
Search in WikiImages using mobile phone

László Havasi, Mihály Szabó, Máté Pataki, Domonkos Varga, Tamás Szirányi, László Kovács

MTA SZTAKI, Computer and Automation Research Institute of the Hungarian Academy of Sciences

H-1111 Budapest XI. Lágymányosi u. 11. Hungary

{laszlo.havasi, mihaly.szabo, mate.pataki, domonkos.varga, tamas.sziranyi, laszlo.kovacs}@sztaki.hu

Abstract— Demonstration will focus on the content based

retrieval of Wikipedia images (Hungarian version). A mobile

application for iOS will be used to gather images and send

directly to the crossmodal processing framework. Searching is

implemented in a high performance hybrid index tree with total

~500k entries. The hit list is converted to wikipages and ordered

by the content based score.

Keywords— content based retrieval, mobile applications,

hierarchical tree

I. INTRODUCTION

Multimedia information systems are becoming increasingly

important with the advent of multi-sensor networks, mobile

phone data capture and increasing number of multimedia

databases. Since visual, auditory media and the adherent

information requires large amounts of memory and computing

power for storage and processing, there is a need to efficiently

index, store, and retrieve the visual information from

multimedia/cross-media databases [1].

Experiments based on the above system are limited by several

real life scenarios:

 How to process the extremely increased information

quantity? The sophisticated processing and index

building methods need significantly more time than

real-time. The retrieval system will not be able to

follow the incoming data flow.

 How to insert novel features? Several features based on

heuristics, thus there is no fixed dimensional

(vectorial) form.

 How to update database with data from different

modalities? Real life sensor networks or multimedia

contents built for several modalities need various

feature extraction and indexing methods.

CrossMedia portal presents an all-in-one solution for such

problems: storage and processing capacity, flexible interfaces,

built in index structure and innovative user interfaces.

Users form communities on the CrossMedia portal where they

can jointly create, build and share search algorithms and

media datasets in an iterative way. The system automatically

builds indexes and also provides a testing facility as indexes

are instantly included in the portal’s search interface to be

tested with any desired media-based, semantic, or combined

multimodal input. The generated indexes can be shared among

research communities for reviewing or with the public for

demonstration purposes.

The CrossMedia system (see Figure 1) addresses many diverse

tasks, all which are made accessible for the users through the

portal that serves as an access point for all available services.

Behind the portal we set up a distributed system consisting of

multiple processing units organized in a loosely coupled

service-oriented architecture.

Fig. 1. Architecture of CrossMedia e-Science platform

Three demo applications for image processing were built
using CrossMedia. The first is an image search application
which, after searching for similar images by using the image
descriptors enriches the results using the semantic text
annotations.

The second application was written for iPhone. The user
can take a photo with the built-in camera and similar images
and, if it is found, the original source of the image are
displayed. The database used for this application is the
Hungarian Wikipedia, which has around 204500 images.

This application can be used to search a big database for the
source of a given image, but the same mechanism can also be
used to display additional information to an image, a billboard,
advertisement or even a building. With the widespread use of
digital photography, the amount of images stored even in one
person’s computer is extremely large. This application can also
be used to search for images containing an object or motif, thus
finding the date and context of a previously taken photo.

The third application enables us to use the CrossMedia
platform for image plagiarism search. In the demo version one
can upload documents to the system, from which the images
are extracted and compared against the Wikipedia database. If

2013 11TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI) • 17 – 19. JUNE 2013 • VESZPRÉM, HUNGARY

978-1-4799-0956-8/13/$31.00 ©2013 IEEE 219

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48293421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the image was not changed significantly the system can tell
with very high confidence where it was copied from.

MTA SZTAKI operates a plagiarism search service, KOPI,
which is able to detect textual similarities between documents.
Extending this service with image search makes this service
more versatile, more valuable. Image plagiarising is a big
problem for publishers, mainly in technical fields, as many
articles, theses and even books contain non licenced
copyrighted material. On the other hand, the web is full with
plagiarised copyrighted contents from newspapers,
photographers, painters and other visual artists, one can find
them on blogs, personal homepages but sometimes also on
company websites and even smaller newspapers. These images
could be easily detected with this algorithm and the content
owner can be noticed to take appropriate actions.

II. APPLIED MOBILE TECHNOLOGY

A mobile frontend application for iOS is prepared for
CrossMedia to find images in the Hungarian Wikipedia. It is
capable of taking photos or choosing existing ones from an
album on the device and sending them to the CrossMedia
backend server. After this, it accepts the reply and shows the
result set to the user. The application preprocesses the selected
photo; first it resizes the photo to 1080 pixels by p pixels,
where the longer side will be resized to 1080 pixels and the
shorter one will be resized accordingly (p). A JPEG
compression and a Base64 encoding are applied before sending
the image to the CrossMedia backend.

The user can fine tune some query parameters in the
application, which helps her in testing the query performance.
These parameters are also sent to the backend with the image:

 Index (3-5): tells the backend which index tree it

should use for the query,

 DescCount (10-300): scanning resolution,

 MaxDist (0-100): sets the maximum particle distance,

 NNCount (5-50): maximum size of the result set,

 CompressionRatio (100-50): JPEG compression

ratio.

The application and the backend communicate via REST
API using JSON. After the application initiated the query by
sending the image and additional data to the server, it replies
with a status JSON structure. This structure contains a URL
where the actual status of the given query is available, a
version number, and the status itself with “wait” and “finished”
values. The “wait” value tells the application the queue
position of the request and the “finished” value tells the
application that the result is ready to dispatch. When the status
is changed to “finished”, the JSON also contains a result set
with the title and URL of the Wikipedia page where the
relevant image was found and the score of the match. This
result set is displayed to the user as a list of the titles with stars
according to the score level. The golden star means excellent
relevance, the half golden, half silver star means good
relevance, the silver star means medium relevance and the
results with no stars have negligible relevance. When the user
taps on a title, the referred Wikipedia page opens up.

Fig. 2. iPhone application screenshot

III. DISK BASED INDEXING

When the dimension of feature set increasing dramatically, the

methods used for low-dimensional indexing are not applicable

more. The classical kd-tree algorithm [2] is efficient in low

dimensions, but its performance degrades by higher.

[3] uses a multiple randomized kd-tree, where it splits the data

for a randomly chosen set of dimensions (e.g. 5) instead of

that of the greatest variance. In [4] this random kd tree is

applied by using multiple trees, priority search on hierarchical

k-means trees, and automatic parameter setting. They have

demonstrated that this configuration of algorithms can speed

the matching of high-dimensional vectors by up to several

orders of magnitude compared to linear search.

Recent method proposed in [5] the Nearest Vector Tree which

is designed for approximate nearest neighbor search in very

large, high-dimensional databases. It transforms the high

dimensionality search task into an efficient one dimensional

space based on the combination of projections of data points

to lines and the partitioning of the projected space. 150.000

images have been indexed by the NV-Tree.

The LHI-tree is similar to M-index where base points (so

called pivots) are chosen randomly to reduce the high-

dimensional feature vectors. A modification of this random

selection is applied, where a quasi orthogonality criteria is

forced during random point selection. Beyond the point

selection we estimate basic statistical properties of input space

from the representative sample set.

SEARCH IN WIKIIMAGES USING MOBILE PHONE

220

Fig. 3. Flow-chart of LHI-tree building algorithm. The embedded

AVL trees give a fast way to prepare hash code from input data.

Next, the hash code is translated into directory structure on disks.

In contrast to permutation-based scheme, LHI-tree uses base

points to compute reference distances and to calculate hash

codes for every input vector from the quantized distances. It is

carried out by using AVL-trees inside the LHI-tree, connected

to every base point. Input of AVL-trees are the distances of

the input image to base points, while the outputs are the

number of bin in which the quantized distance fell. Visually,

LHI-tree contains base points as hyper-sphere centers in

feature space. The indices from AVL-trees are the shells of

such spheres with different radius. To assign a disk partition to

a part of the feature space, we have used hashing function of

quantized distances. This hash function guarantees that the

near vectors are placed into the same disk partition (file).

Figure 3 demonstrates the building process step-by-step.

The applied region based descriptor consists of four parts:

1. The edge histogram: We do the calculation of the

gradient vectors on the original picture. We calculate

the magnitude and the orientation of the gradient

vectors in each pixel. We divide the range between

minus 180 degrees and plus180 degrees into twelve

equal parts. We take the gradient vectors one after the

other and we examine the orientation. We increase

the suitable element of the block with the absolute

value of the gradient vector.

2. The entropy histogram: At first we create the entropy

map of the preprocessed image. We take a square

from the preprocessed image. We calculate the

Renyi-entropy of this square. Then we subsitute this

value to the entropy map to the place of the center

pixel of the square. The entropy histogram is

calculated in the following manner: the circle of the

region is into eight parts divided. We determine the

median value of the entropy map in each regions.

This gives a 8-bin histogram.

3. The pattern histogram: Local binary pattern is a type

feature used for classification. The LBP feature

vector is created in the following manner: for each

pixel in a cell, compare the pixel to each of its eight

neighbors. Follow the pixels along a circle clockwise.

Where the center pixel's value is greater than the

neighbor’s value write „1”. Otherwise, write „0”.

This gives an 8-digit binary number. Compute the

histogram, over the cell, of the frequency of each

„number” occurring. Concatenate normalized

histograms of all cells.

4. The dominant component of the color content: After

transforming the picture into HSV color space, we

divide the region into four parts. Then we calculate

the median of the hue values on all sectors.

In summary the total number of dimension is 32. Based on our

experiments the Euclidean distance is a good choice for

similarity measure.

IV. EXPERIMENTAL RESULTS

The problem with the Wikipedia database is that the images
are very different in topic, quality and size. Topics are very
diverse, but each topic is represented with a few images only.
The same search algorithm worked more reliably with a
database containing few topics with hundreds of images each.

The system with the current image descriptors is capable of
finding the most similar couple of images to a given example.
In its current state it is perfect for finding the source of an
image, for example finding the source of an image used in an
article, or finding the original of a family photo on a disc by
taking a snapshot of a printed version.

Based on the validated images the built tree locates 71
GBytes in 1.420.277 files on the SSD (Solid-State Drive) for
media indices. The memory usage is about 1.5 GByte for the
tree structure. Index building procedure finished in 8.2 hours.

An additional database was built for translating media
identifiers to wikipage identifiers. This translation is necessary
to determine the valid URLs and titles for the result list (table
contains 1996158 records for the Hungarian pages).

Following table summarizes the performance of retrieval
engine. Computational times depend on the number of region
based descriptors (marked with Count column in the table) to
be sent to the search engine.

TABLE I. COMPUTATION TIMES IN RETRIEVAL PROCESS

Count

Retrieval process

Feature extraction Similarity search

Ranking and

translating

IDs

80 1400 msec 434 msec 600 msec

250 1400 msec 1425 msec 1700 msec

450 1400 msec 3150 msec 1880 msec

2013 11TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI) • 17 – 19. JUNE 2013 • VESZPRÉM, HUNGARY

221

V. CONCLUSIONS

We have introduced the mobile extension of CrossMedia

Portal to search similar images in Hungarian Wikipedia

content. Building an index for this image dataset is

challenging, because of the limited number of similar images

related to the same topic. Our experiment validates that the

CrossMedia retrieval engine is useful for such indexing

problems as well.

Our future work contains a better optimized image processing

module (for descriptor extraction) and a reduced size index

structure.

Currently we are working on the index for the whole image set

of Wikipedia.

REFERENCES

[1] P. Geetha , Vasumathi Narayanan: A Survey of Content-Based Video

Retrieval. Journal of Computer Science, (2008).

[2] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3):209-226, September 1977.

[3] C. Silpa-Anan, R. Hartley, Optimised KD-trees for fast image descriptor
matching, in CVPR 2008.

[4] M. Muja and D. G. Lowe, Fast approximate nearest neighbors with
automatic algorithm configuration, in VISAPP 2009.

[5] Lejsek, H.; Asmundsson, F.H.; Jonsson, B.T.; Amsaleg, L. : NV-Tree:
An Efficient Disk-Based Index for Approximate Search in Very Large
High-Dimensional Collections, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 31, (5), May 2009, 869 - 883.

SEARCH IN WIKIIMAGES USING MOBILE PHONE

222

