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Abstract:

The increased complexity of modern networks and the increasingly dynamic access patterns in
multimedia consumption have led to new challenges for content delivery. Dynamic networks
and dynamic access patterns result in a complex system. To deliver content efficiently we
introduced an artificial hormone system that is capable of handling the dynamics, is self-
organizing, robust and adaptive. The content placement problem is NP complete and is closely
related to several hard problems including edge-disjoint path routing, scheduling and the bin
packing problem. The evaluation of self-organizing algorithms brings also a real challenge.
For a first evaluation we created and ILP model of the problem. It is applied to get the exact
optimum that serves as a bound in the evaluation of the solution algorithms. In this paper,
we examine the convergence of the algorithm and found that the hormone levels converge to
a limit at each node in the typical cases. We form a series of theorems on convergence with
different conditions by starting with a specific base case and then we consider more general,
practically relevant cases. The theorems can be proved by exploiting the analogy between the
Markov chains and the artificial hormone system.
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1 Introduction

Articial hormone systems [1] are bio-inspired self-organizing algorithms that promise a robust and adap-
tive behavior [2] to cope with the problem of content delivery in dynamic networks [3]. The algorithm
introduced in[4] is inspired by the endocrine system of higher mammals and provides the possibility of
sharing small multimedia units in a self-organizing manner during and after a social event. In case of the
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artificial hormone algorithm, nodes are glands that create, consume and forward hormones through the
network (the blood stream). Hormones indicate interest in a specific content unit. Content units react
on hormones, by moving from lower towards higher hormone concentration. Therefore, the algorithm can
successfully deliver the units on the requesting node if the hormone level increases strictly monotonically
towards the requesting node. The hormone levels at the time of decisions on the directions of forwarding
the units are formed after many iterations of the algorithm. We examine the convergence of the hormone
levels in order to approximate the hormone levels with their limits. Our main result is that the hormone
levels converge to a limit in the general cases. Furthermore, we are interested in whether the hormone
distribution is monotonic towards the requesting node.

Our talk gives an overview of our results on the analysis of the content placement problem and the
hormone-based algorithm. Section 2 introduces the problem and refers to the NP-completeness results.
Section 3 describes the hormone based algorithm and shows some results on the monotonicity of the
hormone levels. Section 4 includes theorems on the convergence of the hormone-based algorithms.

2 Optimal Content Placement Problem

Each network node can store and forward content objects and generate requests (hormones) for them.
The atomic building element of the content is called content unit that cannot be further split and each
content unit is routed along a single path. The units may form compositions which include a sequence of
units with possible timing constraints. If a unit is requested by several users at the same time, then their
delivery paths may share common segments. The problem input includes the network graph, the initial
location of the units, the storage capacities of the nodes, the link bandwidths, the unit sizes and the
series of the requests. Several requests generated at the same time are processed simultaneously. Queues
are formed for each link where the incoming content units can wait before forwarding if the link is busy.
The content placement problem is to route all requested content objects simultaneously to the requesting
nodes. The problem is a multi-objective optimization problem in the general case. The optimization
goals to be minimised include the average delay and the number of units that do not arrive in time (if
videos are transmitted, the subsequent video frames have to arrive within a given deadline to provide
proper quality).

The problem is computationally hard. If storage capacities are given for the nodes, the Bin Packing
problem can be easily reduced to this problem in order to prove the N'P-completeness. Even if storage
capacities are not considered (i.e., infinite storage is assumed), the problem still remains computationally
difficult. In this case, the ANP-completeness can be shown with the help of the Edge-Disjoint Path
problem. It follows from the proof that the content placement problem remains computationally hard,
even if each request demands only one single unit. If compositions are formed from the units, the Time-
Path Scheduling Problem that is a special Multiprocessor Scheduling Problem can be reduced to the
content placement problem even if only one request is created in the system.

We developed the Integer Linear Program model (ILP) of the problem as well. Our idea was to
use ILP for the evaluation of other algorithms [5]. Although ILP offers an inefficient solution in the
practice it produces absolute bounds for the evaluation of practical methods. Based on the ILP model,
an optimization tool has been introduced that includes preprocessing, generating ILP model for a problem
instance, solving the generated ILP and generating statistics. We applied the tool to evaluate the self-
organizing algorithm presented in the next section.

3 Hormone-based algorithm

The hormone-based algorithm is a self-organizing algorithm introduced in [4]. The algorithm creates an
artificial hormone system where requests for units are mapped to hormones. The hormone level can be
represented by a real number and it may vary on the different nodes of the network. Since there are
several paths on which hormones can spread, an evaporation mechanism is introduced. The hormones can
be created by the network nodes and diffused over the network. Since there are several paths on which



hormones can spread, an evaporation mechanism is introduced. The hormone-based algorithm includes
search for the requested unit and then the delivery of the units to the requesting clients. In the search
phase, the hormone is spreading in the network. If the hormone reaches a node storing the requested
unit then the increasing hormone levels attract the required unit and guide it on an appropriate path to
the requester.

3.1 The steps of the algorithm

The main steps of the hormone-based algorithm are as follows: handling incoming requests, diffusing
hormones, moving units, evaporating known hormones. These steps are continuously repeated in each
node of the distributed content delivery system.

In the algorithmic step of handling incoming requests, the requesting node starts the presentation of
the unit if the requested unit is present on it. Otherwise, it generates hormones in order to indicate the
demand for the unit. In the step of diffusing hormones, a part of the hormone on the node is distributed
among the neighbors according to their provided link quality. If the hormone reaches a node storing the
requested unit then the unit is forwarded from the storing node to its neighbor with the highest hormone
level in the step of moving units and the unit gets towards the place of the request. The evaporation
reduces the hormones by a constant value and then deletes the hormone if its value is below a specified
threshold. This step ensures that the hormones on alternative paths will disappear from the system after
delivering the unit at the destination. The changes in the hormone level for a whole iteration can be
formulated as follows:

h(t+1) = (h(t) + b(t +1))A
Where

e h(t) = (hyi(t), ha(t), ..., hn(t)): the vector containing the hormone levels on each node at iteration ¢

o A: The diffusion matrix. Matrix item a;; gives how much of the hormone on node i is forwarded to
node j in the step of diffusion (or preserved if i = j). Network edges with better quality get more
hormones and the corresponding matrix element becomes larger.

e b(t) = (by(t),ba(t),...,bn(t)): the vector containing the additive terms for each node at iteration t.
b;(t) may be negative as well and vary in each iteration.

3.2 Some definitions

The elements of A are all non-negative, less than or equal to one and the sum of the elements for each row
is equal to one. Therefore, the elements can be the transition probabilities between the states of a Markov
chain and A corresponds to a transition probability matrix. Therefore, we introduced the regularity for
the hormone update function, which is one of the basic terms of the Markov chains. We call a hormone
system regular if some power of the diffusion matrix has only positive elements. A necessary condition
for the regularity is that the network is strongly connected. The connectivity is sufficient as well if there
are loop edges at each node which is typical in case of the hormone-based algorithm and therefore the
results on regular Markov chains can be applied to the hormone update in most cases.

For simplicity, A is assumed to be constant, i.e., independent from the time. In reality, the elements
of the matrix may vary depending on the changes in the load of the corresponding links. Copying/moving
units in the network causes also changes in the diffusion. However, the duration of forwarding a unit
takes typically much longer time than updating the hormone levels, therefore, the matrix is assumed to
be constant during the hormone-update process. Let us call the diffusion time-homogeneous if both the
diffusion matrix and the location of the units are the same after each iteration.

The normalised fixed vector W of the diffusion matrix has the property WA = W and the sum of its
components is 1. The normalized fixed vector is unique for a regular hormone system similarly to the
fixed probability vector for the regular Markov chains.



Some nodes may delete the hormone (e.g., at evaporation if the hormone level is low). Let us call
the nodes deleting the hormone deleting nodes. The other nodes that do not delete hormones are called
preserving nodes. For deleting nodes, the additive term depends on the current hormone level (b;(t) =
—h;(t)). The deleting nodes receive hormones but do not forward them to any neighbors.

3.3 Monotonicity in time

The series of the hormone levels in subsequent iterations on the same node have some nice monotonic
features. For simplicity, we assume that only one request is generated in the first iteration. If the hormone
levels are increasing in an iteration then the hormone update steps provide almost always greater or equal
hormone levels for the next iteration. Based on the monotonic features of the algorithmic steps, we proved
that if the hormone level monotonically increases with time at each node in iteration to(tp > 1) then it
does in each later iteration as well. The condition on monotonicity for each node seems to be restrictive,
but we found the following simple condition for it: If the hormone level increases at the requesting node
in the second iteration then the hormone level at each node monotonically increases in each iteration.
A simple corollary is that if a hormone level is larger than 0 on a node in iteration tg(top > 1) and the
hormone level monotonically increases with time at each node in the same iteration then the hormone
level remains always positive on the node. As a consequence, the set of preserving nodes is monotone
increasing in each iteration ¢ > .

4 Convergence results

The hormone update function is iterated for several times before the decision is made on the direction
of forwarding the units based on the current hormone levels. The time scale of copying a unit is much
longer than the one of the hormone update because the size of the content unit is much larger than the
one of the messages containing the hormones. Since the number of iterations between the decisions is
usually large, the hormone levels at the decisions can be approximated with their limits. We examine
the convergence of the algorithm on a series of cases by starting with a basic, restrictive condition and
then we consider more common, practically relevant conditions. We give formulas for the limits of the
hormone values in each case. The results are based on the analogy of the artificial hormone system with
the Markov-chains. All of our results refer to regular systems and time-homogeneous diffusion.

4.1 Zero additive term

We found that if the additive term b(t) is zero for iterations ¢ > 1 then the hormone level converges at each
node. The limit of the hormone level vector is oW, where W is the normalised fixed vector of the diffusion
matrix and 7 is the hormone level generated by the requesting node in the first iteration. For this reason,
the relative values of the hormone in the network depends only on the normalised fixed vector (W) of the
diffusion matrix and is independent from the algorithm parameters and the location of the requesting
node. In these systems, the units are forwarded always to the same direction independently where the
requesting node is located. This result is not surprizing if we think on the analogy with Markov chains.
The regular Markov chains converge to the stationary distribution (also called as equilibrium distribution)
independently from the starting distribution.

4.2 Constant additive term

If the additive term is constant for iterations ¢ > 1 and >, b; > 0 (b; is the ith component of b) then
the hormone levels are asymptotically equivalent with the linear function ¢- (3!, b;) - W where W is the
normalised fixed vector of the diffusion matrix. According to this, the hormone levels diverge and are
unbounded. However, if the algorithm is stopped after a specific time the hormone levels can be well
approximated by a linear function. Similarly to the case of the zero additive term, the relative values of



the hormone levels also depend on the fixed vector (W) of the diffusion matrix. Therefore, the requested
unit would be always guided to the same node independently from the location of the requesting node.

4.3 Fixed set of deleting nodes

The condition on the constant additive term is not typical because the network usually contains deleting
nodes for which the additive term varies in time. The deleting nodes correspond to the absorbing states
of the Markov chains while the preserving nodes correspond to the transient states if the network is
connected. The elements of Q denoting the diffusion matrix restricted to the columns and rows of
preserving nodes correspond to the transition probabilities between the transient states of an absorbing
Markov chain. For this reason, we can apply the theorems on the absorbing Markov chains to prove
the convergence of the hormone system with deleting nodes. If the set of preserving (or deleting) nodes
is fixed and nonempty, the convergence results can be reformulated as follows: if the additive term is
zero for the preserving nodes for iterations ¢ > 1 then the hormone levels converge to zero at each node.
Furthermore, if the additive term is constant nonzero for the preserving nodes then the hormone levels
converge at each node. According to this, the convergence of the hormone levels is changed and the
algorithm becomes convergent in the case of the constant additive term.

4.4 General regular system

Now, let us turn to the general case and drop the condition of the fixed set of preserving nodes. If
the hormone system monotonically increases with time, there is a maximal set of preserving nodes that
never decreases (see Subsection 3.3). The convergence results on the fixed set of preserving nodes can be
applied to the maximal set and we get that the hormone levels converge at each node in the general case
as well.
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