
BUDAPESTACAD at TAC 2010

Dávid Nemeskey, Gábor Recski, Attila Zséder, and András Kornai
Computer and Automation Research Institute, Hungarian Academy of Sciences

{ndavid,recski,zseder,kornai}@sztaki.hu

1 Introduction

The following paper will describe the systems we have
created for the Knowledge Base Population (KBP) and
Recognizing Textual Entailment (RTE) tracks of TAC.
Sections 2 and 3 will describe a set of tools used to per-
form the entity-linking and slot-filling tasks of the KBP
track respectively. Section 4 will give an overview of a
complex tool for recognizing textual entailment. Each
section describes the various modules created, provides
an overview of the process of performing the task at hand,
and discusses the results obtained.

2 Entity Linking

The Entity Linking task requires that the system, given
a name-string, determines which entity, if any, is being
referred to in a pre-defined knowledge base. Each query
also contains reference to a document from a collection
of newswire articles and blog entries associated with it,
which can be used to disambiguate the name-string. The
knowledge base was a subset of a Wikipedia snapshot
taken in 2008.

Our system uses a setup not unlike a typical question
answering system. The knowledge base was loaded into
an Information Retrieval engine, after which we retrieved
the top 100 entities for each query. Next, a validation
step selected the entity to return, or NIL, if no suitable
candidates were found.

2.1 Information Retrieval

We used SZTAKI’s information retrieval engine
(Daróczy et al., 2009). In three sets of experiments, we
loaded into the engine first only the titles, next the titles
and infoboxes, and finally the entire documents. Our
goal was to maximize recall and let the validation step
select the entity to return. The results of our experiments
are listed in Table 1. Perhaps not surprisingly, the best
recall was achieved by the last setup.

We assembled the queries for our IR engine in the fol-
lowing way: we included the name-strings, as well as the

Sections indexed r@1 r@5 r@10 r@50 r@100
Title only N/A N/A N/A N/A 0.70
Title and infoboxes 0.29 0.50 0.60 0.79 0.84
Entire document 0.57 0.79 0.84 0.92 0.94

Table 1: Recall values at various cut-off ranks

words surrounding them in the supporting documents in
a 5-term radius, albeit with a lower weight. Furthermore,
we examined the queries from 2009 and identified two
query types that pose difficulties for IR engines: spelling
variations and abbreviations.

Luckily, the first problem was tackled by the built-in
spell corrector of the IR engine. We handled abbrevi-
ations by building a dictionary of them. We parsed all
documents for named entities (NEs) and created abbrevi-
ation candidates from them. If an abbreviation candidate
actually occured in the same document as the NE, it was
saved to the dictionary along with the entity as its expan-
sion. Finally, we extended the affected queries with all
possible expansions of the abbreviations included.

2.2 Entity Validation

The validation phase was rather simple. We took the top
n candidates from the IR list and compared their NE tag
(PER, ORG or LOC) to that of the name-string in the
query. For some entities, tags were readily available in
the knowledge base — for the others, as well as the name-
strings, we used our in-house NER tagger (Varga and Si-
mon, 2006). The first entity where the tags matched was
returned as the answer. In case no match was found, we
returned NIL.

Table 2 summarizes our results. As can be seen, our
precision is below the median, which we contribute to
two reasons: On the one hand, the accuracy of NER tag-
ging was low. More importantly, our validation method
was simplistic, and by examining only the top-ranked
documents, it could not take advantage of the high recall
achieved by the IR step.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48292463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Run type n Our run Median Highest

Full run 1 0.5018 0.6836 0.86803 0.3378

No-text run 1 0.4396 0.6347 0.77913 0.2760

Table 2: Micro-averaged precision achieved by our official runs

3 Slot-filling
The slot-filling task involves the automatic discovery of
specific types of data regarding some entity based on a
collection of text which may or may not contain the in-
formation neccessary to fill the database slots.

3.1 System architecture
As a first approach to the task at hand we proceeded to
reimplement the basic ideas of the system described in
(Agirre et al., 2009).

First, we obtained entity-slot-value triplets from the
knowledge base (infoboxes). To do this, we needed a
mapping from the noisy infobox field names to the proper
slot names. We did this manually and non-exhaustively
from the most frequent field names, only in order to ob-
tain sufficient training data.

Next, we searched for occurences of the previously ob-
tained data in the tagged documents near entities that they
belonged to. To be able to train our classifiers, we needed
negative examples as well, so for every positive answer
we collected 3 other ones with the same slot type.

Next, we trained a maximal entropy classifier for each
slot. Features were extracted from the context of the
entities and the positive and negative examples of their
facts. We annotated each word with a tag which describes
whether the words referring to the entity are situated to
the left or right of the given word. Features for each word
consisted of n-gram sequences of such tags in their con-
text.

When evaluating the questions, we first filtered the
slots we needed using given ignore lists and data already
present in the KB. We also searched for occurences of
the given entities, but only those which matched the en-
tity types required by the slots. Finally, we classified all
data with the models trained before.

3.2 Results and discussion
From the total of 1034 slots to fill we submitted some
response to 901, of which 43 was correct. The scores are
shown in the Table 3.

As can be seen, we were not able to replicate the per-
formance of the Stanford system. One of the reasons is
that our manual work of mapping noisy infobox names to
slot names was very poor. Moreover, one serious short-
coming of our system is that our NER tagger is unable

to find dates and we created a small software for this
purpose. In addition, we did not use any geographical
database at this time, therefore we did not distinguish be-
tween e.g. cities and countries.

Precision 0.041
Recall 0.047
F1 0.044

Table 3: Slot filling results

4 RTE
The textual entailment task requires a system to make bi-
nary decisions about whether the propositional content of
a given sentence (the hypothesis) is supported by another
(the support sentence). The system has access to the con-
text in which the support sentence appears, the hypothesis
sentence is arbitrary.

4.1 System architecture
Our solution to the RTE task is based on the extraction
of primitive semantic relations from both the hypothe-
sis and support sentence and using them to compare the
propositional content of each. In order to do this we
first parsed the data using the Charniak parser (Charniak,
2000). Then we implemented a tool which performs a
traversal over each parse tree and creates triplets of the
form (predicate, argument1, argument2) based on sub-
trees with specific configurations. We will now describe
the basic types of triplets extracted.

The first type of triplets consist of a verb and its argu-
ments. We created one such triplet for each VP within a
sentence providing we could find at least one argument.
The second slot of the triplet is occupied by the exter-
nal argument (the subject of the verb in active construc-
tions), which we obtained by simply taking the head of
the last noun phrase preceding the VP in question. The
third slot of the triplet contains the internal argument, the
head of the NP within the given phrase which follows the
verb. Thus the subtree in Figure 1 will yield the triplet
(loves, John, Mary).

The next group of triplets contains those which encode
the relationship between a noun and its modifiers. These
triplets begin with the abstract predicate IS which is then
followed by the noun and its modifier. From the NP in
Figure 2 we create the triplets (IS, wolf, bad) and
(IS, wolf, big).

In addition to generating these triplets, we ran a NER
tagger on all sentences and the BART coreference solver
(Versley et al., 2008) on support sentences and their con-
text. After this, we added new triplets gained from these
outputs. Based on the assumption that having two dif-
ferent people with the same last name in a sentence pair



S

VP

NP

Mary

V

loves

NP

John

Figure 1: (loves, John, Mary)

NP

N

wolf

Adj

bad

Adj

big

Det

the

Figure 2: (IS, wolf, bad)(IS, wolf, big)

is a rare event, we also added simplified NER triplets
that only contain last names. For example, from a sen-
tence like „Al Bundy loves Peggy”, we added (NER,
Al Bundy, PER), (SIMP, Al Bundy, Bundy)
and (loves, Bundy, Peggy).

On the triplets that only contained one word in a field
(which is not a NER), we used WordNet (Miller, 1995)
to add new triplets based on its synsets. We skipped
fields with at least two words to avoid too many gener-
ated triplets. After all these steps, every sentence had
about 20-500 triplets.

We used a simple machine learning approach to rec-
ognize entailment between the hypothesis-candidate sen-
tence pairs. The following features were considered:
number of triplets in the hypothesis and the candidates
(ht and ct, respectively), the number of triplets that oc-
cur in both (hct) and the ratios hr = hct/ht and cr =
hct/ct. hct was computed in two different ways. The
first method demanded exact lexical matching in all fields
of the triplets, while the second method allowed partial
matches; that is, two triplets were considered matching if
each of their corresponding fields had at least one word
in common.

We built decision stump classifiers on all features and
selected the one with the highest information gain on the
training set. hr turned out to be the most important at-
tribute in each of our experiments. Since it performed
better on the training set, we employed partial matching
in our official run.

4.2 Results and discussion
The results of our official and ablation runs are presented
in Table 4, along with the optimal hr values. Much to
our surprise, most of the ablation runs outperformed the
official one. We believe this is caused by overlearning,
and take the high variance of hr as a proof.

Run hr Prec. Recall F1
Official run 0.44 12.90 32.06 18.40
No partial matching 0.44 13.35 31.22 18.71
No name norm. 0.44 13.49 25.93 17.75
No NER 0.01 13.59 35.34 19.63
No WordNet 0.022 14.51 19.74 19.51

Table 4: Micro-averaged precision achieved on the official and
ablation runs

References
E. Agirre, A.X. Chang, D.S. Jurafsky, C.D. Manning, V.I.

Spitkovsky, and E. Yeh. 2009. Stanford-UBC at TAC-KBP.
In Proceedings of Test Analysis Conference 2009 (TAC 09).

E. Charniak. 2000. A maximum-entropy-inspired parser. In
Proceedings of the 1st North American chapter of the Associ-
ation for Computational Linguistics conference, pages 132–
139. Morgan Kaufmann Publishers Inc.

Bálint Daróczy, Zsolt Fekete, Mátyás Brendel, Simon Rácz,
András Benczúr, Dávid Siklósi, and Attila Pereszlényi.
2009. Cross-modal image retrieval with parameter tuning.
In Carol Peters, Danilo Giampiccol, Nicola Ferro, Vivien
Petras, Julio Gonzalo, Anselmo Peñas, Thomas Deselaers,
Thomas Mandl, Gareth Jones, and Nikko Kurimo, editors,
Evaluating Systems for Multilingual and Multimodal Infor-
mation Access – 9th Workshop of the Cross-Language Eval-
uation Forum, Lecture Notes in Computer Science, Aarhus,
Denmark, September.

G.A. Miller. 1995. WordNet: a lexical database for English.
Communications of the ACM, 38(11):39–41.

D. Varga and E. Simon. 2006. Hungarian named entity recog-
nition with a maximum entropy approach. Acta Cybernetica,
16:293–301.

Y. Versley, S.P. Ponzetto, M. Poesio, V. Eidelman, A. Jern,
J. Smith, X. Yang, and A. Moschitti. 2008. BART: A mod-
ular toolkit for coreference resolution. In Proceedings of the
46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Demo Ses-
sion, pages 9–12. Association for Computational Linguistics.


