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ABSTRACT

This paper presents methods and algorithms for real-time visual target detection, recognition and tracking, both in the case
of ground-based objects (surveyed from a moving airborne imaging sensor) and flying targets (observed from a ground-
based or vehicle mounted sensor). The methods are highly parallelized and partially implemented on GPU, with the goal
of real-time speeds even in the case of multiple target observations. Real-time applicability is in focus. The methods use
single camera observations, providing a passive and expendable alternative for expensive and/or active sensors. Use cases
involve perimeter defense and surveillance situations, where passive detection and observation is a priority (e.g. aerial
surveillance of a compound, detection of reconnaissance drones, etc.).
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1. INTRODUCTION

Visual surveillance for defensive and offensive purposes has been in continuous research and development during the last
decades. Most of the research tries to target the automatismpossibilities of such fields, since the number of used sensors
increases exponentially, while the ever increasing quantities of data obtained from such sensors just can not be handled by
sole manpower anymore. Such automatism possibilities include automatic target detection, tracking, recognition, unusual
behavior detection, certain levels of situation assessment, with the goal of aiding Command and Control decision making.
A tendency also easily recognized is the turn towards deploying a high number of cheap sensors instead of a low number
of expensive nodes. Deploying passive sensors is also important in several situations. The above considerations were
among the motivation for the work presented in this paper, i.e. creating methods that use cheap visual sensors (normal
electro-optical cameras), and provide visual target detection, tracking and recognition capabilities, both on ground and
aerial sensing nodes.

Regarding works for target detection and recognition, Lu etal.1 presented a small ship target detection method, where
point-like infrared images of small ships are processed to automatically detect ships on the sea level from a distance.
Simple edge detection on a media-filtered image is used to extract possible ship locations. In other works2 small targets
above a sea or sky background are extracted by infrared processing by using directional derivative operators and clustering.
Elsewhere, low flying targets are segmented3 above the sea-sky line, by first locating the skyline, then using neighborhood
averaging and directional Sobel operators to enhance the object boundaries. Weng et al. present a flying target detection
method8 based on infrared processing which is robust against weather conditions, but is not able to recognize the flying
targets. Other works12,13 present more recent approaches to target tracking and recognition, based on infrared sensing for
detection and adaptive feature selection for recognition.A robust infrared based approach12 is presented for target detection
and tracking, although it is somewhat constrained since it required static cameras. Wang et al.13 present target recognition
on aerial imagery by a multi-feature method, sensitive to various geometrical shapes (circles, lines, etc.) of ground targets.
In our previous works6 we have presented approaches for flying target detection andtracking, combined with shape-based
recognition.

The novelties of the approach presented in this paper are that it presents visual, real-time methods (i.e. high information
content at a low cost), it does not require static cameras (itis robust against camera movement and zooming), it can provide
detection capabilities both for aerial and ground based targets (i.e. suitable for ground processing units and UAV’s as
well), and contains a shape and texture based recognition module. Target segmentations include adaptive foreground
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Figure 1: Basic steps of the presented detection and tracking approach.

and object extraction steps involving multi-layer Gaussian Mixture Modeling and object segmentation, view registration
based on invariant feature point detection, ground object detection and tracking. Tracking is implemented on GPU for
high resolution real-time processing. Recognition of the extracted targets is based on fused shape and texture information,
providing estimations for the classification of the observed targets. Recognition evaluation is presented, by using a database
of extracted and categorized object shapes, collected fromreal video sources.

Fig. 1 shows the steps of the presented methods and algorithms.

2. TARGET DETECTION

In this work we concentrate on two main types of targets for detection purposes. On one hand, aerial targets, i.e. flying
objects (mostly planes), on the other hand, ground based targets (e.g. vehicles). The goal in both cases is to detect the
moving objects, so as to provide a starting point for tracking (Section 4) and recognition (Section 3) tasks.

2.1 Detection of aerial targets

Detecting airborne targets is not a trivial task. Extensiveresearch is continuously being conducted, as practical results are
still far from being perfect. Works2,3,8dealing with flying target detection have provided algorithms for various approaches,
including infrared or hyperspectral imagery. In this case we concentrate on traditional electro-optical generic cameras, for
multiple reasons: they are cheap, provide passive detection capabilities, and have a high visual information content.

One of the hardest steps in aerial object detection and segmentation is the robust separation of the objects from the
background, which in this case includes the sky, clouds, smoke, vapor trails, etc. In earlier works6 we introduced a single
Gaussian and a Gaussian Mixture Model (GMM)4 based approach for separating flying objects, an approach which we
now use for extracting various sized flying objects in real-time, with adaptivity to support changes in lighting conditions,
sky color changes, presence of clouds, single or multiple present objects. In the following we will present a short overview
of the flying object segmentation approach, for further detail see Ref.6

The reason behind developing an extended GMM-based background model was that most other approaches require a
static camera for robust modeling. In our approach the camera movements are not restricted, the only assumptions are
that the object is smaller than the background and that the background is not completely homogeneous. For background
estimation we collected all pixel values (CIE L⋆u⋆v⋆ uniform color space was used) in a moving time window and trained
statistical models using maximum-likelihood estimation on the pixel values. LetK denote the number of video frames
with h height andw width, let ik denote a particular frame (1 ≤ k ≤ K) andr the radius of the moving time window
centered aroundik. F r

k = [fk−r, . . . , fk, . . . , fk+r] denotes the frames selected aroundfk in the radius ofr. LetN denote
the number of pixels in the time window, which can be calculated asN = (2× r + 1)× w × h. LetP (k) = [p1, . . . , pN ]
denote the set of pixels of the frames.

To model the background in an environment where the camera movements are not restricted and the background can
consist of different clutter (e.g. clouds, vapor trails, smoke, etc.), we use a mixture of Gaussians (MOG) approach, where
the model has the following form:

p(·) =
M
∑

l=1

wlN (·;µl,Σl) , (1)
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(a)

(b)
Figure 2: Examples for extracted foregrounds without (a) and with (b) background clutter (white: foreground, black:
background, gray: clutter belonging to the background layer).

whereM is the number of components,wl are the weights,µl andΣl are the parameters (mean and covariance) of
the GaussiansN (·;µ,Σ). Denoting withpi ∈ P (k) the ith pixel of frameP , the mean and covariance parameters of the
Gaussians areµ = 1

N

∑N

i=1 pi andΣ = 1
N

∑N

i=1 |µ− pi|
2.

The MOG model is trained withP (k) sample set, using iterative Expectation Maximization. During the segmentation
the distributions are ordered according to the ratioRl and the firstB distributions are chosen as the background model,
where theI parameter controls the modality:9

Rl =
wl

√
∑

c σ
c
l

, B = argmin
b

(

b
∑

l=1

wl > I

)

. (2)

For a particular pixelpi we select first the matching distribution, then the pixel is classified as background if the
matching distribution is an element of the background modelB. For removing clouds from the background we used the
observation that real moving objects (planes) have a clear contour while clouds do not. For video frameP i we extract
horizontal (hi), vertical (vi) and the total edge magnitudes:ei = |hi| + |vi|. The output of the foreground separation step
producesB connected regions. Ifbj denotes thejth region andCj =

[

c1j , . . . , c
K
j

]

the set ofK contour points ofbj , then
the energy ofbj will be:

Ej =
1

K

√

√

√

√

∑

ck
j
∈Cj

1

W

∑

(x,y)∈Nk
j

|ei (x, y) |2 , (3)

whereNk
j denotes the neighborhood of contour pixelckj andW is the size of the neighborhood area. After obtaining

the region energiesE = [E1, . . . , EB ], the energy values are linearly classified into layers. The regions with the highest
energy will be taken as targets. Fig. 2 shows examples of extracted foregrounds.

2.2 Detection of ground targets

The detection of ground based moving objects from an airborne camera (e.g. from an UAV) involved multiple steps. The
presented approach consists of:

• frame stabilization and registration,
• foreground extraction,
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(a) (b)
Figure 3: Samples from the process of registered and warped frames from video sequences.

• object detection.

The frame stabilization and registration step involves thecalculation of the homography matrix14 between consecutive
frames. The perspective transformation between two imagestaken of a plane surface can described by the homography
matrixH. One pointp0 is transformed top1 by the following equation:

p1 =





x1

y1
z1



 =





H11 H12 HH13

H21 H22 HH23

H31 H32 HH33



×





x0

y0
1



 . (4)

We use a feature based registration approach to calculate these matrices. We extract feature points that can be used to
align two imagesS1 andS2, by finding the transformationH that fits to the feature points, thusS2 = H · S1. In case of
aerial images the transformation can not be restricted to translation or rotation, thus the more general affine or perspective
transformation has to be used. Therefore, we use the featurebased method to find the homography matrix of the perspective
transformation.

We use the Harris15 corner detector which is suitable in man-made environmentswhere corners are abundant, also, it
is less computationally expensive than the other feature point detectors (e.g. SIFT, SURF). Then, corresponding points
from the following are searched by Lucas-Kanade optical flow, which yields the positions of the feature points on the next
image, thus the transformation between the frames can be calculated. Having obtained the transformation, frames can be
aligned into a common coordinate system. For that we need twohomographies, one for consecutive frames (Hn,n−1), and
one for aligning frames to a reference frame (Hn,0), where:

Hn,0 = Hn,n−1 ·Hn−1,n−1 · . . . ·H1,0. (5)

The current frame gets transformed into the coordinate system of the reference image by the homographyH:

Id(x, y) =

(

H11x+H12y +H13

H31x+H32y +H33
,
H21x+H22y +H22

H31x+H32y +H33

)

(6)

whereId denotes the pixels of the destination andIs of the source frame. Fig. 3 shows examples for warped frames.

The foreground-background separation step is based on modeling the background and extracting the moving foreground
segments. The background image is modeled and updated in thecommon coordinate system, calculating the pixel-by-pixel
running average and variance of the consecutive aligned video frames. Mixture of Gaussians (MoG) approaches4 cannot
be used in the case of UAV images, since usually because of thefast camera motions the observed samples (per surface
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(a) (b) (c)
Figure 4: Example of extracted foreground mask: (a) input frame, (b) current registration, (c) current foreground mask.

point) are not enough to create a MoG model. The mean value andvariance for the frames are (withα being a refresh rate
constant):

xn = (1− α)xn−1 + αxn (7)

σ2
n = (1− α)σ2

n−1 + α(xn − xn)(xn − xn−1) (8)

The pixels of the actual frame are classified either as foreground or background based on the normalized Euclidean
distance from the background pixel values in the CIE L⋆u⋆v⋆ color space. This is the Mahalanobis-distance for diagonal
covariance matrix:

d(pn) =

√

√

√

√

3
∑

i=1

(pn,i − pn−1,i)
2

σ2
n−1,i

. (9)

Fig. 4 shows examples for such detected foreground masks, with object areas shown in white.

3. TARGET RECOGNITION

The above presented steps provide detected and extracted foreground object blobs that can be used for further processing.
The next step is to extract features from these blobs that canbe used for classification and recognition purposes. Multiple
previous works deal with general and specific object featureextraction. Here we focus on feature based recognition thathas
the goal of extracting and comparing object features for target recognition purposes. In one work aerial images (taken from
airborne platforms or satellites) are the basis of ground target recognition13 where specific feature sets are pre-calculated
that are sensitive to certain object parameters and can helpin detection. Such features include geometric descriptors(e.g.
rectangular, circular features) and context features (howcertain features generally relate to each other). Generally, object
based recognition methods use one or more features for the categorization steps, and this is also the path we follow in
this work. The features we use are shape (based on extracted object contours), texture and histogram (object internal
parameters) descriptors, which provide a fast and generic object categorization capability.

Traditionally, contours/shape descriptors have been extracted and compared with a series of methods, including Hidden
Markov Models, comparisons based on Scale Invariant Feature points, tangent/turning functions,19 curvature maps, shock
graphs, Fourier descriptors,10 polar coordinates11 and so on. They all have their benefits and drawbacks, regarding compu-
tational complexity, precision capabilities, implementation issues, robustness and scalability. Other edge based approaches
include Chamfer distance based methods9for recognizing objects through smaller shape fragments. These methods gen-
erally work by converting the high level metrics into a distance function based comparison, which in turn works by using
some kind of chain code shape representation. They incorporate scale and rotation invariance on the high level.
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Figure 5: From left to right: section of the input frames withobject; extracted object blob; extracted object contour; region
of the original frame with texture.

Figure 6: An object and its contour’s turning function representation.

3.1 Feature extraction, indexing

We use two object features as a basis for recognition tasks. One is the shape/contour of the detected objects, another is
the texture information of the image region of the object. For shape extraction we use a simple blob shape extraction step
by going over the boundary points of each object and storing all the contour points. For texture information, we use the
standard MPEG-7 homogeneous texture descriptor.20 Fig. 5 shows some examples of extracted shapes from the binary
foregrounds obtained in above presented sections and whichregions will be used for texture feature extraction.

For the purposes of this work we collected an object dataset containing 27 classes of object shapes, 9140 shapes in
total. The shapes have been automatically extracted from real life videos of flying planes.

For the comparison of the features, two distance metrics areused. In the case of shapes, we use the turning function
representation for speed considerations, where the contour coordinate lists get transformed into a 2D function based on the
directions of the contour at all of its points. Fig. 6 shows anexample. Comparison if performed by calculating the point
wise distance between scaled and shifted versions of two turning functions, thus obtaining a scale and rotation invariant
distance. In the case of texture, we use the standard homogeneous texture descriptor distance metric from the MPEG-7
descriptor reference software. This texture descriptor extracts local statistics of the image, by filtering the regionwith
orientation and scale sensitive Gabor filters, and computing means and standard deviations of the results in frequency
domain. Comparison is done by calculating the Euclidean distance between two feature vectors containing mean and
deviation values. Experiments20 have shown an average accuracy of 77% for this descriptor.

In this work we use the above two features in a complementary manner. First, a shape based query is performed for an
object, then a texture based query, and the two results are weighted in the favor of the shape descriptor, which generally
performs higher. The role of the texture feature is to aid therecognition step in cases when the shape based recognition
performance is low.

To be able to perform content based queries (either with shape or texture), we need an indexing structure, on which
the queries can be run. Thus, we build index trees for the objects, containing shape and texture features. The trees we
use are customized BK-trees.5 Traditionally BK-trees have been used for string matching algorithms. Essentially they are
representations of point distributions in discrete metricspaces. For classical string matching purposes, the tree isbuilt so as
to have each subtree contain sets of strings that are at the same distance from the subtree’s root, i.e. for alle leaves below
sub-rootr thed(e, r) = ε is constant. In our case, the used structure contains tree nodes that can have an arbitrary number
of children (N ), where the leaves below each child contain elements for which the distanced falls in a difference interval:
d(e, r) ∈ [εi; εi+1), wherei ∈ [0, N ] ∩N. The distance intervals in the child nodes (denoted byεi, εi+1 above) depend on
the maximum errorEmax that the feature-dependent distance metric can have, more specifically,‖εi+1 − εi‖= Emax/N ,
thus the difference intervals are linearly divided buckets.
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Figure 7: The aggregated first 3 recognitions are continuously presented (numbers at the end show current recognition
probabilities).

Table 1: The object classes and the number of objects in each class.

class 1 2 3 4 5 6 7 8 9 10 11 12 13 14
objects 108 505 207 316 665 854 549 682 300 603 325 258 79 184
class 15 16 17 18 19 20 21 22 23 24 25 26 27 total
objects 104 233 451 120 124 12 344 644 395 96 75 285 622 9140

The indexing of the used 9140 shape dataset takes about 80 seconds (on a single thread, Core i7 2.8GHz). Retrieval
time (time to return results for a query) are in the range of 80–400 ms. Since we are trying to stay as close as realtime as
possible, the recognition steps are not performed on each processed frame, but as a parallel process in an SMP architecture.
Basically one thread processed the foreground separation and object extraction steps, another thread processes the tracking,
and new threads are spawned at specific intervals (typicallyevery 20-30 frames) to query the indexed dataset. One query
thread is run for each object present on the frame, thus the retrieval speed depends on the number of the objects and on
the number of available threads on the CPU. The recognition results are aggregated over the processing of the input, and a
statistics is built from the first 3 most probable recognitions and continuously presented to the user (example in Fig. 7).

3.2 Retrieval, performance

For evaluating the recognition rates and performance of thepresented approach, we use the above mentioned object dataset
with 9140 objects (Table 1 shows the number of classes and number of objects, and Fig. 8 shows a few examples from the
first 5 classes).

For testing the recognition rate of the above described approaches, we used the above dataset, and picked 9 query
videos of planes whose classes were present in the dataset, but the query videos were not included in the indexed database.
That is, although the query videos contained objects from known object classes, but the specific objects in the query videos
were not part of the dataset. Testing is performed by the following steps:

1. Extract objects from the query video frames.
2. Obtain object shape and texture features.
3. Perform two queries:

(a) Query based on shape (recognition based on shape information).
(b) Query based on combination of shape and texture (recognition based on shape+texture information).

4. Keep track of first 3 results of each query, accumulate themthroughout the query video, and continuously show the
3 most probable recognition candidates.

5. At the end of the query video, take the candidate with the higher probability as the overall best recognition (if an
object has been correctly recognized 7 out of 10 queries, that will be a0.7% recognition rate).

Fig. 9 shows recognition rates for 9 query videos containinga total of 1573 frames, for shape only and shape+texture
based recognitions. Fig. 9a and 9b show the same results for lower frequency queries (querying every 20 frames) and higher
frequency (every 10 frames) respectively. These results show that the average recognition rate for shape based queriesis
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class 1

class 2

class 3

class 4

class 5

Figure 8: A few examples from dataset classes 1–5 (from 27 classes in total).

Table 2: Numerical recognition rates for different query videos, for shape only and shape+texture based queries.

id of query video 1 2 3 4 5 6 7 8 9
frames in video 322 134 67 55 134 132 130 143 75
nr. of queries 15 6 2 2 6 6 6 6 3
shape only recog. rate 0.71 0.8 0 0 0.66 0.67 0.5 0.6 0.5
shape+texture recog. rate0.87 0.8 0.8 1 0.62 0.69 0.6 0.83 1

0.49 while for combined shape+texture it is0.8 for Fig. 9a (for higher frequency querying in Fig. 9b these values become
0.85 and0.83 respectively). That means, that in almost all cases textureinformation can help the shape-based recognition
process. When comparing the lower and higher frequency querying cases (see Fig. 10), it turns out that querying more
frequently can make the recognition rates better (both standalone and combined) – but we have to keep in mind that more
frequent querying means (much) higher computational complexity and stress on the real time system, especially in the case
of multiple objects being present (as we wrote above, retrieval time can be in the range of 80–400 ms per object, and the
queries run in parallel threads). Table 2 also shows numerical recognition rates for the above used query examples

The point we wish to make with these results is that the goal isto make less frequent, but better performing queries for
object recognition, and for such goals the shape+texture combined recognition solution performs better than shape-based
recognition alone.

Of course, there are cases when the recognition can fail totally. Such misclassification generally happens when the
query object is very similar to objects belonging to other classes than its own (at least from a certain viewing angle). Here
we show two examples, where both the shape and shape+texturebased queries returned0% recognition rates, but the
reported results are very close (visually) to the queries.

4. TARGET TRACKING

In both research and practice, there are quite a number of object tracking algorithms for different purposes. Most of them
use either robust background modeling and/or object features for obtaining objects and descriptors to serve as the basefor
keeping track of their movements. E.g. the FPSS algorithm12 presents a combined approach where background modeling
combined with image filters for equalization and noise suppression are used to obtain the foreground containing the moving
objects, then using a predictor to build a destination probability density map which aids the tracking process.
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(a) (b)
Figure 9: Comparison of shape only and shape+texture based recognition rates for a query lower frequency (every 20
frames) (a) and higher frequency (every 10 frames) (b).

(a) (b)
Figure 10: Comparing shape and shape+texture based recognition rates w.r.t. increased querying frequencies. (a) shows
shape-based rates for queries performed every 20 and 10 frames, while (b) shows similar data for shape+texture based
queries. Higher frequency querying can result in improved rates, but also increases computation time.

Table 3: Example for failed recognition. Queries from the two samples (with id 10 and 11) resulted in falsely reporting the
objects in the videos as belonging to classes 11 and 27, instead of 19, 22. The sample objects show that in these cases the
in-dataset objects and the query objects have been very similar (causing the misclassification).

id of query video 10 11
ground truth class of query objects 19 22
reported recognized classshape 11 27
(false positives) shape+texture 11 27

query object sample

reported (false positive) object sample

true positive object sample (from dataset)
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Figure 11: Left: frame with extracted feature points. Right: a later frame where only object-relevant points are retained.

(a) (b) (c)
Figure 12: Example of flying object tracking, with both object and camera movements.

For tracking of the extractedflying objectblobs we use a GPU-based KLT tracker implementation based on.7 The idea
behind the KLT tracking approach is to extract stable feature points from an object, then keep track of their movements
though continuous frames based on Lucas-Kanade optical flowestimations. On a 470-series Nvidia GPU, the performance
of the tracker is above 60 frames per second for PAL resolution videos, for multiple targets. It works by tracking feature
points obtained by the gradient-based Harris15 corner point extractor. Feature point tracking in itself ismostly local image
processing, thus can be highly parallelized intra-frame, which this approach exploits.

The original tracker is basically a feature point tracker. Our addition to this method is the object-based tracking
extension. This works by obtaining the feature points and tracks of the GPU-based tracker, combining tracks corresponding
to the same object - since the object regions have already been extracted -, then dropping the tracks that do not correspond
to a known object, and combining (by calculating the means ofvalid tracks of feature points) the tracks belonging to one
object into one track, which will be assigned and stored withthat object. Fig. 11 contains an example frame (left) showing
all the feature points extracted from the original tracker,and a following frame (right) where only feature points relevant
to the object are retained. Fig. 12 shows results on the same video of the used object tracker.

In the case of trackingground objectsfrom aerial video sources (e.g. from UAVs), we use a different approach, mostly
because of the differences in types of background and contents of the videos (e.g. occlusions, more clutter, higher noise,
more dynamic backgrounds). This method has been first introduced in,18 with the goal of UAV based area surveillance
application.

Object detection is processed for each frame independently, thus the separate detections have to be registered along
the frames to yield object tracks. The difficulty is that usually the number of object detections for consecutive frames can
vary also in the case of perfect detections, i.e. objects enter and leave, get occluded. To handle the disappearing and later
reappearing objects Kalman filtering is used, which is an efficient tool for filtering a noisy dynamic system. It predicts the
new states of the system and then corrects it by the measurements.

Motion in this environment can be described by the followingequations:

−→x k =

[

xk

ẋk

]

=

[

1 1
0 1

]

×

[

xk−1

ẋk−1

]

+ wk−1 (10)

zk =
[

1 0
]−→x k + vk (11)

wherexk is the position in one direction,zk is the measured position,wk−1 is the process noise,vk is the measurement
noise.
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(a) (b)
Figure 13: (a) Example frame showing tracked objects (in rectangles with associated id numbers) and tracks (small dot
series with different colors). (b) highlighted region zoomed in.

On each current frame thek detected objects have to be assigned ton tracked objects from the previous frames. If
n = k, this can be done inn! ways. The Hungarian method16,17 solves this assignment problem in polynomial time. We
solve the assignment problem with a greedy algorithm, whichis computationally simple and gives good results. The cases
when the greedy algorithm fails can be neglected, since thisis caused by objects being present for short periods of time
(i.e. noise).

A score matrixSnk is calculated based on the Euclidean distance of the predicted and detected positions and the objects
color histograms. The elements of the matrix are fitness values which describe how good the objects from the previous
frames match the current ones:

Sij = ϑ
1

dpos(Oi,Dj)
+ (1− ϑ)dhist(Oi,Dj) (12)

wheredpos is the Euclidean distance of positions,ϑ is a weighting constant,Oi is previous frame objecti, Dj is the
detected object anddhist is the histogram distance:

dpos(Oi,Dj
=
√

(p̂i,x − pj,x)2 + (p̂i,y − pj,y)2 (13)

wherep̂ is the predicted position of objectO.

If the number of detected objects is equal or greater than thenumber of tracked objects from the previous frames, the
assignment is done forward, this means that the tracked objects are assigned to the detected ones. Otherwise, the assignment
is done backward, this means that the detected objects are assigned to the tracked ones. Distinguishing between the two
assignments is needed because the algorithm is greedy, thusthe first objects in the order have priority.

Fig. 13 shows an example of tracked ground objects.

5. CONCLUSIONS

In this paper we have presented approaches for visual aerialand ground based object detection, tracking and recognition
based on shape and texture features. The goal was to use fast solutions running on cheap commodity hardware, provid-
ing passive (visual) detection and recognition capabilities for area surveillance and protection.The flying object detection
methods are suitable for detection, tracking and recognition of airborne targets from ground-based sensor stations, while
the ground object detection and tracking methods can be integrated on flying UAVs for ground area surveillance and ground
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based target tracking applications. Further work involvesmore robust recognition development, speed enhancement, real
life integration onto UAV sensor platforms. The work has been partially supported by the MEDUSA project of the E.D.A.
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