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1 Introduction

Two decades after the introduction of complexity-theoretic methods for the study of natural
language grammars, there are still many technically incorrect arguments purporting to show
the untractability of various formalisms. Here we analyze two such arguments, one old and
one recent, both aimed at demonstrating that specific versions of phonological theory, as
formulated in computational and theoretical work, are incapable of characterizing human
phonology inasmuch as they lead to NP-hard1 computational problems that are beyond the
reach of any known fast algorithm. These demonstrations break down because they apply
a mathematical technique, asymptotic analysis, whose major premises are not met. An
alternative approach, Kolmogorov complexity, is proposed.

Barton (1986) studied the complexity of the analysis and generation problem of two-
level phonology and morphology (TWOL) by means of encoding classical NP-hard prob-
lems (SAT and 3SAT) using the finite state transducer (FST) mechanism introduced inde-
pendently in Koskenniemi’s (1983) thesis and, with a somewhat different model, in Kaplan
and Kay (1982, eventually published 1994). He concluded that TWOL systems are inca-
pable of characterizing the human morphological ability because humans clearly perform
the analysis and generation tasks in real time while the TWOL computational machin-
ery must draw on exponentially growing resources as the problem size grows. Given that
TWOL systems were at the time already the leading model of computational phonology
and morphology, it is not surprising that the work drew the heated response if it ain’t broke,
don’t fix it (Koskenniemi and Church 1988).
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That such a response was not entirely unjustified is clear in hindsight. After two
decades, TWOL remains the leading computational model of phonology and morphology
(see e.g. Karlsson 2006), with working phonological/morphological grammars for hun-
dreds of languages. If TWOL had the propensity to bump up against the complexity limit
set by NP-hardness it would be nothing sort of miraculous that we can still use this frame-
work without much trouble. Moore’s law helps of course, but its main effect was to reduce
the hardware required from the high-end workstations of the eighties to any cheap lap-
top today – the computations themselves didn’t get notably more complex with increased
lexical coverage and more detailed analyses.

Idsardi (2006a), building on earlier work (Ellison 1994, Eisner 1997, 2000) studied the
complexity of Optimality Theory (OT) by means of encoding another classical NP-hard
problem, directed Hamiltonian path search (DHPS), using the Gen/Eval mechanism of OT,
and reached essentially similar conclusions about the suitability of OT for characterizing
human phonology. Though Barton based his reduction proof on assimilation rules, while
Idsardi uses dissimilation constraints to arrive at NP-hard problems, there is much that is
common to these works, and here they are analyzed together, because they suffer from the
same fundamental flaw: they use a mathematical method, asymptotic analysis, which relies
in an essential fashion on the ability to create arbitrarily large problem instances. To some
extent Barton, Berwick, and Ristad (1987:1.4.1) anticipated this criticism:

Aren’t then the complexity results irrelevant because they apply only to prob-
lems with arbitrarily long sentences and arbitrarily large dictionaries, while
natural languages all deal with finite-sized problems?

It is comforting to see that this argument explodes on complexity theoretic
grounds just as it does in introductory linguistics classes. (...) Our goal is to
determine the form and content of linguistic knowledge. (...) Once we have
identified the principles that seem to govern the construction of sentences of
reasonable length, there doesn’t seem to be any natural bound on the operation
of these principles. (...) If humans had more memory, greater lung capacity,
and longer lifespan – so the standard response goes – then the apparent bound
on the length of sentences would be removed.

As we shall see, domain length is indeed one of the parameters that delimit the com-
plexity of combinatorial problems that can be encoded in phonology. But even if we grant
arbitrary domain size, and even if we grant arbitrarily large dictionaries (a step that actually
has considerable statistical support, see Kornai 2002), there are other limiting factors which
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ultimately block the appearance of large, computationally hard problems in phonology and
morphology. Section 2 shows how these factors render the classical complexity-theoretic
machinery powerless in the phonological domain, and Section 3 discusses why another set
of mathematical tools, Kolmogorov complexity, is better suited to this domain.

2 Inventory Size

Idsardi (2006a) builds on earlier work (Ellison 1994, Eisner 1997), but stands out in this
line of research by the exceptionally careful choice of the building blocks used in the proof.
He demonstrates painstakingly that self-conjoined constraints forbidding the reuse of some
element in a domain are widely attested in the phonologies of natural languages. Barton
(1986) was less specific in this regard, but it is clear that the building blocks of his construc-
tion, harmony rules, are also widely attested – one would be hard put to find a phonologist
interested in working with a lobotomized version of phonological theory that offered no
means of describing such processes.

Both arguments can be summarized in the following three steps: (1) the computa-
tional/formal model incorporates mechanisms for handling assimilation (harmony) and
dissimilation (self-conjoined) phenomena; (2) these mechanisms can be used to encode
NP-hard problems and thus render the entire class of phonological problems NP-hard; and
(3) NP-hardness is in evident contrast with human performance, which is linear, or even
real time, as opposed to exponential, in the size of the input. Here we grant (1) and (2),
and take issue with (3), as there is no evidence that machine performance on these tasks is
exponential. There is no evidence because there can be no evidence, since the phonologies
of natural languages are built on strictly finite, and as a matter of fact, remarkably small,
inventories of combinatorial building blocks: features and phonemes.

Both for harmony rules and self-conjoined constraints the elementary building blocks
are phonemes and the domains are words (strings built by concatenating phonemes). Id-
sardi (2006b) cites Swingley (2003) as an indication that there is more to phoneme inven-
tory size p than meets the eye. Indeed, if we read Swingley’s paper in an extreme way, we
can conceive of a primal phonemic inventory wherein every potential feature contrast is
kept, so that for some three dozen binary features we would obtain a set of 236 or about 69
billion phonemes. This number is large enough to make us feel that asymptotic theory is
of value even though strictly speaking the dataset is still finite. Now, given that all of these
three dozen features are active in several languages, it is not at all clear why we do not have
substantially larger phonemic inventories than we actually have, but, as Idsardi (2006b)
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notes, the cardinality p of attested phoneme systems tops out at around a hundred. Still,
aren’t a hundred distinct phonemes enough to make Idsardi’s point that 100! permutations
is not a tractable search space?

The answer depends on whether other limiting factors are present. There is a clear
tendency of languages with larger p to have shorter words (Nettle 1995), and if domain
size is limited to some small n, the maximal DHPS problem that could be encoded will be
limited to this n even if p is large. For example, if the language permits only simple nuclei,
trisyllabic or shorter stems, CC onsets but only C codas, the maximum stem length will be
12, and no amount of self-conjoined constraints over stems could encode a directed graph
with more than 12 nodes. A search space of size 12! is no longer that formidable, and it
is worth emphasizing that many of the classical morpheme structure constraints adduced
by Idsardi operate over strictly bounded domains: for example, the Semitic point of articu-
lation constraints typically over trilateral (rarely quadrilateral, and never, say, septilateral)
roots, or Grassman’s Law over two adjacent syllables.

So far, we have seen that problem size is bounded by min(n, p), where n is the length
of the longest string potentially present in the domain and p is the size of the phoneme
inventory. But there is a third, highly relevant limiting factor, 2r, where r is the number of
self-conjoined constraints in play. To see what is involved here, consider one of Idsardi’s
examples, Lyman’s Law, which disallows the occurrence of more than one voiced obstruent
per morpheme. We will allow morphemes (or prosodic words) of arbitrary size, and allow a
fictional Japanese that has considerably more than 20 consonants and 5 vowels. What we do
not allow, in this example, is more than two constraints, Lyman’s Law and deaccentuation.
This renders our generosity in regard to phoneme inventory or domain size irrelevant. The
largest problem we can encode must be based on the distinctions voiced obstruent v. all
other consonants and accented vowels v. unaccented, for a total of four graph nodes.2

Our final bound (still generous, as it assumes no further phonotactic restrictions that
could mess up the encoding) is min(n, p, 2r), and it is an interesting question why this
number is so low in all phonologies. This puts constraints like *Repeat(stem) (proposed
in Yip 1995 and discussed in Idsardi 2006b, where a number of other self-conjoined con-
straints are considered) in a different light. The actual resources to verify the satisfaction of
a single constraint of this sort are linear in the size of the domain, and a word that contains
all stems of the language (a full permutation by *Repeat) is inconceivable.

On the whole, phonology countenances very few unbounded domains. The typical
situation is when larger structures are built out of the basic building blocks via intermediate
structures. We do not pass from phonemes to words in a concatenative fashion – what
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we see is syllables (quite possibly with their own internal structure, but at any rate a very
bounded and finitistic domain), feet, and perhaps cola, as intermediary structures. To the
extent unbounded structures (e.g. unbounded feet) are sanctioned, the only dissimilatory
effects that we see over these are restrictions pertaining to a finite (and very small) inventory
of nodes in the feature geometry, which is by definition incapable of encoding arbitrarily
many distinct units. But if we cannot have an arbitrary size inventory, we cannot encode
an arbitrary-size directed graph, and the whole machinery of complexity theory loses its
grip – all we have is a finite class of size-limited problems. The same reasoning applies
to Barton’s (1986) demonstration: assimilatory effects are observed on the same small
inventory (nodes in the feature geometry) that is limited by substantive universals.3

Barton’s reasoning was that TWOL systems are NP-hard to run while natural language
words are easy to analyze, so TWOL systems do not do enough to sufficiently constrain the
class of natural languages. The Koskenniemi-Church response essentially embraces this
logic, saying in effect that TWOL systems lacking a proviso that there are not too many
harmony processes operating in parallel are indeed hard to run, and therefore the required
characterization of natural languages must use TWOL systems with this proviso. Here we
embrace Idsardi’s logic in the same fashion: OT without a proviso for small inventories and
not too many dissimilation processes operating in parallel is NP-hard, and as such it must
be an insufficient characterization of natural language phonologies.4

One can turn around the argument and ask why natural language phonologies show a
strong limitation on min(n, p, 2r)? Perhaps a reason can be found in the fact that without
such a limitation the system would manifest an exponential blowup that would threaten the
efficiency of the mental computation. This is, of course, purely speculative. In reality we
do not know why phoneme inventories are so drastically simplified compared to the proven
capabilities of the perceptual apparatus, or why large numbers of unbounded assimilation
or dissimilation processes do not operate in parallel. Yet the empirical fact remains that
in the study of hundreds of phonologies not one computationally hard example has been
found: the decision problem whether a particular string is licensed by a grammar describing
actual phonological/morphological phenomena in natural language (as opposed to artificial
problems created to trip up the mechanism) is quite easy. There remain many unsolved
problems elsewhere in the system, in particular the mechanism required for the automatic
acquisition of the computational building blocks from learning data is not yet fully under-
stood, but the generation and recognition mechanisms are not under computational stress.
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3 Kolmogorov Complexity

What the reduction proofs from Barton to Idsardi show are the limits of computational
complexity theory rather than the limits of phonological theory: clearly, asymptotic analy-
sis cannot be the mathematical tool of choice in a domain where arbitrarily large problem
instances cannot be created at will. Since the substantive limitations on the number of units
and constraints licensed by phonology render the standard asymptotic theory inapplicable,
here we would like to call attention to another mathematical approach to the problem, Kol-
mogorov complexity, which does not lose traction when confronted with finite datasets.
We are not the first to propose using Kolmogorov complexity (see in particular Clark 1994,
Rissanen and Ristad 1994), and in fact the driving idea, that the best theory is the shortest
theory, can be traced back to Pān. ini (see Kornai 2008: Ch. 7).

The Kolmogorov complexity of an object is defined as the length of the shortest program
that generates it. Readers familiar with different programming languages (abstract models
of computation) will immediately object that program length depends a great deal on the
choice of model, and readers familiar with recursive function theory will likewise object
that the general problem of finding the shortest program capable of a given task is unsolv-
able. Yet as Solomonoff (1960) demonstrated, these difficulties are not insurmountable,
and complexity can still be defined, up to an additive constant, by program length. The
technical apparatus of Kolmogorov complexity (for an encyclopedic overview, see Li and
Vitanyi 1997) is harder to deploy than that of classical asymptotic theory, but this is a price
very much worth paying for avoiding the key pitfall of the classical method, reliance on
arbitrarily large hypothetical examples in a finitistic domain.

Relative to a given model of computation, the question of what is the complexity of a
given finite grammar is equally meaningful irrespective of whether the grammar in question
generates a finite or an infinite set. Thus, given a variety of phonologies/morphologies
generating the same set, we can (and indeed, should) base the decision which one to prefer
on the size of the system. This size is determined by two components: the size of the
lexicon, i.e. the irreducible information including the phonological content of the roots
and stems and the diacritics they carry, and the size of the pattern component (rules or
constraints) that yield the surface forms from the lexicon. In most theories the two are
kept separate, but in TWOL it is possible to combine them in a single automaton. As any
practicing linguist knows, the list and the pattern components can be traded off against one
another. By leaving more examples unanalyzed, and thereby increasing the number and
size of the list items, one can do away with some putative rules or constraints, and likely
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also the diacritics that control them. Conversely, by finding the right pattern we may be able
to shorten the lexicon considerably. We speak of a linguistically significant generalization
only if by introducing it in the pattern component we save more in the list component – it
is the hallmark of the pseudo-generalization that it affords little economy elsewhere in the
system.

At first blush it may appear that we are interested in finding, among a class of mod-
els, those that minimize the sum of the size of the list and the pattern components. But
upon some reflection it becomes clear that we need to go beyond this simple-minded ap-
proach, because the two components, while to some extent fungible, play a very different
role in language acquisition. The list component must be memorized from A to Z, while
the pattern component may refer to general patterns that are available to the learner as ge-
netic dispositions. The innatist metaphor is convenient, but strictly speaking unnecessary
to articulate this point of view: as long as patterns are reused across languages, their com-
plexity, in computer science terms, will be amortized over these cases and contributes to
the description complexity of a given language only a small fraction of the complexity they
would have in the absence of Universal Grammar (UG).

As we are concerned with quantitative comparison of models, it may be helpful to put
some numbers on the foregoing considerations. A conservative estimate of the body of
irreducible information stored in the lexicon (irreducible in the sense that UG will have
little to say about the idiosyncrasies of particular words or set phrases) would be the size of
an abridged dictionary, 20,000–30,000 words, each requiring a few hundred unpredictable
bits to encode their morphological, syntactic, and semantic aspects, for a total of about,
say, a megabyte. Pān. ini’s verbal and nominal lexicons, the Dhātupāt.ha and the Gan. apāt.ha
(which taken together outweigh the Asht.ādhyāyı̄ about two to one) are together only a tenth
of this, about 100 kbytes. In contemporary systems, such as the spellcheckers shipped with
OpenOffice.org (OO.o), the average dictionary size is about 120 thousand stems, and the
average stem takes up about 3.5 bytes compressed, for a total less than half a megabyte.

Does this cover all information that needs to be stored in the lexicon? Most variants
of generative phonology/morphology remain silent both on the phonetic details of pro-
nunciation (even when these are to some extent rule-governed, as emphasized by much
contemporary work in laboratory phonology) and on the semantic content of morphologi-
cal operations. For the phonetics, an upper bound can be derived from the fact that speech
compression is already within a factor of five of the phonemic bitrate (see e.g. Hoshiya et
al 2003), so the entire lexicon, including both phonetic and phonological information, is
unlikely to exceed a couple of megabytes. While it is intuitively clear that a fair amount of
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information in the lexicon is semantical, in the absence of an agreed-upon model of lexical
semantics it remains hard to quantify exactly how much. Assuming, for want of a better
estimate, that about the same amount of semantic information is present in the lexicon as
phonetic/phonological/morphological, we obtain an upper bound of 4 megabytes.

Having rather generously estimated the size of the lexicon at 4MB, of which no more
than 10% are devoted to storing strictly phonological and morphological, as opposed to
phonetic or semantic, information, let us now turn to the size of the grammar. Perhaps
the largest, most systematic, and best compressed description of language-specific patterns
ever devised, the Asht.ādhyāyı̄, weighs in at about 50 kilobytes. This is remarkably small,
especially in light of the fact that it covers a great deal more than the phonology and mor-
phology of the language and makes no use of a background theory of UG. It is a measure
of the depth of the analysis Pān. ini provides that the size of his grammar is more than a third
of the size of his lexicon. In the modern spellcheckers, among the hundred or so languages
supported by OO.o there are only a handful where the (compressed) size of the pattern
store is more than 10% of the (compressed) size of the lexicon, and even these are often
indicative (e.g. in the case of the Coptic) of a less than fully developed lexicon.

Since the pattern component is so small compared to the list component, and since it
amortizes well over different languages given a practical theory of UG, the primary focus
of the effort in optimizing the system must fall on the list component. Here an important
unresolved problem is whether the encoding should be tailored to minimize the simple or
the frequency-weighted average of code length. The latter quantity, known as the entropy
of the system, is what is taken as more relevant in contemporary computational work, while
the tradition of generative phonology is more concerned with the former. In particular, once
the observed frequencies of the surface forms are taken into account, recursive patterns like
compounding no longer require a fully generative treatment in that systems with depth-
limited recursion (see Mohri and Nederhof 2001), or even systems with no recursion, can
approximate the frequency weighted set to an arbitrary degree of precision. The complex-
ity of the pattern component, though numerically smaller, is made more important when
comparing alternative models within the same theoretical framework in that the vast bulk
of irreducible information in the lexicon is non-negotiable – each alternative has to account
for it the same way, and it is only the differences across list sizes that matter.

How is, then, the complexity of the pattern component to be measured? Finite state
transduction already offers a model that is sufficient to carry out phonological/morphological
computations, and the TWOL technology is entirely neutral whether we conceive of these
computations as SPE-style sequentially ordered rules (Kaplan and Kay 1994), as paral-
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lel rules (Koskenniemi 1983), or as OT-style ranked constraints (Frank and Satta 1998,
Karttunen 1998). Extensions of the basic FST mechanism both to the multi-tiered and the
frequency-weighted cases are well understood. Since (weighted, autosegmentalized) FSTs
imply no commitment as to the nature of the specific phonological/morphological theory
we adopt, we propose to take these as our general computational model: TWOL is suitable
for this purpose precisely because it is devoid of UG content. The complexity of a model in
this framework can be measured for example by the number of transducer states or arcs, or
simply by the number of bits it takes to encode a transducer. One significant advantage of
this method is that the overall transducer contains both the pattern and the list component,
so theories that do not make a significant boundary between the two are accommodated
with the same ease as theories that do.

OT, in contrast to TWOL, comes with a great deal of UG content. Ideally, it specifies in
advance all constraint schemas, so that any possible grammar can be given by fixing the pa-
rameters of the constraints and specifying a ranking. For example, to fix the parameters of
a (dis)harmony constraint will require only a few dozen bits that specify which features are
involved and over what domain. To specify the ranking of N constraints requires N log(N)

bits, so the overall compression effected by OT is quite significant: it is easy to define a
system of a few dozen constraints and their ranking in one kilobyte that will take automata
with millions of states and hundreds of thousands of transitions to implement. Generative
grammar focuses on UG because only theories with a high degree of universal content can
hope to account for the relative ease and speed of language acquisition. From the perspec-
tive of Kolmogorov complexity, UG emerges as the central device of data compression,
enabling significant (perhaps as much as three orders of magnitude) data reduction.

4 Conclusions

Barton’s prediction that TWOL must be overwhelmed by an exponentially growing need
for computational time and space resources turned out to be entirely false, and Idsardi’s
prediction that OT must suffer the same fate will fail in a similar manner, and for the same
reason: phonology simply does not have the diversity of atomic elements (neither items not
arrangements) required to encode arbitrarily large problem instances.

This is not to say that OT, with an increasingly complex toolchest possibly including
stratal organization, sympathy, candidate chains and other devices, is guaranteed to forever
stay in the computationally easy realm, but Barton and Idsardi put the cart before the horse:
normally we start looking for exponential growth when we encounter computational dif-
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ficulties on real data, rather than creating difficulties by investigating artificial problems.
There was no evidence in 1986 that TWOL was computationally hard, and there is no
evidence in 2008 that OT is.

Since taking infinite limits is a sine qua non of classical complexity theory, we must
conclude that this theory is not the appropriate tool for studying what is, in the final analy-
sis, a very finitistic domain. Fortunately, a more appropriate mathematical tool, very much
geared toward the complexity of finite objects, already exists in Kolmogorov complexity,
and here we took the first steps in describing how this tool can be deployed in the study of
the generative lexicon, which we estimated to have less than 4 megabytes of information
content overall, of which no more than 400 kilobytes are devoted to purely morphologi-
cal/phonological content.

Whitney (1879:xiii) chided Pān. ini for casting the facts of Sanskrit into the highly artful
and difficult form of about four thousand algebraic-formula-like rules in the statement and
arrangement of which “brevity alone is had in view.” Today, with our focus on UG, we may
not find this such a bad idea after all.
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Notes
0This work supersedes the earlier critique (Kornai 2006a, 2006b) of Idsardi (2006a), and benefited enor-

mously from Bill Idsardi’s response at the time (Idsardi 2006b). The comments of the anonymous LI review-
ers resulted in significant improvements in the final version.

1The notion of NP-hardness plays a key role in the mathematical theory of complexity: we say that a
problems is NP-hard if it is at least as hard as any problem in the NP (Nondeterministic Polynomial) class.
Hardness is measured by the growth in the number of elementary steps (Turing machine moves) needed for
the computation as the size of problem instance increases. Technically, the NP class is defined by this growth
being at most polynomial on nondeterministic Turing machines, but as a practical matter the celebrated P 6=
NP conjecture asserts that none of our algorithmic methods suitable for the relatively easy P (deterministic
polynomial) class will generalize to the NP class. Since the NP-hard problems have withstood decades of
efforts to find tractable (polynomial) algorithms for solving them, if a particular problem is NP-hard it is, at
least to our current state of knowledge, intractable.

2An anonymous reviewer notes that the real Lyman’s law in real Japanese requires special treatment of
/p/, possibly opening the way for r = 3. This does not affect our main point, that encodable problem size is
bound by the minimum of the limiting factors. Even r = 4 would imply a maximum of 16!, very far from
the 100! that inventory size constraints alone would imply for a pseudo-Japanese with a larger phoneme
inventory.

3An anonymous reviewer points out that diacritical (morpheme class) features can play the same role as
phonological features. While this is certainly true, in general morpheme class features are fossilized remnants
of earlier phonological features, and the diacritical use of phonological features is effected by placing stan-
dard features in nonstandard geometrical configurations (e.g. floating vowel features to trigger exceptional
harmony processes, for h-aspiré see Clements and Keyser 1983, for conjugation classes of classical Latin see
Lieber 1987). While this research program is not fully completed for all known cases of diacritic features,
the implication is clear: the number of diacritics is limited to the number of pure phonological features times
the number of nonstandard configurations, i.e. a small constant multiple of the former.

4While the overall line of argumentation is very much the same, the technical link between the Barton
and the Idsardi arguments is more tenuous in that a full translation of OT to the finite state calculus assumes
a bounded number of constraint violations, a criterion not necessarily met by the NP-hard constructions.
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