
Semantic Resource Allocation with Historical Data Based Predictions

Jorge Ejarque∗, Andras Micsik‡, Raül Sirvent∗, Peter Pallinger‡, Laszlo Kovacs‡ and Rosa M. Badia∗†
∗Grid Computing and Clusters Group - Barcelona Supercomputing Center (BSC), Barcelona, Spain

†Artificial Intelligence Research Institute - Spanish National Research Council (IIIA-CSIC), Barcelona, Spain
‡Distributed Systems Department - Computer and Automation Research Institute

Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary
{jorge.ejarque, raul.sirvent, rosa.m.badia}@bsc.es, {micsik, pallinger, kovacs}@sztaki.hu

Abstract—One of the most important issues for Service
Providers in Cloud Computing is delivering a good quality of
service. This is achieved by means of the adaptation to a chang-
ing environment where different failures can occur during the
execution of different services and tasks. Some of these failures
can be predicted taking into account the information obtained
from previous executions. The results of these predictions will
help the schedulers to improve the allocation of resources to the
different tasks. In this paper, we present a framework which
uses semantically enhanced historical data for predicting the
behavior of tasks and resources in the system, and allocating
the resources according to these predictions.

Keywords-multi-agent, semantics, scheduling, resource al-
location, historical data, predictions, grid computing, cloud
computing, distributed systems.

I. INTRODUCTION

The Service-Oriented Computing (SOC) paradigm [1].
relies on the composition of services to build distributed
applications by using basic services offered by third par-
ties. Those services are offered by service providers that
create their description and their implementation. From the
business point of view, the service provider agrees with its
customers the Quality of Service (QoS) and level of service
through a Service Level Agreement (SLA). The fulfillment
or violation of the SLAs indicate the grade of satisfaction of
customers with the Service Provider (SP), affecting directly
or indirectly to the benefit of these provider. One of the most
common SLA violation happens when unexpected events
such as failures appear and the system is not able to adapt
to this change.

Service adaptation is a current research topic, addressing
the automatic reactions to unanticipated events. Adaptation
mechanisms usually get active when something already went
wrong. However, adaptation can be used also when we
anticipate a problem to occur. Prediction mechanisms can
help to warn about statistically probable unwanted situations,
or we can just calculate the likelihood of certain service
parameters. The simple aim is to learn from the past, in order
to project events happened in the past to the future. There
are several software toolkits supporting similar calculations
in the area of data mining, etc.

In this paper, we introduce a generic framework for
prediction and adaptation, and describe its application in

a specific scenario (Cloud resource scheduling). The basic
requirements for such an environment are:

• to provide generic capability of collecting log data
about internal events,

• to unify the collected data so that global coherence can
be revealed,

• to provide customizable methods for getting predictions
based on the collected data,

• to feedback predictions into the realization of the
scheduling and adaptation mechanisms.

This framework combines prediction techniques with seman-
tic technologies, which introduces semantic knowledge to
the data evaluated by predictors, and multi-agent systems,
which introduce the pro-activity and distributed problem
solving for increasing scalability, adaptability and self-
management of the system. Predictions extracted from the
semantic historical data are taken into account by a group
of agents for allocating different customer’s jobs in the most
reliable resources.

The paper is organized as follows: Section II gives an
overview of the architecture of our solution; Section III
is focused on the implementation of job predictions and
their usage in the resource allocation process; Section IV
evaluates the framework; Section V compares our proposal
with the related work; and Section VI concludes the paper.

II. ARCHITECTURE

Figure 1 shows the architecture of our proposed frame-
work. It depicts a resource allocator distributed across mul-
tiple agents based on the Multi-Agent Resource Allocation
(MARA) approach [2] whose decision are based on predic-
tions based on historical data. There are two differentiated
parts in the architecture: the part which is related to the man-
agement of jobs and the part which is in charge of resource
provisioning. The job management part allows the customers
to make all the actions related to their jobs (submit, cancel,
etc), while the resource provisioning part allows the system
administrator to add and remove resources.

Both parts are built on top of a JADE agent platform
[3]. The platform can be distributed across multiple loca-
tions deploying containers on each of them. Moreover, it

micsik
Typewriter
Appeared in: CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization



Figure 1. Semantic Resource Allocation with predictions

implements a messaging system, which allows the commu-
nication between agents located on different containers. The
distributed configuration of the agent platform can improve
the scalability of the system because the different parts can
be processed in parallel on multiple hosts.

Customers jobs and resources are represented in the
system by software agents. Job Agents are in charge of
managing the customers jobs and Resource Agents are in
charge of managing the providers resources. Moreover, the
scheduling of the jobs in the different resources is made
by an agreement reached from a negotiation between a Job
Agent and different Resource Agents.

Apart from the job management and resource provisioning
parts, the system architecture contains a Semantic Metadata
Repository (SMR), which contains the semantic resource
description registered in the system, and the Historical Data
Repository (HDR), which contains semantically annotated
logs from system events such as job executions, failures
and other monitoring data, which is important to make
predictions for current jobs. All the data stored in those
semantic repositories is described according to a shared
ontology providing a common framework for semantic data.
The following paragraphs are focused on the most important
part of the architecture.

A. Scenario Ontology

One of the most important issues about semantic technolo-
gies is the ontology, which models a common understanding
of the concepts used on a scenario of study. In this case,
we require an ontology for modeling the system entities
such as customers, service providers, jobs and resources and
other important data such as resource allocation data for job
scheduling and historical data for making predictions.

The Grid Resource Ontology (GRO) [4] provides a model
where the most important concepts and entities are de-
scribed. This ontology provides a definition of the customer
jobs and resources but it lacks concepts for describing
resource allocation and historical data. Therefore, the GRO
has been extended in the scope of the BREIN project [5] in
order to cover the mentioned gaps.

The gap of resource allocation data in ontologies was
studied in our previous work [6]. Resource requirements

have been introduced in the GRO as a set of required abstract
GRO Resources in the GRO Task definition, which models
an abstract job. This definition has been also extended with
time constraints such as expected duration, deadline, earliest
possible start, etc. The scheduling result (assigned resources
and time slot) has been introduced on the GRO Process,
which incarnates the GRO Task. Required resources are
linked to the task definition as resource sets. A resource
set is typically a host, a container of more detailed resource
descriptions (disk, CPU, etc.) with resource properties (e.g.
size of disk). Furthermore, tasks are also linked to their
representing agents and to related business information (such
as customer data, service provider, agreed SLA) via the
BREIN Business Ontology. These extensions provide the
possibility for multi-scope description of job executions
merging data about technical capabilities, schedules and
business aspects into a single model. It is future work to
fully exploit the new capabilities provided by this model. In
this paper we provide the first steps in this direction.

GRO Process and Task descriptions are also useful for
historical data. When a job has ended, the GRO Process
description contains the result of this job (start time, end
time, final status, ...) and the GRO Task (abstract job)
contains the requested resources, the expected duration and
the scheduled start and end times described. The GRO
extension for describing historical data also contains classes
for describing resources used by each task and resource
downtimes. The comparison and evaluation of this data can
be used for making predictions about how different types of
jobs will run on different resources.

B. System Agents

Our system contains two types of system agents for
managing jobs and resources. These agents have been imple-
mented using a Belief-Desire-Intention (BDI) model [7]. For
each type of agent, a set of data (Beliefs), goals (Desires)
and plans (Intentions) are defined to model the behavior
of the agent. Depending on the values of the data, events
and the active goals on each moment, the BDI engine
decides which plans has to execute the agent for reaching
its goals. Our BDI agents have been developed with the
Jadex framework [8] used on top of the JADE platform.
The following paragraphs give more details about the job
and resource agent functionalities and how the BDI model
is applied for implementing them.

1) Job Agent (JA): The JA has the main goal of executing
jobs in the resources of the system. This execution has
different states, some of them indicate that the execution
is running correctly and other ones indicate problems in
the execution. Depending on the state of the job execution,
the JA has to act in a different way. For this reason, the
main goal of the JAs has been separated in several subgoals,
which will be activated depending on the job status. The
activation of subgoals triggers the execution of the plans



to achieve them. For instance, when a new job execution is
requested, the JA activates the goal for negotiating a resource
allocation. In the running state, the JA activates the goal
for monitoring the job execution evaluating if the required
performance is fulfilled. Finally, if the job is finished the JA
execute plans for deallocating the resource.

The JA has also to recover itself from status, which can
alter the normal execution of the job (stopped, suspended,
non scheduled). In those situations, the JA will execute plans
to resubmit the job or to look for new resources.

2) Resource Agent (RA): The main goal of a RA is the
management of resource capabilites for executing the jobs
requested by the customer according to resource capabilities
and the status and number of jobs assigned to the resources
controlled by the agent (jobs scheduled and running). To
provide this main feature, a set of subgoals and plans have
been defined to negotiate resource allocations with JAs.

Apart from the negotiation subgoal, RAs contain two
subgoals for monitoring the scheduled jobs and running jobs
assigned to their resources. These subgoals are in charge of
initiating the job execution depending on the planned start
time or canceling a job if the deadline has been reached and
new jobs are waiting for execution.

Additionally, the RA is also prepared to react to resource
failures. The plan for recovering a failure sends a stopped
notification message to JAs whose jobs were scheduled at
the failed resources. Similarly, it also sends a suspended no-
tification message to JAs whose jobs were already running.
JAs treat these notifications according to the plans explained
in the JA part.

C. The Historical Data Repository (HDR)

The HDR is a flexible, generic component implemented
by SZTAKI to provide facilities for log data collection
and on-demand predictions. The HDR is implemented in
Java and can be embedded into Java code or can be run
as a separate Web Service. In both cases, other software
components can send their log data to the HDR, either by
our customizable client APIs or via direct calls. Incoming
information must be in the format of RDF [9], based
on the core ontologies available to all components. The
conversion to RDF can be implemented in client APIs if
necessary. Thus, in our scenario, the service collects and
stores information about past events (i.e., job executions and
resource usage), and provides mining and searching for these
mentioned past events.

The collected status information is stored as RDF inside
the HDR. The repository can then be used for extracting
statistics- and knowledge-based information or predictions.
In its simple form, the repository can answer SPARQL
queries to provide historic information. Clients can use the
extended SPARQL provided by Jena ARQ interface [10],
and ask for various aggregations of data, such as average,
maximum, minimum. Additionally, Pellet [11] or the Jena

Figure 2. Historical Data Repository overview

built-in reasoner can be applied on the data for simple
inferencing. For example, the use of subclasses can help
to flexibly select a range of resource types for querying.

For application-specific querying purposes a general plug-
in mechanism has been developed. Predictors can be in-
stalled as plug-ins for HDR to answer specific questions.
Within HDR, the RDF storage is coupled with the Weka
data mining software [12]. In this way, a predictor can use
both semantic querying and statistical methods. For example,
a predictor can build a classification model on top of the
results of a semantic query. The classifier can then be used
to provide predictions based on the past.

In our specific scenario, the HDR is loaded with the
description of the executed jobs, their resource usage and the
resource downtimes. This data is used to train the classifier
in order to provide estimations on the probabilities of delays
in the schedule and problems with the job completion and
estimations on the reliability of the used resources. As the
statistical model is periodically updated, the provided values
dynamically reflect the experiences of the recently finished
executions.

D. Semantic Resource Allocation Process

The resource allocation for a particular job is decided
between the JA and a set of RAs using the Contract Net
Protocol (CNP) [13]. Figure 3 shows the message exchange
between these agents for coordinating the job scheduling.
When a JA has activated a goal for allocating resources to
a job, it sends a query to the SMR to get the RAs whose
resources match with the job requirements (1). Afterwards,
the JA initiates a negotiation sending to the selected RAs a
call for scheduling proposals (2). Each RA makes its own
proposal and returns it to the JA (3). The JA evaluates all
proposals, accepts the best for its interest and rejects the rest
(4).

The RA proposals and the JA evaluations are done using
an agent scheduler module. It is based on a rule engine
evaluating a set of scheduling rules over semantic metadata
bound to the GRO ontology (Section II-A). Despite of both
agents using the same module, they behaves in a different
way because they are loaded with different information and
rules. The RA makes the scheduling proposals evaluating



Figure 3. Distributed Semantic Scheduling

scheduling rules over the resource and assigned job de-
scriptions, while the JA evaluates the scheduling proposal
according to the customer rules and job description.

Once the RA has obtained a scheduling for a job in a
resource, the RA consults the HDR to obtain predictions
for this resource allocation (3.1). Resource allocation pre-
dictions are attached to the scheduling solution inferred by
the scheduler to create a scheduling proposal, which will
be evaluated by the JA. The following section gives more
details about this process.

III. JOB PREDICTION IN RESOURCE ALLOCATION
PROCESS

In order to learn from past experiences, agents use the
HDR as a service. In our HPC scenario, a separate HDR web
service is applied for each Service Provider. This ensures
that private internal data (such as log of execution details)
remain within the boundaries of the provider, but also creates
a merged knowledge base across various HPC clusters of the
provider. A new plug-in was developed for the HDR, which
is responsible for providing statistics and predictions for the
scheduling agents. This predictor plug-in works on the basis
of the common GRO explained in Section II-A containing
the descriptions of hosts, software, host capabilities and QoS
metrics.

When a new job is submitted to the system, it is described
semantically indicating time constraints and the collection
of resource requirements. During resource allocation pro-
cess (described in Section II-D), the job is scheduled in
the available resource and the results of this process are
attached to the job description. During job execution, the
JA monitors the execution introducing the relevant data in
the job description (completion status, start time, end time
and resource usage). Once the job has finished, the JA sends
the job execution results to the HDR component using the
HDR API client (Fig. 3, step 7). An example of this job
execution report is shown in the following lines.
<rdf:Description rdf:about="gro:job-0">
<gro:hasActionState rdf:resource="tech:done"/>
<gro:hasResourceSet rdf:resource="gro:requirement_job-0"/>

<rdf:type rdf:resource="gro:Execute_Task"/>
<tech:hasDeadline>2010-06-14T19:41:07</tech:hasDeadline>
<tech:expectedDuration>20</tech:expectedDuration>
<gro:isExecutedAt rdf:resource="tech:host_1"/>
<gro:incarnatedToProcess rdf:resource="gro:Incarnated_job-0"/>

</rdf:Description>

<rdf:Description rdf:about="gro:Incarnated_job-0">
<rdf:type rdf:resource="gro:ProcessInstance"/>
<tech:hasPlannedStart>2010-06-14T19:21:07</tech:hasPlannedStart>
<tech:hasPlannedEnd>2010-06-14T19:41:07</tech:hasPlannedEnd>
<gro:usesResource rdf:resource="tech:host_1"/>
<gro:incarnatedFromTask rdf:resource="gro:job-0"/>
<tech:hasActualStart>2010-06-14T19:21:07</tech:hasActualStart>
<tech:hasActualEnd>2010-06-14T19:39:07</tech:hasActualEnd>

</rdf:Description>

<rdf:Description rdf:about="tech:usage_host_1_job-0">
<tech:hasMeanMemoryUsage>25696.0</tech:hasMeanMemoryUsage>
<tech:hasMeanCPUUsage>41720.0</tech:hasMeanCPUUsage>
<tech:hasEnd>2010-06-14T19:39:07</tech:hasEnd>
<tech:hasStart>2010-06-14T19:21:07</tech:hasStart>
<tech:hasResource rdf:resource="tech:host_1"/>
<tech:hasJob rdf:resource="gro:job-0"/>
<rdf:type rdf:resource="tech:Usage"/>

</rdf:Description>

On the other hand, RAs report to the HDR about resource
downtimes (Fig. 3, step 8). Job execution and resource
downtime reports build up an extended log of actions
inside the SP, which will be used as a knowledge base for
generating the job predictions.
<rdf:Description rdf:about="tech:Downtime_host_1_1">
<tech:hasEnd>2010-06-13T19:52:05</tech:hasEnd>
<tech:isCausedBy rdf:resource="tech:powerOut"/>
<tech:hasStart>2010-06-13T19:44:05</tech:hasStart>
<tech:hasResource rdf:resource="tech:host_1"/>
<rdf:type rdf:resource="tech:DownTime"/>

</rdf:Description>

Based on these data, a statistical classifier is trained,
which can provide estimations on the probability of delays in
the schedule, probability of problems with the job comple-
tion and on the reliability of the used resources. The relevant
data for creating the statistical model is obtained from the
HDR RDF store by means of SPARQL queries. For instance,
we get the number of resource failures for the different
types of resources and jobs from making the predictions
of resource reliability and the job failure probability. The
planned start and end times can be compared with the real
start and end time for calculating delays on the scheduling
and job duration. The statistical model is periodically up-
dated with the historical data of recent execution. In this
way, predictions dynamically reflect the experiences of past
executions in the defined time window. The mechanism
demonstrates the coupling of semantic data processing with
data mining, as a promising novel combination.

Predictions are queried by the RA during the resource
allocation process in order to make its scheduling proposal.
The HDR provides the probability of delays in the job
schedule (assigned host and time slot) inferred by the RA,
the probability of problems during execution based on past
executions with similar descriptions on similar hosts, and the
reliability of the assigned host. The RA introduces these job
predictions in the scheduling proposals and sends them to the



JA in order to be analyzed according to customer rules. In
this case, the JA calculates reliability cost for the proposed
scheduling based on a pondered mean of the predictions
provided by the HDR. Once the job reliability cost for each
proposal is analyzed, the JA will select the most reliable
host, which fullfills the job constraints.

IV. EVALUATION

In our experiments, we used the data from HPC resources
of Barcelona Supercomputing Center (BSC). The test envi-
ronment contained 8 hosts running 2 types of software. A
HDR plug-in was implemented for the specific prediction
tasks of the experiments. The plug-in at start-up extracts the
necessary data using a SPARQL query:
SELECT ?task ?plannedStart ?plannedEnd ?start ?end
?resource ?status ?mem ?cpu WHERE{
?proc rdf:type gro:ProcessInstance .
?proc gro:usesResource ?resource .
?proc gro:incarnatedFromTask ?task .
?task gro:hasActionState ?status .
?proc tech:hasActualStart ?start .
?proc tech:hasActualEnd ?end .
?proc tech:hasPlannedStart ?plannedStart .
?proc tech:hasPlannedEnd ?plannedEnd .
?usage tech:hasJob ?task;
?usage tech:hasMeanMemoryUsage ?mem;
?usage tech:hasMeanCPUUsage ?cpu .
FILTER (?start > "2010-01-01T00:00:00")

}

The data selected for this case includes the scheduled start
and end for the job, the actual start and end times, the host
where the job was run, the status of job completion and
the mean memory and CPU usage of the job. Then, the
necessary Weka data structure is built, and the classifiers are
configured and run. Further data arriving during the predictor
is in use can be added incrementally to the plug-in.

The expected duration to complete the job was calculated
using various classifiers built into Weka. The best results
were achieved by the M5P regression tree and the KStar
instance-based classifier. The mean absolute error for the
predicted value was 43 and 74 seconds respectively, where
the actual value range was between 240 and 2400 seconds
(i.e. the mean error is 3% of the mean predicted value).

Similarly, the status field can be used to predict the
probability of failure. In this respect, Bayes-style, decision
tree and decision rules algorithms were equally good at
classifying the job completion status correctly for 85% of
the job executions.

Furthermore, agents could assess the reliability of hosts
by asking their availability metric from the plug-in. The
availability is calculated based on the list of downtimes for
the host. This function is supported directly by SPARQL
queries, without using prediction mechanisms.

The time to load the predictor in the experiments can be
broken up to the time needed for fetching the necessary data
from the semantic log store (SPARQL query), and the time
for building the prediction model with Weka. The first action
required 1-2 seconds of time, while the second action could

be accomplished in about 90 ms for 500 rows of data up
to 141 ms for 5000 rows of data. As it was expected, the
prediction time was independent of the number of data rows,
yielding the result in approximately 15 ms.

We performed further testing of the prediction algo-
rithms with log data available from two public archives: the
Parallel Workloads Archive [14], and the Grid Workloads
Archive [15]. The mean absolute error of the predictions
in this case could be forced below 7% of the mean of the
predicted value by careful preprocessing of the data. The
comparison with our own data revealed that more details
about job execution can yield better predictions in general.
In contrast to regression used in cited related work (Section
V), we preferred the instance-based learning algorithms,
which relate similar job executions with each other for
prediction purposes, and thus provided better predictions on
job properties.

V. RELATED WORK

Foster et al raised the benefit of integrating the results
from agents and grids research areas in [16]. Agents could
improve the autonomy, flexibility and scalabity of current
grid systems. Regarding the area of resource allocation and
job scheduling, the multi-agent system researchers have been
already focusing on this problem. Several solutions have
been proposed, such as the ones based on market-control
where each agent tries to maximize its benefit function and
the market controls them, the social wellfare where the
multi-agent system tries to maximize a collective benefit and
other proposals like game and decision theory. In the market-
based solutions, we would like to highlight proposals like
Challenger [17], Tycoon [18], other studies more focused
on grids such as TRACE [19] or ARAM [20] and also
projects such as CatNets [21] or SORMA [22]. The work
on wellfare engineering and game theory for multiagents
resource allocation has been compiled in [23] and [24]
respectively.

All of these solutions implement specific allocation poli-
cies for solving a problem with their advantatges and draw-
backs, but they are static and cannot be changed easily. In
our paper we do not try to offer a new solution for the
allocation algorithms, but we have introduced the multi-
agent solution in the Semantic Resource Allocation process
leaving users the availability of extending or changing
the policies. In our system, customers and providers can
describe the scheduling rules that are the most convenient
for their interests. Those policies will be combined during
the negotiation, trying to get a solution which satisfies all
the policies.

In this case we have also introduced the capability of
taking into account predictions based on semantic historical
data about how similar jobs have been executed on the
different resources. It allows the user taking into account
in their policies the information provided by themselves as



well as information about how the job execution is predicted
by the system.

Predictions have been used also in other systems. The
work in [25] describes an approach for predicting SLA
values during the execution of WS-BPEL processes. At
given points in the process, the collected QoS data are
fed into a prediction engine, which provides predictions for
numerical SLO values using neural networks. Predictions are
presented on a graphical user interface and open facilities
for manual interaction in the executing process. In [26], the
authors present an architecture for event-based collection of
historical data, and performing prediction on QoS data in
a SOA environment. This approach does not use semantics
and its focus on QoS is different than current paper.

VI. CONCLUSION

The paper emphasizes on the importance of using histori-
cal data by service and cloud providers. We present a generic
approach and a re-usable solution for the collection and
exploitation of historical log data produced by services. The
heterogeneity of log data arriving from various resources
calls for a semantic data representation, which can facilitate
the unification of these data and a query mechanism sup-
ported by inference. Our approach demonstrates the coupling
of semantic data processing with data mining as a promising
novel combination.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and
Technology of Spain and the European Union under contract
TIN2007-60625 (FEDER funds), Generalitat de Catalunya
under contract 2009-SGR-980 and the European Commis-
sion with FP6-IST project 34556 (BREIN) and FP7-ICT
project 215483 (S-CUBE).

REFERENCES

[1] M. Papazoglou and D. Georgakopolous, “Service-oriented
computing,” Communications of the ACM, vol. 46, no. 10,
p. 25, 2003.

[2] Y.Chevaleyre, et al, “Issues in Multiagent Resource Alloca-
tion,” Informatica, vol. 30, pp. 3–31, 2006.

[3] “Java Agent Development Framework,” http://jade.tilab.com1.

[4] J. Brooke, D. Fellows, K. Garwood, and C. Goble, “Semantic
matching of grid resource descriptions,” in Grid Computing.
Springer, 2004, p. 240.

[5] BREIN Consortium, “Final Report on the BREIN Core On-
tologies,” BREIN Project, Public Deliverable D3.2.5, 2008.

[6] J. Ejarque, et al, “Exploiting semantics and virtualization
for SLA-driven resource allocation in SP,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 5, p. 541,
2010.

[7] A. Rao and M. Georgeff, “BDI agents: From theory to
practice,” in The 1st Int. Conf. on Multi-agent Systems, 1995,
p. 312.

[8] “Jadex system,” http://jadex.informatik.uni-hamburg.de1.

[9] “Resource Description Framework,”
http://www.w3.org/RDF1.

[10] “ARQ - A SPARQL Processor for Jena,”
http://jena.sourceforge.net/ARQ1.

[11] “Pellet OWL reasoner,” http://clarkparsia.com/pellet/1.

[12] I. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann Pub, 2005.

[13] R. Smith, “The contract net protocol: High-level communica-
tion and control in a distributed problem solver,” IEEE Trans.
on Computers, vol. 100, no. 29, pp. 1104–1113, 1980.

[14] “Parallel workload archive,”
http://www.cs.huji.ac.il/labs/parallel/workload1.

[15] “Grid workload archive,” http://gwa.ewi.tudelft.nl1.

[16] I. Foster, N. Jennings, and C. Kesselman, “Brain meets brawn:
Why grid and agents need each other,” in The 3rd Int. Conf.
on Autonomous Agents and Multiagent Systems, 2004, p. 15.

[17] A. Chavez, A. Moukas, and P. Maes, “Challenger: A multi-
agent system for distributed resource allocation,” in The 1st
Int. Conf. on Autonomous Agents, 1997, p. 331.

[18] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman,
“Tycoon: An implementation of a distributed, market-based
resource allocation system,” Multiagent and Grid Systems,
vol. 1, no. 3, pp. 169–182, 2005.

[19] S. Fatima and M. Wooldridge, “Adaptive task resources
allocation in multi-agent systems,” in The 5th Int. Conf. on
Autonomous Agents, 2001, p. 544.

[20] S. Manvi, M. Birje, and B. Prasad, “An agent-based resource
allocation model for computational grids,” Multiagent and
Grid Systems, vol. 1, no. 1, p. 17, 2005.

[21] “CatNets Project,” http://www.catnets.uni-bayreuth.de1.

[22] “Sorma Project,” http://www.sorma-project.eu1.

[23] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet, “Wel-
fare engineering in practice: On the variety of multiagent
resource allocation problems,” Engineering Societies in the
Agents World V, p. 335, 2005.

[24] S. Parsons and M. Wooldridge, “Game theory and deci-
sion theory in multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, vol. 5, no. 3, p. 243, 2002.

[25] P. Leitner, et al, “Runtime Prediction of SLA Violations for
Composite Services,” in 3rd Workshop on Non-Functional
Properties and SLA Management in SOC, 2009.

[26] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, “Event-
driven QoS prediction,” in 6th Int.Conf on SOC, 2008, p.
147.

1Last access to links in the references is August 18th, 2010


