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1 Department of Software Technology and Methodology, Eötvös Loránd University
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Abstract. In this paper we present a formal language theoretic approach

to Internet crawlers seeking novel information on the World Wide Web, based

on a modified version of eco–grammar systems, called eco–foraging systems. In

our model, the grammars correspond to very simple autonomous agents and

the generated language to the behaviour of the system. In fact, the agents are

represented by regulated rewriting devices, which impose some constraint on

the search strategy of the agent. The letters of the generated strings symbolize

the web pages. We prove that if we ignore the aging of the web environment in

the model, then through the simulation of certain normal form grammars, the

eco–foraging systems determine the class of recursively enumerable languages.

If the web pages may become obsolete, then the language family generated by

unordered scattered context grammars of finite index can be obtained. The

ignorance of lifetime implies that the crawlers communicating only through the

environment are able to identify any computable set of the environmental states.

The lifetime constraint, however, considerably decreases the efficiency of the

cooperation of the agents.
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1. Introduction

The World Wide Web is an exponentially growing and a dynamically changing
information source. It demonstrates the scale–free small world property [1], [14], [25].
Owing to the scale–free small world nature of the World Wide Web to locate novel
information often requires strenuous efforts, hence the need of the elaboration of ef-
ficient crawling algorithms. Different approaches exist in the literature that discuss
information retrieval on the World Wide Web. Pinkerton [20] applies breadth first,
exhaustive crawlers and defines the beginning of the search area by means of anchor
text of links as a potential predictor. In [3], Cho et al. employ URL ordering, a
principle based on the characteristics of links, when defining the decisions of crawlers.
Focused/topic specific/topical crawlers aim at seeking and retrieving only the subset
of the World Wide Web that pertains to a specific topic of relevance [8]. Focused
crawling was first introduced by Chakrabarti et al. [2]. Conceptual knowledge con-
cerning the topic plays a crucial part in a plethora of approaches to seeking novel
information on the World Wide Web. In [15], [16] and [21], the authors propose the
use of reinforcement learning methods so that the crawlers are able to extract rel-
evant information while spidering the Web. Menzer et al. [17] study some machine
learning issues in the case of topical crawlers and besides the role of exploration ver-
sus exploitation, they also examine the role of adaptation (learning and evolutionary
algorithms) versus static approaches. In order to ameliorate the performance of the
focused crawlers Diligenti et al. [8] as well as Pant and Srinivasan [18], [19] utilize pop-
ular classification methods such as Naive Bayes, Support Vector Machine (SVM) and
Neural Network classification schemes [9], [13], which are well–established techniques
in the areas of text and data mining.

In our paper, we propose a formal language theoretic approach to the behaviour of
crawlers seeking novel information on the World Wide Web. The pieces of information
serve as food or supplies for the crawlers, for this reason they can also be called foragers
[12]. We use the words crawlers and foragers interchangeably throughout the article.
We model the behaviour of the crawlers in terms of eco–grammar systems [4], [6].
We modify the mathematical construction proposed in [11]. An eco–grammar system
aims at modelling the interplay between the environment and the agents in complex
systems such as ecosystems [4], [6]. It intends to capture some aspects of multi–agent
systems [5], [10]: the grammars correspond to very simple autonomous agents and
the generated language to the behaviour of the system.

We consider a variant of eco–grammar systems, called simple eco–grammar system.
Briefly, a simple eco–grammar system consists of some agents and an environment.
The agents are represented by a set of context–free rules and the environment by a
set of evolution rules, i.e. a complete set of context–free rules applied as in the case
of 0L systems. At any moment of time, the behaviour of the system is described by
the state of the environment. The environmental state is represented by a string and
altered by derivation steps. At each derivation step the agents (as many as able to do
it) act on the environment by applying one of their context–free rules in parallel with
the environment that replaces the remaining symbols according to its rule set. The
evolution of the system can be characterized by the sequences of strings obtainable
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from the initial string through the sequence of derivation steps.

To characterize the behaviour of the crawlers in quest of novel information, we
present the notion of eco–foraging systems. Eco–foraging systems are special eco–
grammar systems. The changing environment represents the knowledge space to be
discovered by the crawlers, which are agents in the grammar systems theoretic model.
The itinerary of the agents, or more precisely, the next piece of information to be dis-
covered is predefined in some way. To this end, we represent the agents as special,
very simple programmed grammars [7]. These agents demonstrate a remarkable be-
haviour, since they are able to describe the language family generated by unordered
scattered context grammars of finite index and the language family of recursively
enumerable languages under different assumptions, whilst the individual components
can generate finite languages only.

The organization of this paper is as follows. In Section 2, we give a brief review
of the mathematical definitions and theorems employed throughout our work. In
Section 3, we present the formal language theoretic model of Internet crawlers in
quest of novel information and demonstrate how powerful our model is. Finally, in
Section 4 we summarize our results and propose some future work.

2. Formal Language Prerequisites

For the basic elements of formal language theory we refer to [7], [22], [23], [24]. For
an alphabet V , we denote by V ∗ the set of words over V , by V + the set of all nonempty
words, i.e. V + = V ∗ \ {λ}, where λ is the empty word. length(x) denotes the length
of x ∈ V ∗. Let U ⊆ V ∗ and let |x|U be the number of symbols of the string obtained
through erasing the symbols that are not in U from x. For a finite set A, card(A)
stands for the number of elements of A. The set of natural numbers is denoted by
N and N0 = N ∪ {0}. The families of context–free, context–sensitive and recursively
enumerable languages are denoted by L(CF), L(CS) and L(RE), respectively.

A programmed grammar with appearance checking is a construction G =
(N,T, S, P ), where N,T are disjoint alphabets, S ∈ N , and P is a finite set of
triplets or rules of the form (l : A → x, σ(l), φ(l)), where A ∈ N , x ∈ (N ∪ T )∗,
l ∈ Label(P ), σ(l), φ(l) ⊆ Label(P ), and Label(P ) is a set of labels associated with
the triplets of P in a one–to–one manner. If only (N,S, P ) is indicated, then we speak
of a programmed grammar scheme.

For (l : A → x, σ(l), φ(l)) ∈ P , we define (ω, l) ⇒ (ω′, h), iff either ω =
ω1Aω2, ω

′ = ω1xω2, h ∈ σ(l), or A does not appear in ω, ω = ω′ and h ∈ φ(l), where
σ(l) is called the success and φ(l) the failure field of the rule. The generated language
is L(G) = {ω ∈ T ∗ | (S, l0) ⇒ (ω1, l1) ⇒ . . . ⇒ (ωm, lm) = (ω, lm), li ∈ Label(P ), for
0 ≤ i ≤ m}.

If φ(l) = ∅, then G is a programmed grammar without appearance checking.

We denote by L(PRac) and L(PRλ
ac) the families of languages generated by pro-

grammed grammars in the appearance checking mode with λ–free context–free rules
and with arbitrary context–free rules, respectively. If the appearance checking feature
is not present, then subscript ac is omitted.
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Amatrix grammar with appearance checking is a constructionG = (N,T, S,M,F),
where N,T are disjoint alphabets, S ∈ N , and M = {m1,m2, . . . ,mr} is a finite set
of sequences, called matrices, of the form mi : (Ai1 → xi1 , . . . , Aiki

→ xiki
), where

Aij ∈ N , xij ∈ (N ∪ T )∗, 1 ≤ i ≤ r, 1 ≤ j ≤ ki, and F is a set of occurrences of rules
in the sequences of M .

For mi : (Ai1 → xi1 , . . . , Aiki
→ xiki

) ∈M , 1 ≤ i ≤ r, ki ≥ 1, ω, ω′ ∈ (N ∪T )∗, we
define ω ⇒mi ω

′, iff there are ωi1 , . . . , ωiki+1
∈ (N∪T )∗ such that ω = ωi1 , ω

′ = ωiki+1

and for each i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ ki, either ωij = ω′
ij
Aijω

′′
ij

and ωij+1 = ω′
ij
xijω

′′
ij
,

or Aij does not occur in ωij , ωij = ωij+1 and Aij → xij is an element of F .
The language generated by G is defined by L(G) = {ω ∈ T ∗ | S =⇒mj1

y1 =⇒mj2

y2 =⇒mj3
. . . =⇒mjs

ω, 1 ≤ ji ≤ r, 1 ≤ i ≤ s}.
If F = ∅, then G is a matrix grammar without appearance checking. In this case

the component F is omitted.
We denote by L(MATac) and by L(MAT

λ
ac) the families of languages generated

by matrix grammars in the appearance checking mode with λ–free context–free rules
and with arbitrary context–free rules, respectively. When the appearance checking
feature is not present, then subscript ac is left out.

It is known from [7] that

L(CF) ⊂ L(PRac) = L(MATac) ⊂ L(CS) and
L(PRλ

ac) = L(MAT
λ
ac) = L(RE).

A context–free matrix grammar G = (N,T, S,M,F) is in the (preliminary) 2–
normal form iff

N = {S} ∪N (1) ∪N (2) with N (1) ∩N (2) = ∅, S /∈ N (1) ∪N (2),

and M contains only matrices of the following forms:

1. S → AX,A ∈ N (1), X ∈ N (2),

2. (A→ β,X → Y ), A ∈ N (1), β ∈ (N (1) ∪ T )∗, X, Y ∈ N (2), and

3. (A→ β,X → λ), A ∈ N (1), β ∈ (N (1) ∪ T )∗, X ∈ N (2).

Moreover, the set F contains only rules of the form A → β in the matrices of
types (2) and (3).

For each context–free matrix grammar G an equivalent context–free matrix gram-
mar G′ can be constructed in the (preliminary) 2–normal form [7].

A 0L system (an interactionless Lindenmayer system) is a triplet G = (V, ω, P ),
where V is an alphabet, ω ∈ V + and P is a finite set of rewriting rules such that
for each a ∈ V there is a rule a → x, x ∈ V ∗, in P (we say that P is complete).
For z1, z2 ∈ V ∗, we write z1 =⇒ z2 (with respect to G, if it is necessary, denoted by
=⇒G), if z1 = a1a2 . . . ar, z2 = x1x2 . . . xr, for ai → xi in P , 1 ≤ i ≤ r. This form
of derivation is called a 0L rewriting. The language generated by G is L(G) = {z ∈
V ∗ | ω =⇒∗ z}, where =⇒∗ is the reflexive and transitive closure of =⇒.
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A T0L system is a construct G = (V, ω, P1, . . . , Pn), n ≥ 1, where each Gi =
(V, ω, Pi), 1 ≤ i ≤ n, is a 0L system. The language that is generated is L(G) = {z ∈
V ∗ | ω =⇒Gi1

ω1 =⇒Gi2
. . . =⇒Gim

ωm = z, 1 ≤ ij ≤ n, 1 ≤ j ≤ m}.
The families of languages generated by 0L and T0L systems are denoted by L(0L)

and L(T0L), respectively.
Let G be a grammar of arbitrary type and let N , T and S be its nonterminal

alphabet, terminal alphabet and start symbol, respectively. For a derivation D : S =
ω1 ⇒ ω2 ⇒ . . .⇒ ωr = ω ∈ T ∗ according to G, we set Ind(D,G) = max{|ωi|N | 1 ≤
i ≤ r}, and for ω ∈ T ∗, we define Ind(ω,G) = min{Ind(D,G) | D is a derivation for
ω in G}. The index of grammar G is defined as Ind(G) = sup{Ind(ω,G) | ω ∈ L(G)}.
For a language L in the family L(X) of languages generated by grammars of some
type X, we define IndX(L) = inf{Ind(G) | L(G) = L,G is of type X}. If no
confusion arises, we write Ind(L) instead of IndX(L). For a family L(X), we set
Ln(X) = {L | L ∈ L(X) and IndX(L) ≤ n}, n ≥ 1, and Lfin(X) =

∪
n≥1 Ln(X).

An unordered scattered context grammar is a construct G = (N,T, S, P ), where
N,T are disjoint alphabets, S ∈ N , and P = {p1, p2, . . . , pr} is a finite set
of sequences of the form pi : (Ai1 → xi1 , . . . , Aiki

→ xiki
), where Aij ∈ N ,

xij ∈ (N ∪ T )∗, 1 ≤ i ≤ r, 1 ≤ j ≤ ki. We say that ω directly derives ω′,
written as ω ⇒ ω′, iff for some i, 1 ≤ i ≤ r, and for some permutation π
of {1, . . . , ki}, ω = ω1Ai,π(j1)ω2Ai,π(j2) . . . ωnAi,π(jm)ωm+1, ωj ∈ (N ∪ T )∗, for
1 ≤ j ≤ m + 1, and ω′ = ω1xi,π(j1)ω2xi,π(j2) . . . ωnxi,π(jm)ωm+1. The generated
language is L(G) = {x ∈ T ∗ | S =⇒∗ x}.

We denote by L(USC) and Lfin(USC) the language families generated by un-
ordered scattered context grammars and by unordered scattered context grammars
of finite index, respectively.

3. Internet Crawlers: Formal Definitions

In this section we introduce the notion of eco–foraging systems (FEG sys-
tems) to model the behaviour of Internet crawlers in quest of novel information.
Whilst harvesting information on the web these crawlers compete as well as cooper-
ate/collaborate with each other. Eco–foraging systems have two main components:
the web environment and the agents. We focus on eco–foraging systems in which
the components are represented as programmed grammars, or more precisely, as pro-
grammed grammar schemes.

3.1. Eco–Foraging Systems

First, we deal with eco–foraging systems that model the case when no lifetime is
associated with the web pages, i.e. we ignore that during web crawling some pages
may become obsolete.

Now we define the web environment (the environment in eco–grammar systems).
The web environment represents the continuously changing World Wide Web domain.

Definition 1. The web environment with n foragers, n ≥ 1, is a construction
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E = (VE , T
′
E ,PE)

such that

– VE is a finite alphabet, VE = VM ∪ T ′
E ∪ VN ∪ V̄N , with VN =

∪n
i=1Ni and

V̄N =
∪n

i=1N
(i)
i , where

– VM is a finite set,

– Ni = {Xi,1, . . . , Xi,si}, N
(i)
i = {X(i)

i,1 , . . . , X
(i)
i,si

}, 1 ≤ si, 1 ≤ i ≤ n, are
finite alphabets,

– TE =
∪k

j=1Nij , and for some k, 1 ≤ k ≤ n, {j1, . . . , jk} ⊆ {1, . . . , n},
– T ′

E = {Z ′ | Z ∈ TE},
– VM , T ′

E , VN , and V̄N , are pairwise disjoint sets,

– PE = {PE1 , . . . , PEr}, where PEq , 1 ≤ q ≤ r, is a finite set of rules of the
following forms:

– Y → α, where Y ∈ VN , α ∈ V ∗
N ,

– Z(i) → β, where Z(i) ∈ N
(i)
i , 1 ≤ i ≤ n, and β ∈ V ∗

N ∪ V ∗
NZ

(i)V ∗
N ,

– Z(j) → Z ′, Z ′ → Z ′, where Z(j) ∈ N
(j)
j , 1 ≤ j ≤ n, Nj ⊆ TE , Z

′ ∈ T ′
E and

Z ∈ TE ,

– U → γ, where U ∈ VM and γ ∈ V ∗
NV

∗
MV

∗
N .

Moreover, any rule set in PE is complete, i.e. for any c ∈ VE , there is at least
one rule in any PEq , 1 ≤ q ≤ r.

In Definition 1, VE is the alphabet of the web environment, i.e. the web pages
that can be altered through the joint action of the foragers and the web environment.

VE consists of the union of all alphabets Ni and N
(i)
i , 1 ≤ i ≤ n, T ′

E and VM . The

elements of Ni correspond to web pages that can be identified, while those of N
(i)
i

to web pages that were actually visited by the i–th forager. TE represents the web
pages that should be visited by the foragers, T ′

E describes that those web pages that
should be visited were really recognized by the foragers and reinforced later by the
environment. The symbols from VM characterize how the web environment works,
i.e. they cannot be rewritten by any of the agents. PE is the set of all rule sets
PEq

, 1 ≤ q ≤ r, where each PEq
is a set of rules (the so–called evolution rules): it

describes the update of a non–visited web page, of a visited one and some other kinds
of rewritings, respectively. In particular, rules of the form Y → α, where Y ∈ VN ,
α ∈ V ∗

N , correspond to the update (insertion of new web page(s) into the environment,
the deletion or the substitution of some part of the environmental state) of a non–

visited web page, rules of the form Z(i) → β, where Z(i) ∈ N
(i)
i , 1 ≤ i ≤ n, and

β ∈ V ∗
N ∪ V ∗

NZ
(i)V ∗

N , express that the actually visited web page has been deleted or
left unaltered and at the same time some new web pages may have been inserted, rules
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of the form Z(i) → Z ′, Z ′ → Z ′, where Z(i) ∈ N
(i)
i , 1 ≤ i ≤ n, Ni ⊆ TE , Z

′ ∈ T ′
E and

Z ∈ TE , represent that the web pages visited by the foragers are reinforced by the
environment, rules of the form U → γ, where U ∈ VM and γ ∈ V ∗

NV
∗
MV

∗
N , describe

that symbols from the finite set VM have been rewritten and/or some new web pages
have been inserted.

We impose some constraint on the rules of the agents of the eco–grammar systems
to describe the search strategy of these agents.

Definition 2. A programmed eco–foraging system with appearance checking (an
FEGPRac system) of degree n, n ≥ 1, is a construction

Γ = (E,A1, . . . , An, cinit)

such that

– E = (VE , T
′
E ,PE) is the web environment (see Definition 1),

– Ai = (Ni ∪N (i)
i , Si, Ri), 1 ≤ i ≤ n, is the i–th forager, a programmed grammar

scheme with appearance checking, where

– Ni ∪ N (i)
i is the nonterminal alphabet of the i–th forager (see Definition

1),

– Si ∈ Ni is the start symbol of the i–th forager,

– Ri is a finite set of triplets of the following forms:

• (li,1 : Si → S
(i)
i , σi(li,1), ψi(li,1)), σi(li,1) ⊆ {li,1, . . . , li,si}, ψi(li,1) =

{li,1}, is called the initial rule of the i–th forager,

• (li,k : Xi,k → X
(i)
i,k , σi(li,k), ψi(li,k)), Xi,k ∈ Ni \ {Si}, X(i)

i,k ∈
N

(i)
i \ {S(i)

i }, 2 ≤ k ≤ si, with σi(li,k) ⊆ {li,1, . . . , li,si}, ψi(li,k) ⊆
{hi,2, . . . , hi,si}, or

• (hi,k : X
(i)
i,k → X

(i)
i,k , σi(hi,k), ψi(hi,k)), X

(i)
i,k ∈ N

(i)
i \ {S(i)

i }, 2 ≤ k ≤ si,
with σi(hi,k) ⊆ {li,1, . . . , li,si}, ψi(hi,k) ⊆ {hi,2, . . . , hi,si}, where
– Label(Ri) = {li,1, . . . , li,si , hi,2, . . . , hi,si} is the set of labels of the

rules in Ri.

– cinit = (l1,1, . . . , ln,1;ωinit), where li,1 is the label of the initial rule of the i–th
forager, 1 ≤ i ≤ n, and ωinit = z0Sj1z1 . . . zk−1Sjkzk, Sjh ∈ Njh , zl ∈ V ∗

E , 1 ≤
h ≤ k, 0 ≤ l ≤ k, {j1, . . . , jk} ⊆ {1, . . . , n}, is called the initial configuration of
Γ. The string ωinit is called the initial state of the web environment of Γ or the
initial environmental state.

In Definition 2, the agents or foragers are special programmed grammar schemes
with appearance checking. Si ∈ Ni is the first web page that the i–th agent has to

visit. The agents have two types of rules except for the initial step. Si → S
(i)
i is the

initial rule of the i–th agent. Not until the forager has visited the first web page, will
it be able to jump to any of its subsequent rules. At subsequent steps, the rules of
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the i–th agent have the forms Xi,k → X
(i)
i,k , Xi,k ∈ Ni \ {Si}, X(i)

i,k ∈ N
(i)
i \ {S(i)

i }, or
X

(i)
i,k → X

(i)
i,k , X

(i)
i,k ∈ N

(i)
i \ {S(i)

i }, 1 ≤ i ≤ n, 2 ≤ k ≤ si. Rules Xi,k → X
(i)
i,k , Xi,k ∈

Ni \ {Si}, X(i)
i,k ∈ N

(i)
i \ {S(i)

i }, 1 ≤ i ≤ n, 2 ≤ k ≤ si, describe that the i–th agent

tries to visit a not yet discovered web page. Rules X
(i)
i,k → X

(i)
i,k , X

(i)
i,k ∈ N

(i)
i \ {S(i)

i },
1 ≤ i ≤ n, 2 ≤ k ≤ si, on the other hand, express that the i–th agent goes to a web
page that it has discovered previously. As the initial state of the web environment,
ωinit indicates, initially, we do not suppose that every agent is able to commence its
work. When the agents start their work, they have to apply their initial rules.

In the sequel, we define the way in which eco–foraging systems work.

Definition 3. Let Γ = (E,A1, . . . , An, cinit) be an FEGPRac
system of degree

n, n ≥ 1. An (n + 1)–tuple c = (k1, . . . , kn;ωE), where ki ∈ Label(Ri), 1 ≤ i ≤ n,
ωE ∈ V ∗

E , is called a configuration of Γ. ωE is the state of the web environment of Γ
in configuration c or the environmental state in configuration c.

Definition 4. Let Γ = (E,A1, . . . , An, cinit) be an FEGPRac system of degree n,
n ≥ 1 (see Definition 1), and let c1 = (k1, . . . , kn;ωE) and c2 = (k′1, . . . , k

′
n;ω

′
E) be

two configurations of Γ. We say that c1 directly derives c2 in Γ, written as c1 =⇒Γ c2,
if the following conditions hold:

1. ωE = u1αi1u2 . . . urαirur+1 and ω′′
E = u1βi1u2 . . . urβirur+1,

where {i1, . . . , ir} ⊆ {1, . . . , n}, αij ∈ Nj∪N (j)
j , βij ∈ N

(j)
j , 1 ≤ j ≤ r, uh ∈ V ∗

E ,
1 ≤ h ≤ r + 1,

2. (kij : αij → βij , σ(kij ), ψ(kij )) ∈ Rij and k′ij ∈ σ(kij ), 1 ≤ j ≤ r,

3. there is no m ∈ {1, . . . , n} \ {i1, . . . , ir} such that (km : αim →
βim , σ(km), ψ(km)) ∈ Rm can be applied to u1u2 . . . ur+1,

4. k′m ∈ ψ(km) for m ∈ {1, . . . , n} \ {i1, . . . , ir},

5. ω′
E = v1βi1v2 . . . vrβirvr+1, where u1 . . . ur+1 =⇒ v1 . . . vr+1 is a 0L rewriting

according to some PEq , 1 ≤ q ≤ r, PEq ∈ PE .

In Definition 4, the programmed grammar schemes determine the next rule to be
applied on the basis of the previous one(s). If the forager has managed to identify a
web page, then it will try to search for a novel one. If the attempt of the forager is
not successful and it has not yet commenced its work, then it will try to visit its first
web page again. If the forager fails to discover a web page different from the initial
one, then it will go to a web page that it has discovered previously. If the crawler has
managed to identify the previously discovered web page, then it will go to a not yet
visited page, otherwise to a visited one.

The next state of the web environment is determined both by the action rules of
the foragers and the set of rules of the web environment. As the reader may observe,
the evolution rules of the environment are applied in the same manner as a 0L system.
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If the environment has more than one set of evolution rules, then it behaves like a
T0L system. The actions of the foragers have priority over the evolution of the web
environment. The foragers have to perform their actions simultaneously.

The transitive (and reflexive) closure of =⇒Γ is denoted by =⇒+
Γ (=⇒∗

Γ).

Definition 5. The language generated by an FEGPRac system Γ = (E,A1, . . . ,
An, cinit) is defined by L(Γ) = {u | cinit = (l1,1, . . . , ln,1;ω) =⇒∗

Γ (k1, . . . , kn;u), u ∈
T ′∗

E}.

If no confusion arises, then subscript Γ can be omitted.

The language family generated by FEGPRac systems is denoted by L(FEGPRac
).

Let us illustrate how programmed eco–foraging systems work through an example.
This example demonstrates that although the agents working separately are able to
recognize finite languages only, their cooperation leads to complex behaviour.

Example 1. Let L1 = {A′nB′nC ′n | n ≥ 1}. The programmed eco–foraging
system Γ with appearance checking that generates L, i.e. L = L(Γ), is as follows:

Γ = (E,A1, A2, A3, cinit)

such that

– E = (VE , T
′
E ,PE) is the web environment, where

– VE = {A,B,C} ∪ {A(1), B(2), C(3)} ∪ {A′, B′, C ′},

– T ′
E = {A′, B′, C ′},

– PE = {PE1 , PE2}, where

• PE1
= {A → A,B → B,C → C,A(1) → A′, B(2) → B′, C(3) →

C ′, A′ → A′, B′ → B′, C ′ → C ′},
• PE2 = {A → A,B → B,C → C,A(1) → AA(1), B(2) → BB(2), C(3) →
CC(3), A′ → A′, B′ → B′, C ′ → C ′},

– Ai = (Ni ∪N (i)
i , Si, Ri), i = 1, 2, 3, is the i–th forager, where

– N1 = {A}, N (1)
1 = {A(1)}, N2 = {B}, N (2)

2 = {B(2)}, N3 = {C}, N (3)
3 =

{C(3)},

– S1 = A,S2 = B,S3 = C,

– the triplets of Ri, 1 ≤ i ≤ 3, are of the following forms:

• (li : Xi → X
(i)
i , σi(li), ψi(li)), with σi(li) = {li}, ψi(li) = {li}, Xi ∈

Ni, X
(i)
i ∈ N

(i)
i ,

· Label(Ri) = {li} and σi, ψi : Label(Ri) → 2Label(Ri), i = 1, 2, 3,

– cinit = (l1, l2, l3;ωinit), where ωinit = ABC.
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The derivation is as follows: ABC =⇒Γ A(1)B(2)C(3), where we have two pos-
sibilities to continue. If we apply environmental table PE1 , then we will obtain:
A(1)B(2)C(3) =⇒Γ A′B′C ′, which is a terminal string. If we use PE2 , then we
will receive: A(1)B(2)C(3) =⇒Γ AA(1)BB(2)CC(3). Continuing the derivation with
AA(1)BB(2)CC(3), we can employ either environmental table PE1 or table PE2 . Let
us assume that we will use environmental table PE1 (the continuation of the derivation
for table PE2 may be done analogously, thus it is left to the reader). As a result of the
utilization of PE1 , we will attain: AA(1)BB(2)CC(3) =⇒Γ A

(1)A′B(2)B′C(3)C ′ =⇒Γ

A′A′B′B′C ′C ′, which is a terminal string. We applied again environmental table PE1

at the last step. The derivation could have been continued in a different way, if we
had employed environmental table PE2 at the last step.

Observe that L1 is a context–sensitive language, but it is not context–free.

3.2. The Power of Eco–Foraging Systems

In the sequel, we demonstrate that the class of recursively enumerable languages
is exactly the same as the class of languages generated by programmed eco–foraging
systems with appearance checking. It signifies that the foragers communicating only
through the environment are able to identify any computable set of the environmental
states. The following theorem holds:

Theorem 1. L(RE) = L(FEGPRac
).

Proof
We only prove that L(RE) ⊆ L(FEGPRac

), the reverse inclusion can be shown by
using standard techniques. Let us assume that L ⊆ T ′∗, L ∈ L(RE). Let us suppose
that L is generated by G = (N,T ′, S,M,F), with M = (m1, . . . ,mn), where G is a
matrix grammar in the (preliminary) 2–normal form. Let T = {bj | 1 ≤ j ≤ s}, T ′ =
{b′j | bj ∈ T, 1 ≤ j ≤ s}. We define the following homomorphism: h : T ′∪N → T ∪N ,
where h(b′) = b, for b′ ∈ T ′, b ∈ T and h(B) = B, for B ∈ N. To prove the statement,
we construct a programmed eco–foraging system Γ with appearance checking for G
such that L(G) = L(Γ) holds. The idea is that we simulate the derivations in G by
derivations in Γ.

The programmed eco–foraging system with appearance checking, able to simulate
the matrix grammar is as follows:

Γ = (E,A1, . . . , An, An+1, . . . , An+s, cinit),

where

– E is the web environment,

– A1, . . . , An, are the foragers that simulate the matrices of the matrix grammar
G,

– An+1, . . . , An+s are special foragers that check whether the generated string is
a terminal one or not according to G (in the first case, the derivation is correct,
whereas in the second case, the string produced is not in the language generated
by the matrix grammar), and
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– cinit is the initial configuration.

To help the reader in following the simulation, we will denote the nonterminal
letters of agents An+1, . . . , An+s by small letters. This change does not impose any
restriction on the corresponding definitions.

Now we define the components of Γ. Let

VE =N ∪ T ∪ {B(p) | B ∈ N, 1 ≤ p ≤ n} ∪ {b(n+j)
j , b′j | bj ∈ T, 1 ≤ j ≤ s}∪

{Zk, Z
(k)
k | 1 ≤ k ≤ n} ∪ {Z0, Zn+1, Zn+2} ∪ {Z(k)

0 , Z
(k)
n+1, Z

(k)
n+2 | 1 ≤ k ≤ n}∪

{C,Zfin, Z
(fin)
fin , F} ∪ {Cij | 1 ≤ i ≤ n, 1 ≤ j ≤ 6}.

The alphabet of the web environment contains all letters of the alphabet of
G and other symbols that assist the simulation. These are the marker symbols
Z0, Z1, . . . , Zn, Zn+1, Zn+2, Zfin and C, their indexed versions, and the trap symbol
F . The trap symbol cannot be removed form the sentential form.

The idea behind the simulation is as follows: we suppose that ω′ is a sen-
tential form in G and that the corresponding word generated by Γ has the form
CZkZ0Zn+1Zn+2ω, 1 ≤ k ≤ n, where h(ω′) = ω, or its indexed version, which in-
dicates the fact whether a given forager is active or not. The axiom is of the form
CZ0Zn+1Zn+2S, where S is the start symbol of the matrix grammar to be simu-
lated. Both foragers Ai, 1 ≤ i ≤ n, and the web environment can perform a rule
on Z0, Z1, . . . , Zn, Zn+1, Zn+2, but only the web environment is allowed to rewrite C
and Zfin. Forager Ai may perform a rule only on Zi, 1 ≤ i ≤ n, Z0, Zn+1 and Zn+2.
Symbols Z0, Z1, . . . , Zn, Zn+1, Zn+2, Zfin and C make it possible that only the forager
that simulates a matrix of G or those foragers that check whether a symbol corre-
sponds to a letter from T ′, and the web environment can change the environmental
word at the same time at any step of the derivation.

In the following, we present the definition of the foragers and the environmental
tables and detail their roles in the simulation.

When designing the rules of Ai, we have to distinguish two cases, depending on
the fact whether mi is with or without appearance checking, if we want to simulate
the matrices of the forms (A → α′, X → Y ) or (A → α′, X → λ). First, we will deal
with matrices of the form (A → α′, X → Y ) (the second case can be treated in a
similar manner, if we substitute Y with λ). Without any loss of generality, we may
suppose that forager Ai simulates the work of matrix mi, 1 ≤ i ≤ n.

Let us now consider the simulation of matrix mi being of the form (A→ α′, X →
Y ).

First, let us suppose that mi is without appearance checking, which means
that A → α′ /∈ F and if A is not in the string, then the derivation fails.

Let Ai = (Ni ∪ N
(i)
i , Si, Ri), where Ni = {A,X,Z0, Zi, Zn+1, Zn+2}, N

(i)
i =

{A(i), X(i), Z
(i)
0 , Z

(i)
i , Z

(i)
n+1, Z

(i)
n+2}, and Si = Zi. The rule set of Ai, i.e. Ri, is as

follows:

– (li1 : Zi → Z
(i)
i , {li2}, {li1}),
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– (li2 : Zn+2 → Z
(i)
n+2, {li4}, {hi2}),

– (hi2 : Z
(i)
n+2 → Z

(i)
n+2, {li6}, {hi2}),

– (li3 : A→ A(i), {li5}, {hi2}),

– (hi3 : A(i) → A(i), {li5}, {hi2}),

– (li4 : X → X(i), {li3}, {hi2}),

– (hi4 : X(i) → X(i), {li3}, {hi2}),

– (li5 : Z0 → Z
(i)
0 , {li1}, {hi2}),

– (hi5 : Z
(i)
0 → Z

(i)
0 , {li5}, {hi2}),

– (li6 : Zn+1 → Z
(i)
n+1, {li6}, {hi2}),

– (hi6 : Z
(i)
n+1 → Z

(i)
n+1, {li6}, {hi2}).

We explain how the work of a matrix mi can be simulated by the interplay
of Ai and the environment. Let us assume that we have a word of the form
CZiZ0Zn+1Zn+2ω in Γ, where ω′ is the corresponding sentential form inG, h(ω′) = ω.
The application of environmental tables PEi1

, PEi2
, PEi3

, PEi4
, PEi5

, PEi6
and PEi7

follows in succession owing to their construction. In the meantime, no other table can
be employed without introducing a trap symbol. The trap symbol may also indicate
the lack of the appearance checking feature.

For forager Ai that has been designated for matrix mi, we will construct the
environmental tables. For technical reasons, we introduce the following rule sets:

P
{bm,D,F}
E ={b(n+m)

m → F, b′m → F, bm → bm | bm ∈ T, 1 ≤ m ≤ s}∪
{D → D | D ∈ N} ∪ {F → F},

P
{Z0,Zp}
Ei,1

={Z0 → Z0, Z
(i)
0 → F,Zp → F,Z(p)

p → F | 1 ≤ p ≤ n, p ̸= i},

P
{Z0,Zp}
Ei,2

={Z0 → Z0, Z
(i)
0 → Z

(i)
0 , Zp → F,Z(p)

p → F | 1 ≤ p ≤ n, p ̸= i},

P
{Z0,Zp}
Ei,3

={Z0 → F,Z
(i)
0 → Z0, Zp → F,Z(p)

p → F | 1 ≤ p ≤ n, p ̸= i},

P
{Zi,Zfin}
Ei,1

={Zi → F,Z
(i)
i → Z

(i)
i , Zfin → F,Z

(fin)
fin → F},

P
{Zi,Zfin}
Ei,2

={Zi → F,Z
(i)
i → λ,Zfin → F,Z

(fin)
fin → F},

P
{Zn+1}
Ei,1

={Zn+1 → Zn+1, Z
(i)
n+1 → Z

(i)
n+1, Z

(p)
n+1 → F | 1 ≤ p ≤ n, p ̸= i},

P
{Zn+1}
Ei,2

={Zn+1 → Zn+1, Z
(p)
n+1 → F | 1 ≤ p ≤ n},

P
{Zn+2}
Ei,1

={Zn+2 → Zn+2, Z
(i)
n+2 → Z

(i)
n+2, Z

(p)
n+2 → F | 1 ≤ p ≤ n, p ̸= i},
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P
{Zn+2}
Ei,2

={Zn+2 → Zn+2, Z
(i)
n+2 → Zn+2, Z

(p)
n+2 → F | 1 ≤ p ≤ n, p ̸= i}.

The first environmental table has the following form:

PEi1
={C → Ci1 , Cij → F,Ckl → F | 1 ≤ j ≤ 6, 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪

{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

After we have performed the first step of the simulation, the word will be of the

form Ci1Z
(i)
i Z0Zn+1Zn+2ω, ω ∈ (N ∪ T )∗, obtained by the joint action of forager

Ai (Zi → Z
(i)
i ) and the environmental table, PEi1

. If we had employed table PEj1

for some 1 ≤ j ≤ n, j ̸= i, then at the next step the trap symbol would be intro-
duced. The trap symbol would also appear, if we had applied environmental tables
PEi2

, PEi3
, PEi4

, PEi5
, PEi6

or PEi7
.

The second environmental table is as follows:

PEi2
={Ci1 → Ci2 , Cij → F,C → F,Ckl → F | 2 ≤ j ≤ 6, 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪

{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

The environmental word, which is received through the joint action of forager Ai

(Zn+2 → Z
(i)
n+2) and table PEi2

, has the form Ci2Z
(i)
i Z0Zn+1Z

(i)
n+2ω, ω ∈ (N ∪ T )∗

after the second step of the simulation.
The third environmental table is of the form below:

PEi3
={Ci2 → Ci3 , Cij → F | j = 1, 3, 4, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

By the action of Ai (X → X(i)) and PEi3
, we obtain Ci3Z

(i)
i Z0Zn+1Z

(i)
n+2γX

(i)β

or Ci3Z
(i)
i Z0Zn+1Z

(i)
n+2ω depending on whether X is present in or absent from the

environmental string. In the former case ω = γXβ, β, γ ∈ (N ∪ T )∗, in the latter ω
remains unaltered.

If X has had an occurrence in the string, we have to check whether A is in the
string. To this end, forager Ai employs rule A→ A(i). If the environmental word has

not contained X, then forager Ai will apply an identical rewriting to Z
(i)
n+2.

The fourth environmental table has the following form:

PEi4
={Ci3 → Ci4 , Cij → F | j = 1, 2, 4, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{X(i) → X(i), X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.
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After the fourth step of the simulation, by the joint action of forager Ai and
the environmental table, PEi4

, we obtain a word of one of the following forms:

Ci4Z
(i)
i Z0Zn+1Z

(i)
n+2γ̄X

(i)δA(i)β̄, if both X and A have appeared in the string,

Ci4Z
(i)
i Z0Zn+1Z

(i)
n+2γX

(i)β, if X has been present, but A is absent from the string,

or Ci4Z
(i)
i Z0Zn+1Z

(i)
n+2ω, if X has not occurred in it. In the first case, ω =

γ̄XδAβ̄, β̄, γ̄, δ ∈ (N ∪ T )∗, in the second case, ω = γXβ, β, γ ∈ (N ∪ T )∗, in
the third case, ω does not change.

In the fifth step of the simulation, if both X(i) and A(i) appear in the string,

forager Ai performs rule Z0 → Z
(i)
0 , if X(i) is present in, but A(i) is absent from

the string, Ai employs rule Z
(i)
n+2 → Z

(i)
n+2, if X

(i) does not appear in the string, Ai

substitutes Zn+1 for Z
(i)
n+1. In effect, the replacement of Zn+1 with Z

(i)
n+1 indicates

that the derivation will not be successful. The web environment changes marker Ci4

and performs some identical rewritings in a parallel manner. Consequently, the fifth
environmental table is of the form:

PEi5
={Ci4 → Ci5 , Cij → F | j = 1, 2, 3, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → A(i), X(i) → X(i)} ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,2
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

As a result of the joint action of forager Ai and the environment, we at-

tain one of the environmental words below: Ci5Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γ̄X

(i)δA(i)β̄,

Ci5Z
(i)
i Z0Zn+1Z

(i)
n+2γX

(i)β, or Ci5Z
(i)
i Z0Z

(i)
n+1Z

(i)
n+2ω.

In the sixth step of the simulation, if both X(i) and A(i) occur in the string,

forager Ai rewrites again Zi to Z
(i)
i , if X(i) is present, but A(i) is absent from the

string, or if X(i) does not appear in the string, Ai replaces Zn+1 with Z
(i)
n+1. The

sixth environmental table has the form:

PEi6
={Ci5 → Ci6 , Cij → F | j = 1, 2, 3, 4, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → A(i), X(i) → X(i)} ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,2
∪ P {Zi,Zfin}

Ei,2
∪ P {Zn+1}

Ei,2
∪ P {Zn+2}

Ei,1
.

As a consequence, we receive one of the following environmental words:

Ci6Z
(i)
0 Zn+1Z

(i)
n+2γ̄X

(i)δA(i)β̄, Ci6Z0Z
(i)
n+1Z

(i)
n+2γX

(i)β, or the derivation will not lead
to a terminal string.

In the last step, forager Ai applies rule Zi → Z
(i)
i . In the meantime, the web

environment rewrites X(i) to Y and A(i) to α, Z
(i)
n+1 to F and performs some other
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kinds of rewritings in order to make it possible for another or for the same forager to
continue the work. Taking everything into consideration, the seventh environmental
table has the following form:

PEi7
={Ci6 → CZr | 1 ≤ r ≤ n} ∪ {Ci6 → CZfin, C

ij → F | 1 ≤ j ≤ 5}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → α,X(i) → Y } ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,3
∪ P {Zi,Zfin}

Ei,2
∪ P {Zn+1}

Ei,2
∪ P {Zn+2}

Ei,2
.

The environmental word obtained by the joint action of forager Ai and table PEi7

has the form CZrZ0Zn+1Zn+2γ̄Y δαβ̄, or CZfinZ0Zn+1Zn+2γ̄Y δαβ̄, if both X
(i) and

A(i) appear in the string, or the derivation will not be successful.

By the construction and explanations above, the reader can easily verify that the
joint work of forager Ai and the environmental tables simulates the application of mi

and only that.

Secondly, let us suppose that mi is with appearance checking, which means
that A → α′ ∈ F and it can be passed over if it cannot be applied.

Let Ai = (Ni ∪ N
(i)
i , Si, Ri), where Ni = {A,X,Z0, Zi, Zn+1, Zn+2}, N

(i)
i =

{A(i), X(i), Z
(i)
0 , Z

(i)
i , Z

(i)
n+1, Z

(i)
n+2}, and Si = Zi. The rule set Ri of Ai can be de-

fined as follows:

– (li1 : Zi → Z
(i)
i , {li2}, {li1}),

– (li2 : Zn+2 → Z
(i)
n+2, {li4}, {hi2}),

– (hi2 : Z
(i)
n+2 → Z

(i)
n+2, {li6}, {hi2}),

– (li3 : A→ A(i), {li1}, {hi5}),

– (hi3 : A(i) → A(i), {li2}, {hi6}),

– (li4 : X → X(i), {li5}, {hi2}),

– (hi4 : X(i) → X(i), {li5}, {hi2}),

– (li5 : Z0 → Z
(i)
0 , {li3}, {hi2}),

– (hi5 : Z
(i)
0 → Z

(i)
0 , {li1}, {hi2}),

– (li6 : Zn+1 → Z
(i)
n+1, {li6}, {hi2}),

– (hi6 : Z
(i)
n+1 → Z

(i)
n+1, {li6}, {hi2}).
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We present the environmental tables, which together with forager Ai, 1 ≤ i ≤ n,
simulate the application of mi.

The first environmental table PEi1
is of the following form:

PEi1
={C → Ci1 , Cij → F,Ckl → F | 1 ≤ j ≤ 6, 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪

{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

After we have performed the first step of the simulation, the word will be of the

form Ci1Z
(i)
i Z0Zn+1Zn+2ω, ω ∈ (N ∪ T )∗, obtained by the joint action of forager Ai

(Zi → Z
(i)
i ) and the environmental table, PEi1

. If we had employed table PEj1
for

some 1 ≤ j ≤ n, j ̸= i, then at the next step the trap symbol would be introduced.
The same is true for environmental tables PEi2

, PEi3
, PEi4

, PEi5
, PEi6

and PEi7
.

The second environmental table is presented below:

PEi2
={Ci1 → Ci2 , Cij → F,C → F,Ckl → F | 2 ≤ j ≤ 6, 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪

{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

The environmental word, which is received through the joint action of forager Ai

(Zn+2 → Z
(i)
n+2) and table PEi2

, has the form Ci2Z
(i)
i Z0Zn+1Z

(i)
n+2ω, ω ∈ (N ∪ T )∗

after the second step of the simulation.
The third environmental table is of the form below:

PEi3
={Ci2 → Ci3 , Cij → F | j = 1, 3, 4, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

By the action of Ai (X → X(i)) and PEi3
, we obtain Ci3Z

(i)
i Z0Zn+1Z

(i)
n+2γX

(i)β,

or Ci3Z
(i)
i Z0Zn+1Z

(i)
n+2ω, depending on whether X is present in or absent from the

environmental string. In the former case ω = γXβ, β, γ ∈ (N ∪ T )∗, in the latter ω
remains unaltered.

In the fourth step, depending on the occurrence of X(i) in the environmental word,

forager Ai either replaces Z0 with Z
(i)
0 , or applies an identical rewriting to Z

(i)
n+2. The

fourth environmental table has to be constructed as follows:

PEi4
={Ci3 → Ci4 , Cij → F | j = 1, 2, 4, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{X(i) → X(i), X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,1
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.
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After the fourth step of the simulation we obtain by the joint action of for-
ager Ai and the environmental table, PEi4

, a word of one of the following forms:

Ci4Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γX

(i)β, if X(i) occurs in the string, or Ci4Z
(i)
i Z0Zn+1Z

(i)
n+2ω

otherwise. In the first case, ω = γXβ, β, γ ∈ (N ∪ T )∗, in the second case, ω does
not change.

In the fifth step of the simulation, we control the presence of A in the string or

introduce Z
(i)
n+1 into the string. In the first case, agent Ai employs rule A → A(i), in

the second case, it substitutes Zn+1 for Z
(i)
n+1. The fifth environmental table is of the

form:

PEi5
={Ci4 → Ci5 , Cij → F | j = 1, 2, 3, 5, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → A(i), X(i) → X(i)} ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,2
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

As a result of the joint action of forager Ai and the environment,

we attain one of the environmental words Ci5Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γ

′X(i)δA(i)β′,

Ci5Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γX

(i)β, or Ci5Z
(i)
i Z0Z

(i)
n+1Z

(i)
n+2ω. In the first case, ω =

γ̄XδAβ̄, β̄, γ̄, δ ∈ (N ∪ T )∗, in the second case, ω = γXβ, β, γ ∈ (N ∪ T )∗, in
the third case, ω does not change.

In the sixth step, if X(i) and A(i) are in the string, then forager Ai attempts

to employ Zi → Z
(i)
i . If only X(i) occurs in the environmental word, then forager

Ai rewrites Z
(i)
0 identically. Should X(i) be absent from the string, then Ai tries

to substitute Zn+1 for Z
(i)
n+1. The sixth environmental table can be constructed as

follows:

PEi6
={Ci5 → Ci6 , Cij → F | j = 1, 2, 3, 4, 6}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → A(i), X(i) → X(i)} ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,2
∪ P {Zi,Zfin}

Ei,1
∪ P {Zn+1}

Ei,1
∪ P {Zn+2}

Ei,1
.

By the joint action of forager Ai and the envi-

ronment, we receive Ci6Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γ̄X

(i)δA(i)β̄, Ci6Z
(i)
i Z

(i)
0 Zn+1Z

(i)
n+2γX

(i)β,

or Ci6Z
(i)
i Z0Z

(i)
n+1Z

(i)
n+2ω. In the first case, ω = γ̄XδAβ̄, β̄, γ̄, δ ∈ (N ∪ T )∗, in the

second case, ω = γXβ, β, γ ∈ (N ∪ T )∗, in the third case, ω does not change.

In the last step, forager Ai applies rule Zi → Z
(i)
i , if X(i) is in the string. If X(i)

does not have an occurrence in the string, agent Ai tries to rewrite Zn+2 to Z
(i)
n+2. In

the meantime, the web environment replaces X(i) with Y , A(i) with α (if A(i) is not
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present in the string, then the rule A(i) → α will not be employed), and Z
(i)
n+1 with F

and performs some other kinds of rewritings in order to make it possible for another
or for the same forager to continue the work. Taking everything into consideration,
the seventh environmental table must have the following form:

PEi7
={Ci6 → CZr | 1 ≤ r ≤ n} ∪ {Ci6 → CZfin, C

ij → F | 1 ≤ j ≤ 5}∪
{C → F,Ckl → F | 1 ≤ k ≤ n, k ̸= i, 1 ≤ l ≤ 6}∪
{A(i) → α,X(i) → Y } ∪ {A(r) → F,X(r) → F | 1 ≤ r ≤ n, r ̸= i}∪
{B(q) → F | B ∈ N \ {A,X}, 1 ≤ q ≤ n}∪

P
{bm,D,F}
E ∪ P {Z0,Zp}

Ei,3
∪ P {Zi,Zfin}

Ei,2
∪ P {Zn+1}

Ei,2
∪ P {Zn+2}

Ei,2
.

The environmental word obtained by the joint action of forager Ai and
table PEi7

has the form CZrZ0Zn+1Zn+2γ̄Y δαβ̄ (CZfinZ0Zn+1Zn+2γ̄Y δαβ̄),
CZrZ0Zn+1Zn+2γY β (CZfinZ0Zn+1Zn+2γY β), or the derivation will not lead to
a terminal word.

As in the previous case, the reader can verify that the joint work of forager Ai

and the environmental tables simulates the application of mi and only that.
At some stage of the derivation, we guess whether ω is a terminal word or not (the

environmental word is of the form CZfinZ0Zn+1Zn+2ω). We check this conjecture
by the joint action of foragers An+j , 1 ≤ j ≤ s, and environmental table PEfin

.

Let An+j = (Nn+j ∪N (n+j)
n+j , Sn+j , Rn+j), where Nn+j = {bj}, N (n+j)

n+j = {b(n+j)
j },

and Sn+j = bj , 1 ≤ j ≤ s. The rule set of An+j , i.e. Rn+j , 1 ≤ j ≤ s, is defined as
follows: (bj ∈ T = {bj | 1 ≤ j ≤ s}):

– (lj : bj → b
(n+j)
j , {lj}, {lj}).

Observe that (lj : bj → b
(n+j)
j , {lj}, {lj}) is the only rule of forager An+j , thus its

initial rule, as well.
Let

PEfin
={Cip → F | 1 ≤ i ≤ n, 1 ≤ p ≤ 6} ∪ {C → λ}∪
{D → F,D(q) → F | D ∈ N, 1 ≤ q ≤ n}∪

{b(n+j)
j → b′j , b

′
j → b′j , bj → bj | bj ∈ T, 1 ≤ j ≤ s} ∪ {F → F}∪

{Z0 → λ,Z
(k)
0 → F,Zfin → λ,Z

(fin)
fin → F | 1 ≤ k ≤ n}∪

{Zk → λ,Z
(k)
k → F | 1 ≤ k ≤ n} ∪ {Zn+1 → λ,Z

(k)
n+1 → F | 1 ≤ k ≤ n}∪

{Zn+2 → λ,Z
(k)
n+2 → F | 1 ≤ k ≤ n}.

Foragers An+j , 1 ≤ j ≤ s, rewrite terminal letters bj , 1 ≤ j ≤ s, to their indexed

versions b
(n+j)
j , and in the meantime environmental table PEfin

deletes the marker

symbols, introduces F for the letters from N and rewrites letters b
(n+j)
j , 1 ≤ j ≤ s,

to b′j . The work of foragers An+j , 1 ≤ j ≤ s, cannot be interfered with the work of
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the other foragers. The joint work of foragers An+j , 1 ≤ j ≤ s, and environmental
table PEfin

is iterated as many times as it is necessary. At the end of the procedure,
if the word obtained is a string over T ′, then a word that can be generated by G is
received.

It only remains to be shown how the simulation begins. The initial state of the web
environment is ω = CZ0Zn+1Zn+2S. We have to simulate matrix (S → AX). Let us
assume that the web environment has a table PEstart that performs this simulation,
where

PEstart ={C → CZk, Zk → F,Z
(k)
k → F | 1 ≤ k ≤ n}∪

{Cpq → F | 1 ≤ p ≤ n, 1 ≤ q ≤ 6}∪
{S → AX} ∪ {D → F | D ∈ N \ {S}} ∪ {B(m) → F | B ∈ N, 1 ≤ m ≤ n}∪

{bj → F, b′j → F, b
(n+j)
j → F | bj ∈ T, 1 ≤ j ≤ s}∪

{Z0 → Z0, Z
(k)
0 → F,Zfin → F,Z

(fin)
fin → F | 1 ≤ k ≤ n}∪

{Zn+1 → Zn+1, Z
(k)
n+1 → F | 1 ≤ k ≤ n}∪

{Zn+2 → Zn+2, Z
(k)
n+2 → F | 1 ≤ k ≤ n} ∪ {F → F}.

Initially, all the foragers are inactive, since there is not a Zk, 1 ≤ k ≤ n, in the senten-
tial form. The derivation is as follows: CZ0Zn+1Zn+2S =⇒Γ CZkZ0Zn+1Zn+2AX
for some k, 1 ≤ k ≤ n. Since S does not occur in any other matrix, this is the only
way how the simulation can begin.

Owing to the form of the tables, it can be seen that all but no more words than
the elements of L(G) can be derived. Hence the theorem is verified. 2

3.3. Eco–Foraging Systems with Time

Secondly, we move on to eco–foraging systems where certain web pages may have
lifetime. We modify the alphabet of agents to keep track of the aging of the web
environment [12]. If the lifetime of a web page is 0, it signifies that the web page is
no longer recognizable by any of the foragers.

Definition 6. The web environment with n foragers with time, n ≥ 1, is a
construction

E = (VE , TE ,PE)

such that

– VE is a finite alphabet, where VE = VM ∪ TE ∪ VN ∪ V̄N with VN =
∪n

i=1Ni

and V̄N =
∪n

i=1N
(i)
i , n ≥ 1, where

– VM is a finite set,

– Ni =
∪si

j=1Ni,j , Ni,j =
∪ti,j

k=0Ni,j(k) =
∪ti,j

k=0{Xi,j(k)},

– N
(i)
i =

∪si
j=1N

(i)
i,j , N

(i)
i,j =

∪ti,j
k=0N

(i)
i,j (k) =

∪ti,j
k=0{X

(i)
i,j (k)},
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– TE is a finite alphabet, and

– VM , TE , VN and V̄N are pairwise disjoint sets,

– PE = {PE1 , . . . , PEm}, where PEq , 1 ≤ q ≤ m, is a finite set of rules of the
following forms, VNmax =

∪n
p=1

∪sp
r=1Np,r(tp,r), tp,r ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ si,

1 ≤ k ≤ ti,j :

– Xi,j(k) → Xi,j(k − 1), where Xi,j(k − 1), Xi,j(k) ∈ Ni,j ,

– Y → α, where Y ∈
∪n

i=1Ni, and α ∈ (TE ∪ VNmax
)∗,

– X
(i)
i,j (k) → β, where X

(i)
i,j (k) ∈ N

(i)
i,j , and β ∈ (TE ∪ VNmax)

∗ ∪ (TE ∪
VNmax)

∗X
(i)
i,j (k − 1)(TE ∪ VNmax)

∗, X
(i)
i,j (k − 1) ∈ N

(i)
i,j ,

– Xi,j(0) → Xi,j(0), Xi,j(0) ∈ Ni,j ,

– X
(i)
i,j (0) → X

(i)
i,j (0), X

(i)
i,j (0) ∈ N

(i)
i,j , or

– U → γ, where U ∈ VM and γ ∈ (TE ∪ VNmax)
∗ ∪ (TE ∪ VNmax)

∗VM (TE ∪
VNmax)

∗.

Moreover, any rule set in PE is complete, i.e. for any c ∈ VE , there is at least
one rule in any PEq , 1 ≤ q ≤ m.

If the lifetime of the web pages is included, then the interpretation of the various
components of the web environment is analogous to the one presented for Definition
1. Therefore herein we emphasize only the differences. The alphabet of an agent also
contains the information about the lifetime of the web pages that the agent is able to
recognize. We assign a maximal lifetime to each web page. If the environment rewrites
a web page and the web page will still be present in the environmental string, then
the lifetime of the web page will be reduced by one regardless of whether any agents
have managed to identify the web page or not. The lifetime of the newly introduced
web pages will be maximal (in VNmax). We do not assign lifetime to the elements of
VM and TE . Furthermore, TE is disjoint from VM , VN and V̄N . While in Definition
1 the elements of TE can be rewritten by the agents, in this definition they can be
changed by the environment only.

Definition 7. A programmed eco–foraging system with appearance checking with
time (an FEGtime

PRac
system) of degree n, n ≥ 1, is a construction

Γ = (E,A1, . . . , An, cinit)

such that

– E = (VE , TE ,PE) is the web environment (see Definition 6),

– Ai = (Ni ∪N (i)
i , Si, Ri), 1 ≤ i ≤ n, is the i–th forager, a programmed grammar

scheme with appearance checking, where

– Ni∪N (i)
i is the nonterminal alphabet of the i–th forager (see Definition 6),
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– Si ∈ Ni is the start symbol of the i–th forager, Si = {Xi,1},
– Ri is a finite set of rules of the following forms:

• (li,1(k) : Si(k) → S
(i)
i (k−1), σi(li,1(k)), ψi(li,1(k))), σi(li,1(k)) ⊆ li,1∪

. . .∪ li,si , ψi(li,1(k)) ⊆ li,1, 1 ≤ k ≤ ti,1, is called the initial rule of the
i–th forager, where li,j = {li,j(z) | 1 ≤ z ≤ ti,j}, 1 ≤ j ≤ si,

• (li,j(k) : Xi,j(k) → X
(i)
i,j (k − 1), σi(li,j(k)), ψi(li,j(k))), Xi,j(k) ∈ Ni \

{Si}, X(i)
i,j (k−1) ∈ N

(i)
i \{S(i)

i }, 2 ≤ j ≤ si, with σi(li,j(k)) ⊆ li,1∪. . .∪
li,si , ψi(li,j(k)) ⊆ hi,2 ∪ . . . ∪ hi,si , where li,j = {li,j(z) | 1 ≤ z ≤ ti,j},
1 ≤ j ≤ si, hi,j′ = {hi,j′(z) | 1 ≤ z ≤ ti,j′}, 2 ≤ j′ ≤ si, or

• (hi,j(k) : X
(i)
i,j (k) → X

(i)
i,j (k − 1), σi(hi,j(k)), ψi(hi,j(k))), X

(i)
i,j (k),

X
(i)
i,j (k − 1) ∈ N

(i)
i \ {S(i)

i }, 2 ≤ j ≤ si, with σi(hi,j(k)) ⊆ li,1 ∪ . . . ∪
li,si , ψi(hi,j(k)) ⊆ hi,2 ∪ . . . ∪ hi,si , where li,j = {li,j(z) | 1 ≤ z ≤ ti,j},
1 ≤ j ≤ si, hi,j′ = {hi,j′(z) | 1 ≤ z ≤ ti,j′}, 2 ≤ j′ ≤ si, and

· Label(Ri) = li,1 ∪ . . .∪ li,si ∪ hi,2 ∪ . . .∪ hi,si is the set of labels of
Ri.

– cinit = (l1,1(t1,1), . . . , ln,1(tn,1);ωinit), where li,1(ti,1), ti,1 ≥ 1, is the label of
the initial rule of the i–th forager with the corresponding maximal time, 1 ≤
i ≤ n, and ωinit = z0Xj1(tj1)z1 . . . zk−1Xjk(tjk)zk, Xjh(tjh) ∈ Njh , tjh ≥ 1,
z0 ∈ T ∗

E ∪ T ∗
EVMT

∗
E , zl ∈ T ∗

E , 1 ≤ h ≤ k, 1 ≤ l ≤ k, {j1, . . . , jk} ⊆ {1, . . . , n}, is
called the initial configuration of Γ. The string ωinit is called the initial state
of the web environment of Γ or the initial environmental state.

In Definition 7 when the agent tries to visit a not yet discovered web page em-

ploying rules of the form Xi,j(k) → X
(i)
i,j (k − 1), Xi,j(k) ∈ N̄i, X

(i)
i,j (k − 1) ∈ N

(i)
i ,

1 ≤ i ≤ n, 1 ≤ j ≤ si, 1 ≤ k ≤ ti,j , then the lifetime of the web page will be reduced
by one, if the application of the rule has been successful. Should the agent go to a web

page that it has discovered previously using rules of the form X
(i)
i,j (k) → X

(i)
i,j (k − 1),

X
(i)
i,j (k − 1), X

(i)
i,j (k) ∈ N

(i)
i , 1 ≤ i ≤ n, 2 ≤ j ≤ si, 1 ≤ k ≤ ti,j , then the lifetime of

the corresponding web page will be decreased by one again. In the axiom, the lifetime
of the nonterminal letters of those agents that are able to commence their work is
maximal. Notice that ωinit contains at most one symbol from VM .

In the sequel, we define the way in which eco–foraging systems with time work.

Definition 8. Let Γ = (E,A1, . . . , An, cinit), be an FEGtime
PRac

system of degree n,
n ≥ 1 (see Definition 7). An (n+1)–tuple c = (q1,j1(k1,j1), . . . , qn,jn(kn,jn);ωE), where
qi,ji(ki,ji) ∈ Label(Ri), 1 ≤ ki,ji ≤ ti,ji , 1 ≤ i ≤ n, 1 ≤ ji ≤ si, and ωE ∈ V ∗

E , is called
a configuration of Γ. ωE is the state of the web environment of Γ in configuration c
or the environmental state in configuration c.

Definition 9. Let Γ = (E,A1, . . . , An, cinit), 1 ≤ ti,1, 1 ≤ i ≤ n, be an FEGtime
PRac

system of degree n (see Definition 7). Let c1 = (q1,j1(k1,j1), . . . , qn,jn(kn,jn);ωE),
c2 = (q′1,j1(k

′
1,j1

), . . . , q′n,jn(k
′
n,jn

);ω′
E) be two configurations of Γ, 1 ≤ ki,ji , k

′
i,ji

≤
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ti,ji , 1 ≤ i ≤ n, 1 ≤ ji ≤ si, and ωE , ω
′
E ∈ V ∗

E . We say that c1 directly derives c2,
written as c1 =⇒Γ c2, if the following conditions hold:

1. ωE = u1αi1(ki1)u2 . . . urαir (kir )ur+1 and ω′′
E = u1βi1(ki1 − 1)u2 . . . urβir (kir −

1)ur+1, where {i1, . . . , ir} ⊆ {1, . . . , n}, αij (kij ) ∈ Nj∪N (j)
j , βij (kij −1) ∈ N

(j)
j ,

1 ≤ kij ≤ tij , 1 ≤ j ≤ r, uh ∈ V ∗
E , 1 ≤ h ≤ r + 1,

2. (qij (kij ) : αij (kij ) → βij (kij − 1), σ(qij (kij )), ψ(qij (kij ))) ∈ Rij and q′ij (k
′
ij
) ∈

σ(qij (kij )), 1 ≤ j ≤ r,

3. there is no m ∈ {1, . . . , n} \ {i1, . . . , ir} such that (qm(km) : αim(km) →
βim(km − 1), σ(qm(km)), ψ(qm(km))) ∈ Rm can be applied to u1u2 . . . ur+1,
1 ≤ km ≤ tm,

4. q′m(k′m) ∈ ψ(qm(km)) for m ∈ {1, . . . , n} \ {i1, . . . , ir}, 1 ≤ k′m ≤ t′m,

5. ω′
E = v1βi1(ki1 − 1)v2 . . . vrβir (kir − 1)vr+1, where u1 . . . ur+1 =⇒ v1 . . . vr+1 is

a 0L rewriting according to some PEq , 1 ≤ q ≤ m, where PEq ∈ PE .

The function of a programmed eco–foraging system with time is analogous to
the function of a programmed eco–foraging system without time (see Definition 4),
therefore herein we present only the differences. In Definition 9, the agents that
participate in the derivation will reduce the lifetime of the web pages they visit.
The lifetime of the web pages remaining still present in the environment or being
introduced at the given step, will be modified by the environment as it is described
in the remark following Definition 6.

The transitive (and reflexive) closure of =⇒Γ is denoted by =⇒+
Γ (=⇒∗

Γ).

Definition 10. The language generated by an FEGtime
PRac

system Γ =
(E,A1, . . . , An, cinit) is defined by L(Γ) = {y | cinit = (l1,1(t1,1), . . . , ln,1(tn,1);ωinit)
=⇒∗

Γ (q1,j1(k1,j1), . . . , qn,jn(kn,jn); y), y ∈ T ∗
E}.

If no confusion arises, then subscript Γ can be omitted.
The family of languages generated by FEGtime

PRac
systems is denoted by

L(FEGtime
PRac

).
Let us now illustrate how programmed eco–foraging systems with time work

through an example.

Example 2. Let L2 = {AnBnCn | n ≥ 1}. The programmed eco–foraging system
Γ with time with appearance checking that generates L2, i.e. L2 = L(Γ), is as follows:

Γ = (E,A1, A2, A3, cinit)

such that

– E = (VE , TE ,PE) is the web environment, where
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– VE = {A(t), B(t), C(t) | 0 ≤ t ≤ 3} ∪ {A(1)(t), B(2)(t), C(3)(t) | 0 ≤ t ≤
3} ∪ {A,B,C},

– TE = {A,B,C},
– PE = {PE1

, PE2
}, where

• PE1 = {A(0) → A(0), A(t) → A(t − 1), B(0) → B(0), B(t) →
B(t− 1), C(0) → C(0), C(t) → C(t− 1), A(1)(0) → A(1)(0), A(1)(t) →
A,B(2)(0) → B(2)(0), B(2)(t) → B,C(3)(0) → C(3)(0), C(3)(t) →
C,A→ A,B → B,C → C | 1 ≤ t ≤ 3},

• PE2 = {A(0) → A(0), A(t) → A(t − 1), B(0) → B(0), B(t) →
B(t− 1), C(0) → C(0), C(t) → C(t− 1), A(1)(0) → A(1)(0), A(1)(t) →
A(3)A(1)(t − 1), B(2)(0) → B(2)(0), B(2)(t) → B(3)B(1)(t −
1), C(3)(0) → C(3)(0), C(3)(t) → C(3)C(1)(t−1), A→ A,B → B,C →
C | 1 ≤ t ≤ 3},

– Ai = (Ni ∪N (i)
i , Si, Ri), i = 1, 2, 3, is the i–th forager, where

– N1 = {A(t) | 0 ≤ t ≤ 3}, N (1)
1 = {A(1)(t) | 0 ≤ t ≤ 3}, N2 = {B(t) | 0 ≤

t ≤ 3}, N (2)
2 = {B(2)(t) | 0 ≤ t ≤ 3}, N3 = {C(t) | 0 ≤ t ≤ 3}, N (3)

3 =
{C(3)(t) | 0 ≤ t ≤ 3},

– the triplets of Ri are of the following forms:

• (li(t) : Xi(t) → X
(i)
i (t − 1), σi(li(t)), ψi(li(t))), with σi(li(t)) ⊆

li, ψi(li(t)) ⊆ li, li = {li(t) | 1 ≤ t ≤ 3}, Xi(t) ∈ Ni, X
(i)
i (t−1) ∈ N

(i)
i ,

1 ≤ t ≤ 3, where

· Label(Ri) = {li(t) | 1 ≤ t ≤ 3} and σi, ψi : Label(Ri) →
2Label(Ri), i = 1, 2, 3,

– cinit = (l1(3), l2(3), l3(3);ωinit), where ωinit = A(3)B(3)C(3).

At the first step all foragers are active. They rewrite different symbols from the envi-
ronmental string to their indexed versions and the lifetime of the web pages will be re-
duced. Forager A1 changes A(3) to A

(1)(2), forager A2 B(3) to B(2)(2) and forager A3

C(3) to C(3)(2). The web environment remains inactive. From A(1)(2)B(2)(2)C(3)(2)
we have two possibilities to continue. If we apply environmental table PE1 , then we
will obtain: A(1)(2)B(2)(2)C(3)(2) =⇒Γ ABC. If we use PE2 , then we will receive:
A(1)(2)B(2)(2)C(3)(2) =⇒Γ A(3)A

(1)(1)B(3)B(2)(1)C(3)C(3)(1). ABC is a terminal
string. Continuing the derivation with A(3)A(1)(1)B(3)B(2)(1)C(3)C(3)(1), we can
employ either environmental table PE1 or table PE2 . Let us assume that we will use
environmental table PE1 (the continuation of the derivation for table PE2 may be done
analogously, thus it is left to the reader). As a result of the utilization of PE1 , we will
attain: A(3)A(1)(1)B(3)B(2)(1)C(3)C(3)(1) =⇒Γ A(1)(2)AB(2)(2)BC(3)(2)C =⇒Γ

AABBCC. We applied again environmental table PE1 at the last step and received
a terminal string. The derivation could have been continued in a different way, if we
had employed environmental table PE2 at the last step. The verification is left to the
reader.
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Observe that L2 is a context–sensitive language, but it is not context–free.

3.4. The Power of Eco–Foraging Systems with Time

We will show that the language family determined by unordered scattered context
grammars of finite index is equal to the language family generated by programmed
eco–foraging systems with time with appearance checking.

Theorem 2. Lfin(USC) = L(FEGtime
PRac

).

Proof. First, we will prove that Lfin(USC) ⊆ L(FEGtime
PRac

).
Let L be a language generated by an unordered scattered context grammar G =

(N,T, S, P ) of finite index, where ind(L) = ind(L(G)). To verify the statement, we
will construct an FEGtime

PRac
system Γ such that L(Γ) = L(G).

Let P = {p1, p2, . . . , ps}, where pl : (Xl,1 → xl,1, . . . , Xl,kl
→ xl,kl

), 1 ≤ l ≤
s, kl ≥ 1. Let us assume that ind(L(G)) = r and r ≥ kl. Then for all ω ∈ L(G),
there exists a derivation S =⇒ ω1 =⇒ ω2 . . . =⇒ ωz = ω, z ≥ 1, such that there are
at most r nonterminal symbols in ωq, 1 ≤ q ≤ z. These are the derivations that we
will simulate.

Before we give the details of the simulation, we make some observations about the
derivations of finite index in G.

Let ω = u1D1u2 . . . ujDjuj+1 be a sentential form in G, where j ≤ r, Dk ∈ N,
uh ∈ T ∗, 1 ≤ k ≤ j, 1 ≤ h ≤ j + 1. Let us call [D1 . . . Dj ] the nonterminal cut of
ω, and let us denote the nonterminal cut by c(nt)(ω). We regard nonterminal cuts
[D1 . . . Dj ] as equivalent with respect to all permutations of letters D1, D2, . . . , Dj .

Let us denote by C the set of all nonterminal cuts of the sentential forms in G. Let
Cr be the set of elements of C of length at most r. By the length of the nonterminal
cut of ω ∈ (N ∪ T )∗, we mean the number of nonterminals in c(nt)(ω).

We say that nonterminal cut c′1 = [D1 . . . Dj ] yields nonterminal cut c′2 =
[B1 . . . Bl], 1 ≤ j ≤ r, 0 ≤ l ≤ r, through the use of rule p ∈ P , denoted by
c′1 7→p c

′
2, if there are two sentential forms ω1 and ω2 in G such that c(nt)(ω1) = c′1,

c(nt)(ω2) = c′2 and if we apply rule p to ω1, then ω1 =⇒G ω2 holds. We can determine
the set of rules P ′

c′1,c
′
2
⊆ P for arbitrary two nonterminal cuts c′1 = [D1 . . . Dj ] and

c′2 = [B1 . . . Bl], where 1 ≤ j ≤ r, 0 ≤ l ≤ r, such that for any p ∈ P ′
c′1,c

′
2
, c′1 7→p c

′
2

holds. (Notice that this rule set can be empty.)
Let D = {(c′1, c′2, p) | c′1 7→p c

′
2, p ∈ P, c′1, c

′
2 ∈ Cr}. Since the number of nontermi-

nals in the nonterminal cuts is bounded by r and the number of productions in G is
a finite set, D is a finite set, as well.

Observe that if S =⇒pi1
ω1 =⇒pi2

ω2 =⇒pi3
. . . =⇒piz

ωz = ω, z ≥ 1, is a
derivation in G such that there are at most r nonterminal symbols in ωq, 1 ≤ q ≤
z, then c(nt)(S) 7→pi1

c(nt)(ω1) 7→pi2
c(nt)(ω2) 7→pi3

. . . 7→piz
c(nt)(ωz) = c(nt)(ω)

holds. Furthermore, c(nt)(S) 7→pi1
c(nt)(ω1) 7→pi2

c(nt)(ω2) 7→pi3
. . . 7→piz

c(nt)(ωz) =

c(nt)(ω) may belong to several derivations in G. It signifies that starting from S and
applying the rules pi1 , . . . , piz in this order to the corresponding sentential forms, we
obtain all derivations S =⇒pi1

u1 =⇒pi2
u2 =⇒pi3

. . . =⇒piz
uz = u in G, where
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c(nt)(uj) = c(nt)(ωj), 1 ≤ j ≤ z, holds.

In order to prove that Lfin(USC) ⊆ L(FEGtime
PRac

), we construct Γ ∈ FEGtime
PRac

such that for each triplet (c′1, c
′
2, p) in D the foragers of Γ indicate how the the

nonterminals will be replaced, if c′1 7→p c′2, and only that. These foragers may
identify not only the nonterminals rewritten by p in the sentential form, but also
(depending on p) those nonterminals that remain unaltered. To complete the simu-
lation of the application of p, the environment substitutes (some of) the nontermi-
nals and may perform other kinds of rewritings. The idea is that every derivation
S =⇒pi1

ω1 =⇒pi2
ω2 =⇒pi3

. . . =⇒piz
ωz = ω in G corresponds to a computa-

tion Ui0Mi0(ti0)S(t0) =⇒∗ Ui1Mi1(ti1)ω1(t1) =⇒∗ Ui2Mi2(ti2)ω2(t2) =⇒∗ . . . =⇒∗

Uiz−1Miz−1(tiz−1)ωiz−1(tz−1) =⇒∗ Uizωz(tz) = Uizω(tz) in Γ and vice versa, where
Mih(tih), tih ∈ N, 0 ≤ h ≤ z− 1, is the starting nonterminal of the forager commenc-
ing the simulation of the application of production pih to wzih−1

and t = r + 1 (r is

the index of G).

Now we define the components of Γ. As in the proof of Theorem 1, we present
the foragers and the environmental tables with which these foragers cooperate during
the simulation.

Let card(D) = m and let Mk = (c′1, c
′
2, p) ∈ D, 1 ≤ k ≤ m, where nonterminal cut

c′1 = [D1 . . . Dj ] yields nonterminal cut c′2 = [B1 . . . Bl], 1 ≤ j ≤ r, 0 ≤ l ≤ r, if we
use rule p ∈ P .

For Mk, k ∈ {i2, . . . , iz}, we construct foragers Ak,i, 1 ≤ i ≤ j.

Let Ak,i = (Nk,i ∪ N
(k,i)
k,i , Sk,i, Rk,i), where Nk,i = {Mk,i,0(t), Di(t

′) | 1 ≤ t ≤
tk,i,0, 1 ≤ t′ ≤ tk,i,1}, N (k,i)

k,i = {M (k,i)
k,i,0 (t), D

(k,i)
i (t′) | 1 ≤ t ≤ tk,i,0, 1 ≤ t′ ≤ tk,i,1},

and Sk,i = Mk,i,0(tk,i,0), tk,i,0 ≥ 1. The rule set of forager Ak,i, i.e. Rk,i, 1 ≤ i ≤ j,
is as follows:

– (lk,i,0(t) :Mk,i,0(t) →M
(k,i)
k,i,0 (t− 1), lk,i,1, lk,i,0), 1 ≤ t ≤ tk,i,0,

– (lk,i,1(t) : Di(t) → D
(k,i)
i (t− 1), lk,i,0, hk,i,1), 1 ≤ t ≤ tk,i,1,

– (hk,i,1(t) : D
(k,i)
i (t) → D

(k,i)
i (t− 1), lk,i,1, hk,i,1), 1 ≤ t ≤ tk,i,1, where

– lk,i,0 = {lk,i,0(t) | 1 ≤ t ≤ tk,i,0}, lk,i,1 = {lk,i,1(t) | 1 ≤ t ≤ tk,i,1},
hk,i,1 = {hk,i,1(t) | 1 ≤ t ≤ tk,i,1}.

For forager Ak,i, 1 ≤ i ≤ j − 1, simulating derivation Uk,i,0Mk,i,0(tMk,i,0
)ω(tω)

=⇒∗ Uk,i+1,0Mk,i+1,0(tMk,i+1,0
)ω′(tω′), we will construct the environmental tables.

For technical reasons, let P
{a,F}
E = {a→ a | a ∈ TE} ∪ {F → F}.

The first environmental table Pk,i,0, 1 ≤ i ≤ j − 1, is of the form below:

Pk,i,0 ={Uk,i,0 → Uk,i,1, U
′ → F | U ′ ∈ VM \ {Uk,i,0}}∪

{C(t) → C(t− 1), C(0) → F | C ∈ VE \ (VM ∪ TE), t ∈ N} ∪ P {a,F}
E .
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By the joint action of forager Ak,i, 1 ≤ i ≤ j − 1, (Mk,i,0(t) → M
(k,i)
k,i,0 (t − 1),

t ∈ N) and the environmental table, Pk,i,0, we obtain Uk,i,0Mk,i,0(tMk,i,0
)ω(tω) =⇒

Uk,i,1M
(k,i)
k,i,0 (tMk,i,0

− 1)ω(tω − 1).
At the second step, forager Ak,i, 1 ≤ i ≤ j − 1, has to check whether Di is in the

string. The second environmental table has the form:

Pk,i,1 ={Uk,i,1 → Uk,i+1,0, U
′ → F | U ′ ∈ VM \ {Uk,i,1}}∪

{C(t) → C(t− 1), C(0) → F | C ∈ VE \ (VM ∪ TE ∪ {M (k,i)
k,i,0 (t

′ − 1)}), t, t′ ∈ N}

∪ {M (k,i)
k,i,0 (t) →Mk,i+1,0(t

′),M
(k,i)
k,i,0 (0) → F | t, t′ ∈ N} ∪ P {a,F}

E .

At the second step, forager Ak,i, 1 ≤ i ≤ j − 1, performs rule Di(t) →
D

(k,i)
i (t − 1), t ∈ N. As a consequence of the parallel action of the forager

and the environment, we receive the word Uk,i,1M
(k,i)
k,i,0 (tMk,i,0

− 1)ω(tω − 1) =⇒
Uk,i+1,0Mk,i+1,0(tMk,i+1,0

)ω′(tω − 2)D
(k,i)
i (tω − 2)ω′′(tω − 2).

If i = j, then the first step of the simulation is analogous to the case when
Ak,i, 1 ≤ i ≤ j − 1, acts in parallel with environmental table Pk,i,0. The second
environmental table, Pk,j,1, should be modified as follows:

Pk,j,1 ={Uk,j,1 → Ûk′,1,0, U
′ → F | U ′ ∈ VM \ {Uk,j,1}, k′ ∈ {i2, . . . , iz}, k′ ̸= k}∪

{C(t) → C(t− 1), C(0) → F | C ∈ VE \ (VM ∪ TE ∪ {M (k,j)
k,j,0 (t

′ − 1)}), t, t′ ∈ N}

∪ {M (k,j)
k,j,0 (t) → λ,M

(k,j)
k,j,0 (0) → F | t ∈ N} ∪ P {a,F}

E .

After the second step through the parallel action of forager Ak,j , (Dj(t) →
D

(k,j)
j (t − 1), t ∈ N) and environmental table, Pk,j,1, we obtain the word

Uk,i,1M
(k,j)
k,j,0 (tMk,j,0

− 1)ω(tω − 1) =⇒ Ûk′,1,0ω
′(tω − 2)D

(k,j)
j (tω − 2)ω′′(tω − 2).

After forager Ak,j has finished the substitution of Dj(t) for D
(k,j)
j (t − 1), t ∈ N,

and the corresponding environmental has replaced all the other symbols, then only
the environment is allowed to continue the derivation due to the lack of symbols
Mk. At this step, the environment replaces the nonterminals of the nonterminal cut
present at the environment word and identified by the foragers and it either starts
the simulation of the next valid configuration transmission or finishes the derivation.
The environmental table can be defined as follows:

Pk′ ={Ûk′,1,0 → Uk′,1,0Mk′,1,0(t), Ûk′,1,0 → λ | t ∈ N}∪
{U ′ → F | U ′ ∈ VM \ {Ûk′,1,0}}∪

{C(t) → C(t− 1) | C ∈ VE \ (VM ∪ TE ∪ {D(k,1)
1 (t1), . . . , D

(k,j)
j (tj)}),

t, t1, . . . , tj ∈ N} ∪ {C(0) → F | C ∈ VE \ (VM ∪ TE ∪ {D(k,1)
1 (t1), . . . ,

D
(k,j)
j (tj)}), t, t1, . . . , tj ∈ N} ∪ {D(k,1)

1 (t1) → α1, . . . , D
(k,j)
j (tj) →

αj | α1, . . . , αj ∈ (VE \ VM )∗, t1, . . . , tj ∈ N} ∪ P {a,F}
E .
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As a result of the employment of Pk′ , the environmental word may have either

the form Ûk′,1,0ω
′(tω′)D

(k,1)
1 (t1) . . . D

(k,j)
j (tj)ω

′′(tω′′) =⇒ Uk′,1,0Mk′,1,0(t)ω
′(tω′ −

1)α1 . . . αjω
′′(tω′′ − 1) or the form Ûk′,1,0ω

′(tω′)D
(k,1)
1 (t1) . . . D

(k,j)
j (tj)ω

′′(tω′′) =⇒
ω′(tω′ − 1)α1 . . . αjω

′′(tω′′ − 1).

It only remains to be shown how the simulation begins. The initial state of the
web environment is Ui0Mi0(ti0)S(t0). We have to simulate rule S → ω1 ∈ P . Let us
assume that the web environment has a table PEstart that performs this simulation,
where

PEstart ={S(t0) → ω1(t1) | t0, t1 ∈ N} ∪ {Ui0 → Ui1 , U
′ → F | U ′ ∈ VM \ {Ui0}}∪

{Mi0(ti0) →Mi1(ti1) | ti0 , ti1 ∈ N}∪

{C(t) → F | C ∈ VE \ (VM ∪ TE ∪ {Mi0(ti0)}), t, ti0 ∈ N} ∪ P {a,F}
E .

Initially, all the foragers are inactive, since there is not a Mih , 1 ≤ h ≤ z, in the
sentential form. The derivation is as follows: Ui0Mi0(ti0)S(t0) =⇒ Ui1Mi1(ti1)ω1(t1).
Since S does not occur in any other rule of G, this is the only way how the simulation
can begin.

During the simulation the sequences (c′1, c
′
2, p) ∈ D determine the valid config-

uration transmissions. Since the agents belonging to a nonterminal cut rewrite all
of it nonterminals and only those, therefore it can be concluded that we can sim-
ulate all of the appropriate derivations in G. If the environmental word contains
only terminals, then it is the element of the generated language. Hence the inclusion
Lfin(USC) ⊆ L(FEGtime

PRac
) is verified.

Secondly, we will prove the other inclusion, i.e. Lfin(USC) ⊇ L(FEGtime
PRac

).

Let

Γ = (E,A1, . . . , An, cinit)

be an FEGtime
PRac

system, defined as in Definition 7. To prove the statement, we will
construct an unordered scattered context grammar G = (N,TE , S, P ) of finite index
such that L(Γ) = L(G) holds. The proof is based on simulating the derivations in Γ
with derivations of finite index in G.

In the sequel, we make some remarks on how Γ works. Let c =
(k1, . . . , kn;u1Dh1(t1)u2Dh2(t2) . . . ujDhj (tj)uj+1) be a configuration of Γ, where
tj ∈ N0, j ≥ 1, Dhm ∈ VN ∪ V̄N , 1 ≤ m ≤ j, ul ∈ T ∗

E , 1 ≤ l ≤ j + 1, and k1, . . . , kn
are the labels of the rules to be applied by the agents. For the sake of legibility, we
also refer to the elements of VN ∪ V̄N as the nonterminals of Γ. Observe that there
must be a number s, s ∈ N, such that if there are more than s nonterminals in the
environmental state ω = u1Dh1(t1)u2Dh2(t2) . . . ujDhj (tj)uj+1, i.e. j > s, then after
a certain number of derivation steps, some of the tjs will become 0. This statement
can be explained by the fact that if there are n agents in the eco–foraging system and
t is the maximum of the lifetimes associated with the nonterminals of Γ, and there are
n · t + 1 such nonterminals in the environmental state v of some configuration, then
after performing t + 1 derivation steps on environmental state v, we will obtain an
environmental state containing at least one nonterminal whose lifetime is equal to 0.
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Owing to the fact that it is not possible to remove the nonterminal with life-
time 0 from the strings, every derivation in Γ that results in a word over TE can-
not contain a configuration in which the environmental state has a nonterminal
with lifetime 0. Consequently, when we simulate the derivations of Γ with deriva-
tions of G, it is enough to consider derivations with configurations of the forms
c = (k1, . . . , kn;u1Dh1(t1)u2Dh2(t2) . . . ujDhj (tj)uj+1) only, where Dhm is a non-
terminal, 1 ≤ m ≤ j,, ur ∈ T ∗

E , tj ∈ N, 1 ≤ r ≤ j + 1, and j ≤ s. Let us call
c(nt)(c) = [Dh1(t1)Dh2(t2) . . . Dhj (tj)] the nonterminal cut of c.

Since s ∈ N and the set of nonterminals as well as the set of rules of the agents
are finite sets, we can determine the set of all valid configuration transmissions. The
configuration transmission from c′1 to c′2 is valid, provided that the lengths of their
nonterminal cut are less than s and there is no nonterminal in neither of the nonter-
minal cuts with lifetime 0.

Let us label elements of PE by elements of Label(PE) and let us suppose that
Label(PE) and Label(Ri), 1 ≤ i ≤ n, are pairwise disjoint sets.

We say that nonterminal cut c′1 = [D1 . . . Dj ] yields nonterminal cut c′2 =
[B1 . . . Bl], 1 ≤ j ≤ s, 0 ≤ l ≤ s, through the use of the sequence of rules labelled by
k̄1, . . . , k̄j , where k̄1, . . . , k̄j ∈ Label(PE)∪

∪n
i=1 Label(Ri) denoted by c′1 7→(k̄1,...,k̄j) c

′
2,

if there are two configurations c1 and c2 in Γ such that c(nt)(c1) = c′1, c
(nt)(c2) = c′2,

and if we apply the rule sequence labelled by k̄1, . . . , k̄j to c1, then c1 =⇒Γ c2 holds.
We can determine the labels of the rules of all such possible rule sequences.

Analogously to the first part of the proof of the theorem, we can construct the
finite set D = {[(k1, . . . , kn); (k̄1, . . . , k̄j); (c′1, c′2); (k′1, . . . , k′n)] | c′1 = c(nt)(c1), c

′
2 =

c(nt)(c2), c
′
1 7→(k̄1,...,k̄j) c′2, k̄h ∈ Label(PE) ∪

∪n
i=1 Label(Ri), 1 ≤ h ≤ j, kv, k

′
v ∈

Label(Rv), where kv is the current label ofRv, and k
′
v is the next label ofRv, 1 ≤ v ≤

n}. Note we can employ this construction only because the terminal symbols are not
altered and the number of nonterminals in each environmental state we consider is
limited by a constant. Furthermore, since we know the current labels of the rules the
agents apply, we can calculate the new labels of the rules of the agents, as well.

Based on the above observations, G have the rules of the following form:

– (S →Minitωinit), where ωinit is the axiom of Γ,
Minit = [(∅, . . . , ∅); (∅, . . . , ∅); (∅, cinit); (k1, . . . , kn)], the eco–grammar system
has not started to work in the beginning, we denote this fact by the dummy
symbol (∅), which refers to the empty label of the agents and the environment
as well as the empty configuration, cinit is the nonterminal cut of the initial
configuration, k1, . . . , kn are the initial labels of the agents,

– (M →M ′, Dh1(t1) → α1, . . . , Dhj (tj) → αj), where M,M ′ ∈ D,
M = [(k1, . . . , kn); (k̄1, . . . , k̄j); (c

′
1, c

′
2); (k

′
1, . . . , k

′
n)],

M = [(k′1, . . . , k
′
n); (k̄

′
1, . . . , k̄′l); (c

′
2, c

′
3); (k

′′
1 , . . . , k

′′
n)],

and km is the label of Dhm(t1) → αm, 1 ≤ m ≤ j, 1 ≤ j ≤ s, 0 ≤ l ≤ s,

– (M →Mfin, a→ a), where a ∈ TE ,

– (Mfin → λ).
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In this way, we can simulate the configuration transmissions in Γ. All the valid
configurations can be received and no other configurations can be obtained. Due to
the fact that the rules above follow the order of the configuration transmissions, G
generates the same words as Γ does. Hence the theorem is proved. 2

4. Discussion

In this paper we presented an approach to the behaviour of Internet crawlers seek-
ing novel information on the World Wide Web. We employed programmed grammars,
or more precisely, programmed grammar schemes, for the description of the behaviour
of the crawlers. We proved that if we ignore the aging of the web environment in the
model, then through the simulation of certain normal form grammars, we can obtain
the class of recursively enumerable languages. It means that the crawlers commu-
nicating only through the environment are able to identify any computable set of
the environmental states. If we assume, however, that the web pages may become
obsolete, then we can produce the language family generated by unordered scattered
context grammars of finite index.

Our aim was to illustrate the great diversity of employing regulated rewriting de-
vices in the field of web crawling techniques. Besides programmed grammars, there
are other regulated rewriting devices that prescribe the sequences of productions or
determine the dependence of the rule on the history of the derivation [7], [23]. The
idea of prescribing the sequences of productions or determining the dependence of
the rule on the history of the derivation can correspond to the utilization of some
kind of ordering in the case of URLs. Grammars that impose some global context
condition on the employment of productions can be suitable candidates for capturing
the behaviour of focused/topic specific/topical crawlers. Contrary to grammars with
prescribed sequences or with dependence of the rule on the history of the derivation,
these regulated rewriting mechanisms do not determine the sequence of applicable
productions in advance, since it is controlled by the generated sequence of the sen-
tential forms, i.e. by the environmental string produced through the joint actions of
the foragers and the web environment. Crawlers may seek information either on a
single (identical) topic, or on different ones [12]. The idea of information harvest on
similar topics can be expressed by regulated rewriting mechanisms employing some
sort of parallelism. Some regulated rewriting mechanism may also be combined with
another. In this way, several different aspects of search strategies can be formalized
and more sophisticated techniques can be realized. Furthermore, certain regulated
rewriting devices may be incorporated into Lindermayer systems.

Since the objective of the paper was to introduce a language theoretic approach to
the information retrieval of Internet crawlers, the experimental evaluation (see [12]) of
the theoretical aspects lies beyond the scope of this work, though, the mathematical
results may open up new directions in the development of further applications. In
addition to the lifetime constraint, other restrictions may be placed on eco–foraging
systems. The investigation of the characteristics as well as the generative power
of eco–grammar systems consisting of regulated rewriting devices given the various
limitations are the subjects of further research.
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