. 9 Plots with detailed job execution times for Scenario 3: 1000 jobs with close runtimes, DAS2 workloads

ing figures show the results of our evaluation.
Regarding the first row of the parameter setup
table, Fig. 6 shows that as discussed before our
algorithm finds the optimal allocation of the jobs,
therefore it always performs better than random
resource selection.

Figures 7 and 8 show evaluations from the sec-
ond row of Table 4, while Fig. 9 shows evaluations
from the third row of Table 4.

From these plots we can see that our alloca-
tion algorithms relying on statistical job runtime
categorization read from trace files can perform
significantly better than random resource selec-
tion. This proves that the categorization is valid
in the trace files. On the other hand, there is
no significant differences in performance among

the groups. In the considered DAS2 trace file the
GROUP category has 12, the USER category has
333, and the EXE category has 9070 members. We
can see in Figs. 7 and 9 that using the GROUP cat-
egorization causes performance loss, but in Fig. 8
we cannot see significant differences.

Figures 10 and 11 show evaluations from the
fourth row of Table 4. For these most realistic
simulations we used jobs with ids 11 and 117,
which have mean execution times 462 and 5801
seconds respectively (computed from the whole
trace files). In these cases the simulated Grid en-
vironment consisted of resources having various
number of machines and processors. For resource
setup R1 we used 20 resources, out of which 5–5
resources had 1, 2, 3 and 4 machines respectively,



G. Bacsó et al.

(a) Allocation based on USER id (b) Allocation based on USER id

(c) Allocation based on USER id (d) Allocation based on USER id

Fig. 10 Plots with detailed job execution times for Scenario 4: 100 and 5000 jobs, R1 resource setup, DAS2 workloads

and each machines had 2 processors. Regarding
resource setup R2 we used 20 resources, out of
which 5-5 resources had 2, 4, 8 and 10 machines
respectively, and each machines had 2 processors
is this case, too. Besides the figures, we gathered
the average runtime of job instances in some of
these measurements in Table 5 to better exemplify
the differences of the random and statistics-based
allocations.

The evaluation of Scenario 4 shows similar re-
sults to the simplified Scenario 3. Our proposed
statistical brokering approach always performed
better than randomized resource selection, and
we experienced significant deviances (e.g. see the
2nd, the 4th, the 9th and the 13th rows of Table 5
and Fig. 10d), when we enlarged the resource het-

erogeneity by varying the number of processors
within the machines of a resource (or DCI).

Nevertheless, in some cases we measured very
similar makespan (e.g. see the 6th, the 7th and
the 14th rows of Table 5 and Fig. 11c), which is
due to the inaccuracy of job runtime estimation
(based on the mean values of runtimes found in
the traces).

Overall, we can state that although the val-
ues of the job runtimes sometimes vary highly
within the same group categories, estimations
by statistically reusing this information from his-
torical trace files can provide us reliable in-
formation to perform better allocations then
randomized algorithms with no apriori knowledge
on job runtimes.



On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data

(a) Allocation based on USER id (b) Allocation based on USER id

(c) Allocation based on USER id (d) Allocation based on USER id

Fig. 11 Plots with detailed job execution times for Scenario 4: 100 and 5000 jobs, R2 resource setup, DAS2 workloads

Our future work will address the evaluation
of the proposed algorithms in the workflow ex-
ecution environment [14] of the SHIWA project
[23], and the examination of the applicability of
this approach to Cloud-based DCIs. To this end
we will investigate how virtualization affects the
execution time of previously developed workflow
applications, and how comparisons can be made
among Grid and Cloud resources for multi-job
allocations.

6 Conclusion

In this paper we addressed the multi-job allo-
cation problem in distributed systems. In order

to cope with the high uncertainty and unpre-
dictable load of these infrastructures, we proposed
a statistics-based brokering approach for allocat-
ing multi-job instances among resources of multi-
Grid systems consisting of several Distributed
Computing Infrastructures. Compared to previ-
ous studies showing that job runtime predictions
of users are inaccurate and unusable for Grid
scheduling, our aim was to examine the efficiency
of using statistical trace data for a similar purpose.
We have evaluated our proposed algorithms in
two different simulators and found that a multi-
job allocation approach using statistical trace data
can perform significantly better than randomized
resource selection. Moreover, for small deviation,
the algorithm obtains the optimum. Its perfor-



G. Bacsó et al.

mance depends on the background workload and
on the variance of job categorization found in the
real-world traces.

Acknowledgements The research leading to these results
has received funding from the SCI-BUS FP7 project un-
der grant agreement 283481, and from the ER-Flow FP7
project under grant agreement 312579, and it was sup-
ported by the European Union and the State of Hungary,
co-financed by the European Social Fund in the framework
of TAMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence
Program’.

References

1. Constantini, A.: RWavePR workflow at GASuC. On-
line: http://www.lpds.sztaki.hu/gasuc/index.php?-m=7&
s=12 (2012). Accessed 1 Oct 2012

2. Wiggins, A.: Success-Abandonment-Classification
workflow at myExperiment. Online: http://www.
myexperiment.org/workflows/140.html (2012). Accessed
1 Oct 2012

3. Buyya, R., Murshed, M., Abramson, D.: Gridsim: a
toolkit for the modeling and simulation of distributed
resource management and scheduling for Grid com-
puting. In: Journal of Concurrency and Computation:
Practice and Experience, pp. 1175–1220 (2002)

4. Casanova, H., et al.: Heuristics for scheduling parame-
ter sweep applications in Grid environments. In: Pro-
ceedings 9th Heterogeneous Computing Workshop,
(HCW 2000). IEEE, Press, Piscataway (2000)

5. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E.,
Brasileiro, F., Sauve, J., Silva, F.A.B., Barros, C.O.,
Silveira, C.: Running bag-of-tasks applications on com-
putational Grids: the mygrid approach. In: Interna-
tional Conference on Parallel Processing, pp. 407–416.
IEEE Press, Piscataway (2003)

6. Da Silva, D.P., Cirne, W., Vilar Brasileiro F.:
Trading cycles for information: using replication to
schedule bag-of-tasks applications on computational
Grids. Euro-Par 2003 Parallel Processing, pp. 169–180.
Springer Berlin Heidelberg (2003)

7. European Grid Infrastructure. Online: http://www.
egi.eu/ (2012). Accessed 1 Oct 2012

8. Garey, M.R., Johnson D.S.: Computers and Intractabil-
ity; a Guide to the Theory of Np-Completeness. W. H.
Freeman & Co., New York (1979)

9. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank,
D., Michaelides, D., Newman, D., Borkum, M.,
Bechhofer, S., Roos, M., Li, P., De Roure, D.: myEx-
periment: a repository and social network for the shar-
ing of bioinformatics workflows. Nucleic. Acids Res.
38(suppl 2), W677–W682 (2010)

10. The Grid Workloads Archive website. Online:
http://gwa.ewi.tudelft.nl (2010). Accessed 1 Oct 2012

11. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R.,
Gonzalez-Garcia, J.L., Roblitz, T., Ramirez-Alcaraz,
J.M.: Multiple workflow scheduling strategies with user

run time estimates on a Grid. J. Grid Comput. 10(2),
325–346 (2012)

12. Howell, F., McNab, R.: SimJava: a discrete event sim-
ulation library for Java. In: Proc. of the International
Conference on Web-Based Modeling and Simulation,
San Diego, USA (1998)

13. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu,
C., Wolters, L., Epema, D.H.J.: The Grid workloads
archive. Futur. Gener. Comput. Syst. 24(7), 672–686
(2008)

14. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann,
G., Balasko, A., Karoczkai, K., Marton, I.: WS-
PGRADE/gUSE Generic DCI gateway framework for
a large variety of user communities. J. Grid Comput.
9(4), 479–499 (2012)

15. Kwok, Y-K., Ahmad. I.: Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Comput. Surv. (CSUR) 31(4), 406–471 (1999)

16. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are
user runtime estimates inherently inaccurate? Springer
LNCS, vol. 3277, pp. 253–263 (2005)

17. Maheswaran, M., Ali, S., Siegal, H.J., Hensgen, D.,
Freund, RF.: Dynamic matching and scheduling of a
class of independent tasks onto heterogeneous comput-
ing systems. In: Proceedings Heterogeneous Comput-
ing Workshop, (HCW’99), pp. 30–44. IEEE (1999)

18. Parallel workloads archive website. Online:
http://www.cs.huji.ac.il/labs/parallel/workload (2009).
Accessed 1 Oct 2012

19. Ramirez-Alcaraz, J.M., Tchernykh, A., Yahyapour,
R., Schwiegelshohn, U., Quezada-Pina, A., Gonzalez-
Garcia, J.L., Hirales-Carbajal, A.: Job allocation strate-
gies with user run-time estimates for online scheduling
in hierarchical Grids. J. Grid Computing 9(1), 95–116
(2011)

20. Oprescu, A., Kielmann, T.: Bag-of-Tasks Scheduling
under Budget Constraints. CloudCom, pp. 351–359
(2010)

21. Saha, D., Menasce, D., Porto, S.: Static and dynamic
processor scheduling disciplines in heterogeneous par-
allel architectures. J. Parallel Distrib. Comput. 28.1,
1–18 (1995)

22. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.:
Online scheduling in Grids. In: 22nd IEEE Interna-
tional Symposium on Parallel and Distributed Process-
ing (IPDPS 2008), pp. 1–10 (2008)

23. SHaring Interoperable Workflows for large-scale sci-
entific simulations on Available DCIs (SHIWA) Eu
FP7 project. Online: http://www.shiwa-workflow.eu/
(2012). Accessed 1 Oct 2012

24. Building a European Research Community through
Interoperable Workflows and Data (ER-flow) Eu
FP7 project. Online: http://www.erflow.eu/ (2013). Ac-
cessed 1 Oct 2012

25. Silberstein, M., Sharov, A., Geiger, D., Schuster, A.:
GridBot, execution of bags of tasks in multiple Grids.
In: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis
(SC ’09) (2009)

26. Ullman, J.D.: NP-complete scheduling problems.
J. Comput. Syst. Sci. 10(3), 384–393 (1975)

http://www.lpds.sztaki.hu/gasuc/index.php?-m=7&s=12
http://www.lpds.sztaki.hu/gasuc/index.php?-m=7&s=12
http://www.myexperiment.org/workflows/140.html
http://www.myexperiment.org/workflows/140.html
http://www.egi.eu/
http://www.egi.eu/
http://gwa.ewi.tudelft.nl
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.shiwa-workflow.eu/
http://www.erflow.eu/

	On Efficiency of Multi-job Grid Allocation Based on Statistical Trace Data
	Abstract
	Introduction
	Related Work
	Our Model for Grid Allocation
	Proposed Algorithms
	Deterministic Case
	Non-deterministic Case

	Evaluation of the Proposed Algorithms
	Simulations with PythonSim
	Simulation Environment
	Scope and ParametersQ4 
	Simulation ResultsQ4 

	Simulations with GridSim
	Simulation environment
	Simulation results


	Conclusion
	References


