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Abstract

We present a quantum algorithm for solving the hidden subgroup problem in the
general linear group over a finite field where the hidden subgroup is promised to be a
conjugate of the group of the invertible lower triangular matrices. The complexity of
the algorithm is polynomial when size of the base field is not much smaller than the
degree.

1 Introduction

The hidden subgroup problem (HSP for short) is the following. We are given a black box
function f on a group G such that there is a subgroup H of G satisfying f(x) = f(y) if and
only if x and y are in the same right coset of H (that is, yx−1 ∈ H). The task is to determine
the subgroup H, which is unique and called the subgroup hidden by f . Computing orders of
elements of groups, calculating discrete logarithms and even finding isomorphisms between
graphs can be cast in the paradigm of the HSP [19].

On classical computers, the query complexity of the hidden subgroup problem is expo-
nential (in log |G|) already over finite commutative groups. In the quantum setting f is
assumed to be given by a quantum oracle which is a unitary map Uf mapping states of the
form |x〉|0〉 to |x〉|f(x)〉. In contrast to the classical case the quantum query complexity of
the HSP is polynomial (in log |G|), see [10]. Furthermore, there are polynomial time quantum
algorithms [5, 20] solving the hidden subgroup problem in abelian groups, generalizing Shor’s
result on order finding and computing discrete logarithm [23]. Computing the structure of
finite commutative black box groups [7] is a more general application of the abelian HSP.
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As the graph isomorphism problem is involved, in the past decade considerable efforts
have been spent on finding efficient algorithms for noncommutative cases of the HSP. Al-
though nice results have been achieved in this direction, the groups in which the HSP can
be solved at present in quantum polynomial time remain actually very close to being com-
mutative. One of the widest classes of finite groups in which the HSP is known to have a
polynomial time quantum solution consists of solvable groups whose derived subgroup have
of constant derived length and constant exponent [11]. Other classes of groups with efficient
quantum HSP algorithms include certain “almost Hamiltonian” groups [12] and two-step
nilpotent groups [18]. The latter class contains Heisenberg groups for which efficient HSP
algorithms are also given in [2] and [1]. The “pretty good measurement” technique of [2]
actually works also in certain nilpotent semidirect product groups of higher nilpotency class.
An efficient HSP algorithm is given in [16] for a special family of groups which possess a
large commutative subgroup and a map transforming the HSP of the whole group to the
HSP of the abelian subgroup. The limited success in finding good noncommutative HSP
algorithms indicates that the problem may be actually difficult. The connection between
the HSP in dihedral groups and some supposedly difficult lattice problem exposed in [22]
provides further evidence for that.

Putting restrictions on the class of the possible hidden subgroups can result in efficient
algorithms for finding them even in fairly noncommutative groups. Most importantly, the
HSP for normal subgroups can be solved in quantum polynomial time in groups for which
efficient quantum Fourier transforms exist (see [14] and [15]) and in a class of groups including
solvable groups and more [17]. The methods of [21] and [13] work efficiently for sufficiently
large non-normal hidden subgroups in certain semidirect products.

The first polynomial time algorithm for finding special hidden subgroups in simple and
almost simple groups is given in [8]. (An almost simple group has a large noncommutative
simple constituent.) The main result of Ibid. is an efficient quantum algorithm that solves
the HSP in the group of 2 by 2 invertible matrices (and related groups) where the hidden
subgroup is promised to be a Borel subgroup (definition will be given below). In this paper
generalize this result to finding hidden Borel subgroups in general linear groups of higher
degree.

We denote by GLn(Fq) the general linear group consisting of the invertible n×n matrices
over the finite field Fq having q elements. We propose a quantum algorithm for the HSP in
GLn(Fq) where the hidden subgroup is promised to be a Borel subgroup. For brevity we use
the term hidden Borel subgroup problem for this promise problem. Our algorithm works in
polynomial time if q is not much smaller than n.

A Borel subgroup of GLn(Fq) is a conjugate of the subgroup consisting of the invertible
lower triangular matrices (see [24]). An alternative definition for a Borel subgroup is being
the stabilizer in GLn(Fq) of a flag Fn

q > U1 > U2 > . . . > Un−1 > (0) of subspaces of the
space V = Fn of the column vectors of length n. Indeed, for 0 < k < n let Vk be the set of
column vectors whose first k entries are zero. Then the invertible lower triangular matrices
A form the stabilizer of the flag Fn

q > V1 > V2 > . . . > Vn−1 > (0), and their conjugates
X−1AX by X form the stabilizer of the flag Fn

q > X−1V1 > X−1V2 > . . . > X−1Vn−1 > (0).

2



To fix a nicely defined output, by solving the hidden Borel subgroup problem we mean
determining the flag of subspaces stabilized by the hidden Borel subgroup. We remark that,
given such a flag, it is easy to construct generators for its stabilizer.

Our method (described in Section 3) is based on the observation that a coset of a Borel
subgroup is quite a large subset of a linear space of n by n matrices. The main technical
tool is a version of the standard algorithm for the abelian HSP, adapted to linear spaces (see
Section 2). In Section 4 we show how to extend our result to finding hidden Borel subgroups
of the special linear group.

2 The quantum Fourier transform for linear spaces

In this section we briefly overview the main ingredient of the standard method for solving the
hidden subgroup problem in Fm

q where the hidden subgroup is promised to be an Fq-linear
subspace W of Fm

q and give an interpretation of the result in the special case of a linear
space of matrices.

The procedure receives a superposition

1√
|W |

∑
v∈W
|v + v0〉 (1)

over a coset W + v0 and obtains information on W using the quantum Fourier transform
(QFT) of the group Fm

q . Here we use a version which is the m’th tensor power of the QFT
defined in [9] for Fq. This transform maps a |x〉 (x ∈ Fq) to

1
√
q

∑
y∈Fq

ωTr(xy)|y〉

where Tr is the trace map from Fq to Fp and ω is the primitive p’th root of unity e
2πi
p .

(Here p is the prime such that q = pr for a positive integer r and the trace map is defined
as Tr(x) =

∑r−1
i=0 x

pr .) By Lemma 2.2 of [9], this map has a polynomial time approximate
implementation on a quantum computer, therefore its m’th tensor power can be efficiently
approximated as well. The image of |x〉 for a vector x = (x1, . . . , xm)T ∈ Fm

q under the
tensor power map is

1

qm/2

∑
y∈Fmq

ωTr(x,y)|y〉,

where (x, y) stands for the standard scalar product xTy =
∑m

i=1 xiyi on Fm. Our input
superposition (1) gets mapped to the state∑

y∈Fm
cy|y〉,

where

cy =
ω(v0,y)√
|W |qm

∑
v∈W

ω(v,y).
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The subspace W⊥ consisting of the vectors u from Fm
q such that (u, v) = 0 for every v ∈ W

has dimension m− dimFq W , therefore |W⊥| = qm

|W | . For y ∈ W⊥ we have

|cy| =
1√
|W |qm

∑
v∈W

ω0 =
|W |√
|W |qm

=
1√
|W⊥|

.

It follows that ∑
y∈W⊥

|cy|2 = |W⊥| · |1|
|W⊥|

= 1.

Therefore for y 6∈ W⊥ we have cy = 0 and if we measure |y〉, we obtain a uniformly random
element of W⊥.

Assume now that W is a subspace of the linear space Mn×n(Fq) of n× n matrices over
Fq. We can consider n×n matrices as vectors of length n2. Then the standard scalar product
of two matrices A = (aij) and B = (bij) is

n∑
i,j=1

aijbij = tr(ABT ).

Here, for a matrix D ∈ Mn×n(Fq), by tr(D) we denote the sum of the diagonal elements
of D. (Thus tr(D) is an element of Fq. The map tr from Mn×n(Fq) to Fq should not be
confused with the trace map Tr from Fq to Fp, although they are not completely unrelated.)
We will make use of the identity tr(XY ) = tr(Y X).

3 Finding hidden Borel subgroups in the general linear

group

In this section we outline a quantum algorithm for finding a hidden Borel subgroup H in
the group GLn(Fq). Like the most hidden subgroup algorithms, our procedure is based on
using superpositions over cosets of H, that is, states of the form

|HB〉 =
1√
|H|

∑
A∈H
|AB〉,

where B is a matrix from GLn(Fq). We will think of such a superposition as an approximation
of a superposition over a linear space of matrices and apply the quantum Fourier transform
of the linear spaceMn×n(Fq) to obtain a guess for the one-dimensional subspace in the flag
stabilized by H. The guess will be verified in a straightforward way. If the guess turns out
to be correct, the further members of the flag can be obtained by recursion.
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3.1 Obtaining coset superpositions

The standard approaches to the hidden subgroup problem in a group G start with the the
state 1√

|G|

∑
x∈G |x〉|0〉, apply the oracle for the function f to obtain 1√

|G|

∑
x∈G |x〉|f(x)〉, and

finally measure the second register to obtain the coset superposition

1√
|H|

∑
x∈H
|xy〉

with some y ∈ G (H is the subgroup hidden by the function f). If G is abelian then the
uniform superposition 1√

|G|

∑
x∈G |x〉 over G can be obtained by applying the quantum Fourier

transform of G to |0〉 (here 0 stands for the neutral element of G). There are efficient methods
for computing uniform superpositions of certain further classes of groups, e.g., the algorithm
of Watrous [25] for solvable groups.

For the purposes of our algorithm it will be sufficient to approximate the uniform su-
perposition 1√

|GLn(Fq)|

∑
x∈GLn(Fq) |x〉 over the group GLn(Fq) by the uniform superposition

1√
|Mn×n(Fq)|

∑
x∈Mn×n(Fq) |x〉 over Mn×n(Fq), which can be efficiently computed using the

quantum Fourier transform of Fn2

q . The fidelity between the two states is

c =

√√√√ |GLn(Fq)|
|Mn×n(Fq)|

=

√√√√∏n−1
i=0 (qn − qi)

qn2 =

√√√√ n∏
j=1

(1− q−j) >
√√√√ ∞∏

j=1

(1− 2−j) >
1

2
.

(Recall that the fidelity between two pure states is just the absolute value of their inner
product.) We extend f (and the oracle Uf ) to Mn×n(Fq) so that f takes a distinguished
value D on non-invertible matrices. If we apply the extended oracle Uf to the superposition

1√
|Mn×n(Fq)|

∑
x∈Mn×n(Fq)

|x〉|0〉

we obtain the sate

c · 1√
|GLn(Fq)|

∑
x∈GLn(Fq)

|x〉|f(x)〉+
√

1− c2|ψ〉|D〉,

where

|ψ〉 =
1√

|Mn×n(Fq) \GLn(Fq)|

∑
x∈Mn×n(Fq)\GLn(Fq)

|x〉.

Then, if we measure the second register, we find D in it with probability 1− c2, while with
probability c2 > 1

4
, we find one of the legitimate values for the original function f and obtain

a superposition over a coset of the hidden subgroup H in GLn(Fq) in the first register.
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3.2 Guessing the smallest subspace in the flag

Recall that our assumption is that there exists an n × n invertible matrix X such that
H = X−1LX, where

L = {A = (aij) ∈ GLn(Fq) : aij = 0 when i < j} .

Then the smallest nontrivial member Un−1 of the flag Fn
q > U1 > . . . > Un−1 > (0) stabilized

by H is X−1Vn−1, where Vn−1 consists of the column vectors from Fn
q whose first n−1 entries

are zero.
We will consider the multiplicative group L as an approximation of the subspace

L′ = {A = (aij) ∈Mn×n(Fq) : aij = 0 when i < j}

of lower triangular matrices. ThenH will be thought of as an approximation ofH′ = X−1LX.
We have |H| = |L| = (q − 1)nqn(n−1)/2 and |H′| = |L′| = qn(n+1)/2.

Accordingly, for every B ∈ GLn(Fq), the coset superposition

|HB〉 =
1√
|L|

∑
A∈L
|X−1AXB〉

will be considered as an approximation of

|H′B〉 =
1√
|L|′

∑
A∈L′
|X−1AXB〉.

The fidelity between |HB〉 and |H′B〉 is√
|HB|√
|H′B|

=

√
|H|√
|H′|

=

(
q − 1

q

)n
2

.

Therefore, if we apply the quantum Fourier transform of Mn×n(Fq) discussed in the
previous section to the coset superposition |HB〉, and do the measurement then, with a

chance at least Ω
((

q−1
q

)n)
, the result will be a uniformly random element of the subspace

(H′B)⊥, as it would be the case when we started with the state |H′B〉. (Our state before

the measurement we may have an error term of amplitude

√
1− Ω

((
q−1
q

)n)
orthogonal to

the “ideal” state and hence after the measurement with probability 1−Ω
((

q−1
q

)n)
we may

get a false or even meaningless result.)
Let Y be a matrix from Mn×n(Fq). Then Y ∈ (H′B)⊥ = (X−1L′XB)⊥ if and only if

tr(X−1AXBY T ) = 0 for every A ∈ L′. As

tr
(
X−1AXBY T

)
= tr

(
AXBY TX−1

)
= tr

(
A
(
(XT )−1Y BTXT

)T)
,
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we obtain that Y ∈ (H′B)⊥ if and only if (XT )−1Y BTXT ∈ L′⊥. Furthermore, as multiplying
matrices by BT and conjugating matrices by XT are bijections, we can conclude that if Y is
a uniformly random element of (H′B)⊥ then (XT )−1Y BXT is a uniformly random element
of L′⊥. Observe that the elements of L′⊥ are just the strictly upper triangular n×n matrices.
A strictly upper triangular matrix Z has rank n − 1 if and only if all the entries of Z just
above the principal diagonal are nonzero. For a uniformly random strictly upper triangular

matrix this happens with probability
(
q−1
q

)n−1
>
(
q−1
q

)n
.

Observe that if Z is a strictly upper triangular matrix of rank n − 1 then the kernel of
ZT is the set Vn−1 of column vectors from Fn whose first n− 1 entries are zero. Obviously,
the matrix (XT )−1Y BTXT has the same rank as Y . If the rank is n − 1, then the kernel

of XBY TX−1 =
(
(XT )−1Y BXT

)T
is Vn−1, whence the kernel of Y T is the 1-dimensional

subspace X−1Vn−1, which is the one-dimensional subspace of the flag stabilized by H.
In summary, by applying the quantum Fourier transform to the coset state |HB〉 and

then measuring the result, with probability Ω ((1− q−1)2n) we obtain a matrix Y of rank
n− 1 with kernel Un−1.

3.3 Putting things together

In this part we show how to check and use a guess for the one-dimensional subspace Un−1 of
the flag stabilized by the hidden Borel subgroup H provided by the algorithm described in
the previous subsection.

As Un−1 is one-dimensional, we assume that the guess is given by a nonzero column
vector u. Let Z be a matrix from GLn(Fq) whose last column is u. Then Un−1 = ZVn−1.
We replace the hiding function f by f ′ defined as f ′(A) = f(ZAZ−1). An oracle for f ′ can
be obtained from the oracle for f in an obvious way using this definition. The subgroup
hidden by f ′ is Z−1HZ and the one-dimensional subspace of the flag stabilized by Z−1HZ is
Z−1Un−1. The guess for Un−1 is correct if and only if Z−1Un−1 = Vn−1, that is, the subgroup
Z−1HZ hidden by f ′ is contained in the subgroup of matrices of the form(

A 0
v α

)
,

where A ∈ GLn−1(Fq), α ∈ Fq \ {0} and v is row vector of length n− 1. Testing correctness
of the guess can be carried out by calling the oracle for the identity matrix and for the n− 1
matrices of the form (

I 0
v 1

)
with v = (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . ., (0, 0, . . . , 0, 1). Note that we can obtain a cor-
rect guess with expected O ((1− q−1)−n) repetitions of procedure described in the previous
subsection.

Assume that the guess is correct. Then we consider the subgroup G of GLn(F) consisting
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of the matrices of the form (
A 0
0 1

)
,

with A ∈ GLn−1(Fq). Taking the upper left n − 1 by n − 1 block of matrices gives an
isomorphism between G and GLn−1(Fq). Furthermore, G ∩ Z−1HZ is a Borel subgroup of
G. The subspaces in the flag stabilized by G ∩Z−1HZ are intersections of those for Z−1HZ
with the subspace of the column vectors with zero as last entry. We determine this flag by
recursion. Then we obtain the flag for Z−1HZ by adding Un−1 to each of the members.
Finally the complete flag for H is obtained by applying Z.

The group PGLn(Fq) is the factor of GLn(Fq) by its center consisting of the scalar
matrices and the Borel subgroups of PGLn(Fq) are just the images of the Borel subgroups
of GLn(Fq) under the quotient map. As the scalar matrices from GLn(Fq) are contained
in every Borel subgroup, the hidden Borel subgroup problem for the groups PGLn(Fq) and
GLn(Fq) essentially coincide. (A function hiding a Borel subgroup of PGLn(Fq) can be lifted
to GLn(Fq) in the straightforward way.) We have proved the following.

Theorem 1 The hidden Borel subgroup problem in GLn(Fq) (and in PGLn(Fq)) can be
solved in quantum time poly(n+ log q + (1− q−1)−n).

4 Finding Borel subgroups in the special linear group

The special linear group SLn(Fq) consists of n by n matrices over Fq with determinant
one. In this section we briefly outline an extension of our method to finding hidden Borel
subgroups in SLn(Fq). A Borel subgroup of SLn(Fq) is just the intersection of SLn(Fq) with
a Borel subgroup of GLn(Fq), that is, the stabilizer of a flag Fn

q > U1 > . . . > Un−1 > (0)
of subspaces within SLn(Fq). Again, we require the output of the HSP algorithm to be this
flag.

Assume that we have a function f defined on SLn(Fq) that hides a conjugate of the
subgroup L0 consisting of the lower triangular matrices having determinant 1. Let G stand
for the subgroup of GLn(Fq) consisting of matrices whose determinant are from F∗q

n, where
F∗q

n = {xn : 0 6= x ∈ Fq}. We extend f to G as follows. Let A be a matrix from G. We
compute detA and find an element z ∈ Fq such that zn = detA. Such elements z can be
read from the linear factors of the polynomial xn − detA, which can be found classically
in time polynomial in n and log q, using the randomized method of Berlekamp [3, 4] or the
even more efficient algorithm of Cantor and Zassenhaus [6]. (On a quantum computer, a
simple root extracting method based on calculating discrete logarithm also does the job in
polynomial time.) We put f(A) = f(z−1A). It turns out that the definition of f(A) does not
depend on the choice of z. Indeed, if zn1 = zn then z−11 zI is in the subgroup of SLn(Fq) hidden
by f and therefore f(z−11 A) = f(zA). The subgroup of G hidden by the extended function
will be a conjugate of the lower triangular matrices with determinant from F∗q

n. The fidelity
between the uniform superposition over this set and the uniform superposition over all the

lower triangular matrices is at least 1√
n

(
q−1
q

)n
2 . (Compared to the case of GLn(Fq) studied
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in Section 3, we have here an extra factor 1√
n

as G has index n in GLn(Fq).) Therefore,
if we apply the method of Subsection 3.2 for guessing the one-dimensional member of the
stabilized flag, we have a further factor Ω

(
1
n

)
for the probability of obtaining a correct guess.

Testing correctness and the recursion are also essentially the same as in the case for GLn(Fq).
We obtain the following.

Theorem 2 The hidden Borel subgroup problem in SLn(Fq) (and in PSLn(Fq)) can be solved
in quantum time poly(n+ log q + (1− q−1)−n).

As (1− q−1)−n is polynomial in n if q = Ω( n
logn

), we have

Corollary 3 When q = Ω( n
logn

), the hidden Borel subgroup problem in GLn(Fq) and SLn(Fq)

(and in PGLn(Fq) and PSLn(Fq)) can be solved in quantum time poly(n+ log q). In partic-
ular, for constant n, the quantum complexity of the problem is poly(log q).

5 Concluding remarks

In this paper we have proved that the hidden Borel subgroup in GLn(Fq) and SLn(Fq) can
be solved in quantum polynomial time if the size q of the base field is not too much smaller
than the degree n. Perhaps the most important question which is left open is existence of
polynomial time algorithms over small base fields (e.g., over fields of constant size).

Other interesting questions are whether it is possible to extend the result to the hidden
Borel subgroup problem in other classical groups (e.g., the orthogonal groups) and if it is
possible to find efficiently hidden conjugates of certain subgroups of the lower triangular
matrices such as the unitriangular matrices or the diagonal matrices.
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