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Abstract—This paper presents a method towards easier eval-
uation of a large number of different image/video content
descriptors, by using a multiple descriptor-tree based parallel
indexing scheme instead of classical index structures with high
dimensional multi-feature vectors. We will show that the proposed
scheme is flexible and easily extensible, and it is not just faster to
build, but provides good retrieval precision as well. The primary
goal is to provide a flexible and modular indexing scheme for
descriptor evaluation and feature selection purposes, but it can
be used for generic content-based retrieval tasks as well.

I. INTRODUCTION

The field of content based image/video retrieval contains
a lot of different indexing structures, schemes and methods
aiding the related retrieval tasks. The goal of the indexing
structures is to take the available datasets and the extracted
descriptors/features, and produce a concise and easier to handle
index which can be used to search for similar content. From
the practical point of view, those index structures are the
most beneficial and usable, which can include a very large
number of dataset elements, and at the same time be able to
produce search results quickly. In this paper we will present an
indexing and retrieval scheme which has similar features, but
with a slightly different goal: we wanted to create an indexing
method with the goal of easy descriptor evaluation capabilities,
robustness against the addition and removal of features without
the need of complete index rebuilding, high modularity, and at
the same time capable of quick servicing of nearest neighbour-
types of queries with high precision.

Some of the traditional and well-known indexing structures
include KD-trees [1] which provide logN time nearest neigh-
bour searches among k dimensional feature vectors by creating
a tree structure based on space partitioning along the k dimen-
sions. Here we need to have a dissimilarity metric between two
feature vectors, and we need to be able to calculate the distance
between two vectors from accumulating the partial differences
along the dimensions. R-trees [2] are similar in the sense that
they are also space partitioning trees, with the main difference
that here the nodes represent not space partitioning planes,
but k-dimensional bounding boxes which can be overlapping.
DBM-trees [3] are density-based structures where the height
of the tree is larger in denser regions to achieve a trade-off
between breadth-searching and depth-searching, with the goal
of minimizing disk reads and improving on the performance
of M-trees (which is a string matching metric tree). Vantage
point trees [4] address the indexing of such datasets whose
elements can not be represented as classical feature vectors and

can only work with available pairwise distance information.
NV-trees (nearest vector trees) [5] are disk-based indexing
structures for very large datasets, providing good approximate
nearest neighbour retrievals based on a single random disk
read using a combination of projections of data points to lines
and partitioning of the projected space. BK-trees [6] have
been used for string matching algorithms, essentially being
representations of point distributions in discrete metric spaces.
The tree is built so as to have each sub-tree contain sets of
strings that are at the same distance from the sub-tree’s root.
Our presented indexing scheme is based on such trees, and
this last property is an important one for our purposes (to be
detailed later).

Traditional indexing schemes work by picking a set of
descriptors/features, creating a high dimensional feature vector
based on them, and use it to create an index of a dataset, which
in turn can be used to produce responses to queries. However,
in such schemes, when we want to add or remove features,
the whole index needs to be recreated, which can take a lot
of time for large datasets. Our goal was to create a scheme
where features (and indices built from them) can be added and
removed quickly in a modular architecture, and a query service
which can take whichever indices are available and be able to
produce results using all of the indices. This reproduces the
classical behaviour of multi-feature querying, but at the same
time is more flexible and easier to manipulate.

In the presented scheme we build index trees for each
descriptor, each having its own metric and distance functions.
This enables us to combine a lot of different feature descrip-
tors, without the need for common normalization (i.e. joint
equal contribution or some logistic regression). In this paper
we will present such an indexing and retrieval scheme, along
with evaluation data. The main idea is that we will produce
separate index structures in parallel for all currently available
descriptors on the dataset, while the query service picks
up these indices, performs parallel searches over them, and
produces a ranked combined result list. When a new descriptor
becomes available, the indexer just builds its separate index,
the query service picks it up, and includes it in the later
retrievals.

The main contributions of this paper are: i). providing a
flexible and modular indexing scheme for evaluating large
descriptor sets; ii). presenting the difference interval based
BK*-tree structure for fast nearest neighbour types of searches;
iii). presenting an associated result ranking retrieval step for
servicing high-precision multi-feature content-based queries.
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We will compare our approach with a classical multi-
feature indexing scheme, using two datasets, and will show
that the proposed approach is highly modular, fast, produces
good precision rates in kNN-type (k nearest neighbours) of
retrievals, and is a viable scheme serving as the basis of higher
level descriptor evaluation and feature selection methods.

II. DESCRIPTORS AND DATASETS

We use two datasets for the purposes of this paper. The
first one is the MIRFLICKR25000 dataset [7], which contains
25000 images gathered from Flickr, along with tags, and
roughly partitioned into 24 categories with lots of overlaps
(detailed description can also be found at http://press.liacs.
nl/mirflickr/). Another dataset we used is our own video and
image dataset (which we will call CDB7000 here) which con-
tains 7000 video segments collected from television captures
in 13 categories, e.g. sports, nature, cartoons, music, cooking,
news, street surveillance, outdoor, indoor. The videos were
automatically cut into shots and for each shot a representative
frame was automatically extracted - these representative frames
will be used for the purposes of this paper.

For both datasets, we selected a set of 10 descriptors,
using which we extracted the features for all images, and
stored them in a MYSQL database. These descriptors were
the following: average colour (custom descriptor gathering
average representative colour over local image areas), curvelets
[8], colour layout, colour structure, dominant colour, edge
histogram, homogeneous texture [9], LBP [10], PHOG [11],
focus regions [12]. However, it is important to note that there is
no limitation regarding the number of used descriptors. As for
the size of the datasets used, since the current implementation
uses in-memory indices, there could be physical memory
limitation in case of very large sets (which can be circumvented
with a disk-based implementation).

III. INDEX STRUCTURE

As an indexing structure we use a variant of in-memory
BK-trees [6] which we first introduced in [13], with nodes
containing an arbitrary number (descriptor dependent) of chil-
dren, each representing an interval of difference between a
node and its parent. We call these trees as BK*-trees.

This structure can be used to build quickly searchable
index trees for any descriptor which has a metric. We build
these trees for every descriptor we use, separately. The query
service will then pick up these index trees and perform
queries upon them, when requested by the retrieval interface.
Naturally, these trees are only able to generate results for a
single descriptor at a time, but all of them can be used when
performing multi-dimensional (i.e. multi-feature) queries.

Fig. 1 shows a simplified diagram of the indexing-retrieval
scheme. As described above, the indexer creates indices for
each descriptor. When a new descriptor is added, its index
will be built, and added to the existing ones, without the need
to rebuild the others. The query service reads and uses all
available indices.

The original BK-trees have been used in string matching
algorithms. Essentially they are representations of point distri-
butions in discrete metric spaces. For classical string matching

Fig. 1. Simplified architecture of the framework. The indexer builds indices
in parallel from the selected features; the query server serves results based on
the available indices. For a new feature, the other indices are not rebuilt.

purposes, the tree is built so as to have each sub-tree contain
sets of strings that are at the same distance from the sub-
tree’s root, i.e. for all l leaves below sub-root sr the difference
d(l, sr) = ε is constant.

In our case, the used structure contains tree nodes that can
have an arbitrary number of children (M ), where the leaves
below each child contain elements for which the distance
d falls in a difference interval: d(l, sr) ∈ [εi; εi+1), where
i ∈ [0,M − 1] ∩ N. The distance intervals in the child nodes
(denoted by εi, εi+1 above) depend on the maximum error
Emax that the feature-dependent distance metric can have,
more specifically, ‖εi+1 − εi‖= Emax/M , thus the difference
intervals are linearly divided buckets. This is a very important
aspect of this indexing scheme, since when performing nearest
neighbour types of searches we can decide very early in the
process that which sub-trees of the index will contain all of
the nearest neighbours (i.e. elements that fall in a specified
distance interval).

This property was one of the main reasons for starting to
use the BK* structure in the first place, since it can enable
to discard large irrelevant parts of the index tree during the
query process (it can be decided early on that all the result
candidates which are in the vicinity of the query are located
in one or more sub-trees). Also, in case of eventual larger
datasets, the query process of a single tree can also be easily
parallelised for higher efficiency, forking the process along the
selected candidate sub-trees and combining the results in the
final ranking step.

If we have feature points with an associated distance
metric, then we can populate a BK*-tree with these points
in the following way:

1) Pick one of the points as the root node, nR.
2) In a tree (i.e. for a descriptor) each node will have a

constant number of M child nodes.
3) A point Pj will be placed into the child node Ni

(i = 0...M − 1), if

i ·
Emax

M
< d(Pi, Pj) < (i+ 1) ·

Emax

M
,

where Pj is Pi’s parent node. Thus, a node will
contain a point if its distance from the parent falls into



the interval specified above; each node representing a
difference interval εi, εi+1=[i · d/M ; (i+ 1) · d/M).

4) Continue recursively until there are no more points
left to insert.

IV. QUERYING

In this section we will present a querying scheme based on
the above index structure which enables the testing of retrievals
using any number of available descriptors/features, providing
efficient parallel content-based searches.

Given a content-based query (Q), the index trees are
searched for similar entries (all trees are searched in parallel,
based on the different descriptors and their distance metrics):

1) If d0 = d(Q,nR) < t (t is an adjustable threshold),
then root nR element is a result. Let t1 = d0 − t and
t2 = d0 + t.

2) For each node Pi (where P0 = nR and d0 =
d(Q,nR)) which has M intervals (children) cj , j =
1...M , if






j Emax

M
∈ [t1, t2] or

(j + 1)Emax

M
∈ [t1, t2] or

j Emax

M
≤ t1 and (j + 1)Emax

M
≥ t2 ,

(1)

then:

a) let dj = d(Q, cj),
b) if dj < t then cj is a result,
c) update t1 = dj−t and t2 = dj+t and iterate

step 2.

After getting all result candidates from all used index trees,
the results are retrieved by ordering them by placing those
in front, which are closer to the query according to multiple
descriptors. Basically, if we imagine that all descriptor graphs
are viewed from the location of the query node, then results
are retrieved from a high dimensional spherical neighbourhood
around query Q.

Thus, we perform multi-feature queries not by creating very
high dimensional feature vectors in a single index structure,
but by building separate index trees for all descriptors, and
performing parallel searches for the query in all indices, then
combining the results. This enables us to easily extend the
framework with descriptors without the need to rebuild the
entire dataset index when adding or removing a descriptor.

An important issue to note is that in this scheme kNN-type
searches get translated into:

• finding the closest matches to a query in each index,
then

• combining the result lists, and

• returning the first k best matches.

For creating the combined retrieval lists from multiple
descriptors, we define a weighting scheme which gives a result
a higher overall rank if it also has high individual ranks accord-
ing to multiple descriptors. This weighting scheme improves
the retrieval process in itself (e.g. compared to producing an
interleaved merging of the results), but we will show that it

can be further improved by exploiting the descriptor ranking
information we obtain from the graph analysis steps.

While this result list combination step is a kind of rank
aggregation [14] of partial lists, the purpose of this paper is
not the creation of a Kemeny-optimal aggregation method.
However, our ranking scheme can be thought of as a special
form of Borda scoring of partial/top-k lists, without assigning
scores to elements not present in a specific list, but producing a
final ranked list which is based on the aggregation of weights
obtained from individual result lists. The evaluation of this
ranking procedure itself could be the topic of a separate paper.

Let us denote by R = ∪nd

j=1
Rj the combined retrieval result

list from all indices (nd is the number of descriptors). If Rj

is an ordered result list obtained by using descriptor dj , (j =
1...nd), and ordered by increasing distance δ from the query
node q, then let rj,i be the identifier of the ith result in Rj :

Rj = {rj,i|0 6 i < nj , j = 1...nd, δ(rj,i) 6 δ(rj,i+1)} , (2)

where nj is the number of results in Rj . Each rj,i will be
assigned a weight

ŵ(rj,i) =

{

1− i/n , if i < n/2 ,
0, otherwise.

(3)

where n = |V | the number of all dataset elements. The main
goal of the retrieval process is to have relevant results at the
beginning of the result list. In our retrievals we retrieve a fixed
k number of best matches, and we would like to have a high
precision among these k responses. However, when searching
in the separate index trees, we do not enforce this k limit (only
when creating the final combined result list), thus the search
from an index can produce different numbers of individual
results. It is because of this property that we use the i <
n/2 limit in Eq. 3, assuming no single category has more
elements than half of the dataset: should an extreme case occur
when the number of results from an index return too many
results (in this case more than half the cardinality of the whole
dataset), then we do not assign special weight for results above
this limit, since practically most of them would be irrelevant
anyway: it is important to keep in mind, that the individual
result list of an index is in itself an ordered list (according to
the specific descriptor used of the index), thus realistically -
and if the descriptor’s metric is valid - results beyond the n/2
limit should not be relevant.

In the final result list E, if a result e occurs in multiple
result lists Rj , then the total weight of e will be the sum of
all its weights from all Rj :

W (e) =

nd
∑

j=1

σ(j) , (4)

where

σ(j) =

{

ŵ(rj,i), iff e = rj,i ∈ Rj ,
0, otherwise.

(5)

and results will be retrieved ordered by their decreasing
weights W :

E = {ek|k > 1,W (ek) > W (ek+1)} . (6)

Thus, the final position of a result will be better if it has a
higher position by multiple descriptors.



V. EVALUATION

As described above, our primary goal here is not to create
a best performing retrieval method, but a framework suitable
for the evaluation of large descriptor sets. However, it is also
important to see how the proposed framework behaves inside
a retrieval scheme, to prove its overall usability and viability.

Thus, as a basis of comparison for evaluating the usabil-
ity and performance of the proposed scheme, we used the
hierarchical K-means tree based indexing from the FLANN
library (Fast Library for Approximate Nearest Neighbors) [15]
(also available at http://www.cs.ubc.ca/∼mariusm/index.php/
FLANN/FLANN). We built the index by inserting feature
identifiers into the tree and creating a custom distance functor
class which pulls the feature vectors from the database and
performs the combined difference calculations. The above
BK* indices also pulls the features from the database, so
this step does not introduce additional complexity of running
time differences. The combined feature vectors have variable
lengths, containing all the features of the selected 10 descrip-
tors (mentioned above). The length of a full feature vector is
approx. 11000 bytes. The difference of two vectors is the sum
of all differences, i.e. (N = 10)

d(Fi, Fj) =
N
∑

k=1

dk(Fi(k), Fj(k)), (7)

where Fi,Fj are the full feature vectors and dk is the distance
function associated to feature k.

The first n best matches (50 in the tests) were obtained by
using the knnSearch function to find the 50 nearest neighbours
around a query. Here, the matches are already a result of
a combined multi-feature querying process, thus in this case
there is no further need for additional re-arrangement or re-
ranking of the result list since it will not affect the precision
of the results.

We performed comparisons of the proposed scheme with
this approach, from the points of view of indexing time,
retrieval time, retrieval performance (precision and average
precision), in order to show that the proposed method is fast
in building indices, retrieving results, and has good retrieval
performance when combined with the above described result
ranking step. All these properties combined with the design
points of high modularity and the easy descriptor plug-in/out
capabilities prove the presented scheme’s usability for descrip-
tor evaluation purposes, and also for regular content based
retrieval tasks.

Fig. 2 shows times to create the indices for the MIR-
FLICKR25000 and the CDB7000 datasets, by using the
FLANN/Kmeans index structure (denoted by fkm) and the
proposed BK*-tree indices (denoted by bk*). In this figure
(a) and (c) show - in logarithmic scale - the time to create
the separate indices for each descriptor by bk*. The indices
are built in parallel (in a multi-threaded implementation using
OpenMP http://openmp.org), and the overall total time to build
all indices can be thought of as the maximum build time
from all the indices (since all other indices will be finished
earlier). Thus in Fig. 2 (b)-(d) we compare the slowest building
time from the bk* indices with the indexing time of the
FLANN/Kmeans scheme. Overall bk* indexing takes less time

(a) (b)

(c) (d)

Fig. 2. Time to create the indices for the MIRFLICKR25000 dataset by the
proposed (bk*) and the FLANN/Kmeans (fkm) indexing scheme. (a) Indexing
time with the proposed scheme for each descriptor. (b) Comparing the total
indexing times of the proposed and the FLANN/Kmeans scheme. (c-d) The
same time values in the case of the CDB7000 dataset.

by more than an order of magnitude (in this case 4 hours vs.
36 hours and 19 minutes vs. 626 minutes respectively). This
would be important in the case when this structure is used
inside a complete retrieval framework, providing the capability
for fast re-indexing of the dataset.

Then, in Fig. 3 we present information regarding the
retrieval time (time to give a response to a query) and perfor-
mance (in precision). While in average bk* takes 1.5-2 times
more to produce the results as fkm, here we have to note that
in bk* the query service searches the index trees in parallel,
but we have to wait for all searches to finish before producing
the combined ranked results. Thus the overall response time of
bk* will be the slowest response of all indices. However, Fig.
3 (b)-(d) show that bk* with the associated ranking retrieval
has better retrieval performance regarding precision, which is
an important issue when searching for first k best matches
(nearest neighbours).

Here the precision is measured as the number of relevant
results from the first best 50 matches in all cases. For both
datasets, a result is deemed relevant, if it has at least one cate-
gory/class which is common with the query’s. Fig. 3 (e) shows
the average precision values - averaged over all performed
queries - for both datasets and indexing schemes, showing the
better overall performance of the proposed scheme.

Regarding the similarity threshold used in Sec. IV, its
important property is that it determines which dataset elements
will be treated as “close enough” by an individual index, when
gathering the results. If it is set too high, then a large number
of elements will be treated as similar to the query which also
means a very large percentage of the index tree will be walked
when gathering result candidates. Thus, as a general rule, in
the proposed scheme we always set this threshold so as the
percentage of the visited index tree nodes will stay below
50%. We used such settings to produce all the above presented
measurements. Fig. 4 shows the percentages of visited nodes.



(a) (b)

(c) (d)

(e)

Fig. 3. Response times (time to answer a query) and precision (P) values
for several queries, on the MIRFLICKR25000 (a-b) and the CDB7000 (c-d)
datasets. (e) Average precision values for the two datasets over all queries.

Fig. 4. Percentage of nodes visited during a bk* retrieval for the MIR-
FLICKR25000 dataset averaged over descriptors for each query.

VI. CONCLUSIONS

We have presented an indexing scheme usable for the
evaluation of large descriptor sets and at the same time
providing quick multi-feature retrieval capabilities. The goal
was to create a scheme which is modular, independent on
the number of used features/descriptors, and does not need
to rebuild indices when adding or removing descriptors. The
used BK-trees based structure provides a fast kNN-type search
capability by structuring dataset elements in an index tree
based on distance intervals. The resulting indexing scheme
combined with the presented result ranking retrieval provides a
robust framework for descriptor evaluation and testing content
based similarity searches.

Also, while the index structure of the proposed scheme is
currently an in-memory one (all the indices need to be kept
in memory by the query service to perform retrievals), it can
be fairly easily translated into a disk-based storage design (in
order to overcome available memory limitations in case of very
large datasets), where nodes would be folders/directories, sub-
nodes would be sub-directories, and feature data of the nodes

would be files in a directory. For such a scheme to work in
a usable manner, very high speed disk solutions (e.g. high
performance SSDs) would be needed.
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