
P. D'Ambra, M. Guarracino, and D. Talia (Eds.): Euro-Par 2010, Part I, LNCS 6271, pp. 50–61, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Efficient Graph Partitioning Algorithms for
Collaborative Grid Workflow Developer Environments

Gergely Sipos1,2 and Péter Kacsuk1

1 MTA SZTAKI, Hungarian Academy of Sciences, Budapest, Hungary
2 EGI.eu, Amsterdam, The Netherlands
{sipos,kacsuk}@sztaki.hu

Abstract. Collaborative editing systems allow a group of users to view and edit
a shared item from geographically dispersed sites. Consistency maintenance in
the face of concurrent accesses to shared entities is one of the core issues in the
design of these systems. The paper introduces a lock based solution and three
associated algorithms by which grid workflow developer environments can en-
able concurrent access to grid applications for multiple persons. The methods
assure that collaborators cannot break the consistency criteria of workflows by
introducing cycles or invalid edges to them. A formal analysis of the three algo-
rithms is provided, focusing on the number of users that can simultaneously edit
the same graph. Based on the findings an integrated algorithm is defined and it
allows even more users to collaborate during workflow development.

Keywords: workflow, collaboration, real-time, groupware, locking, CSCW.

1 Introduction

Grid systems span over multiple administrative domains and interconnect heterogene-
ous resources to provide scalable infrastructures for data and compute intensive appli-
cations. Although grids were flagged right from the beginning as powerful platforms
for collaborative work [19], most of the current grid applications and environments do
not, or poorly exploit this feature. Defining workflows on top of grid middleware is
the most common form of utilizing grids [14]. In 2005 we coined the term “collabora-
tive grid workflow” for workflows that a group of users define and execute on the
Grid together using a multi-user groupware environment [1]. Since then collaborative
grid workflows became highly useful vehicles for inter-disciplinary research [9],
urban planning [10], gene sequence analysis [11], engineering [12] and other domains
and cases where intangible assets and tangible resources of several organizations and
individuals must be integrated in an efficient way.

Recent works from this field studied the concurrent access to grid workflows
[6][11], but did not deal with inconsistency, a common issue in computer supported
collaborative work (CSCW) environments. Our previous papers [13][20] proposed
lock based concurrency control and graph partitioning algorithms to protect the follow-
ing three consistency criteria of workflows during collaborative editing sessions: (1)
workflows must remain acyclic; (2) edges in the workflow must point to existing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48290981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Efficient Graph Partitioning Algorithms 51

vertexes; (3) maximum one input edge can refer to an input parameter of a workflow
node (maximum one edge can provide data for an input channel of a grid service/job).
Those papers introduced three different graph partitioning algorithms that can allocate
sub-graphs to workflow editors in such a way, that the modifications performed on
these sub-graphs cannot break the consistency rules of the complete graph. We proved
that the algorithms guarantee workflow consistency without dropping any user’s
changes or forcing any user to compensate his/her committed modifications. Maintain-
ing consistency of workflows is highly important in any CSCW application because
faults not discovered at early stages can be debugged later only at high costs [18].

In the current paper we evaluate and compare these three graph partitioning algo-
rithms and suggest an improved solution based on the findings. We use a user-centric
metric for the evaluation: the number of persons that an algorithm allows to share
and edit a single graph simultaneously. The contribution of the paper to the parallel
computing field is a lock based solution and associated algorithm to partition work-
flow graphs among multiple parties. We contribute to the CSCW domain with a theo-
retical evaluation of consistency-aware groupware protocols.

The next section provides an overview of related works. In Section 3 the concept
of lock based collaborative editing of grid workflows is described. The problems
related to workflow consistency are explained in Section 4, where three consis-
tency-aware graph partitioning protocols are introduced. Section 5 introduces the
metric we use to evaluate lock partitioning algorithms from the users’ point of view. It
also gives a comparative analysis of the three algorithms based on this metric and
introduces a more advanced, 4th algorithm. We show that this new algorithm allows
even more developers to share a graph, and can contribute to the quicker completion
of workflows. In Section 6 additional properties of the solutions are discussed, such as
fairness, deadlock and starvation, and an overview of our prototype implementation of
the system based on P-GRADE Grid Portal is also given. Our summary and conclu-
sions are drawn in Section 7.

2 Related Work

Real-time collaboration through shared, editable entities has recently become an in-
tensively researched topic within CSCW. Most of the related efforts focused on
enabling concurrent editing of items that are either unstructured (such as a drawing)
or have unpredictable structure (such as a document). While unstructured items do not
have consistency requirements and do not require consistency maintenance frame-
works, freeform items demand so complicated and unpredictable consistency mainte-
nance protocols that these are too difficult to develop.

Usage of groupware approaches in grid computing is a less researched field. Al-
though there are some grid environments that support the collaboration of users, these
systems are often tightly coupled with one particular application (so users do not have
flexibility on what information, application they would like to share with each other)
e.g. [3][4], or they+ do not support real-time collaboration. For example, MyExperi-
ment.org is a Web 2 style community site where e-scientist can publish, discover and
download workflows [5], but it does not include any support for concurrent editing of
these entities thus it is not concerned of workflow structures and inconsistencies.

52 G. Sipos and P. Kacsuk

Some recent efforts in grid workflow research have focused on the knowledge
sharing aspects of collaborative workflows in multi-organizational environments.
While these works provide detailed analysis on the users’ awareness and propose
system architectural components, they rarely discuss concurrency control mechanisms
and implementations [8][12]. There are a few exceptions though. In our first paper on
the topic we defined a lock based concurrency control framework using P-GRADE
Grid Portal [1][2]. This solution does not protect the consistency of workflows. The
HOBBES environment also uses locks for concurrency control during workflow de-
velopment [11]. However, HOBBES does not guarantee the consistency of shared
workflows, the owner of the graph must compensate the collaborators’ work if the
team results inconsistent, or inefficient graph structure.

Version Control Systems (VCS) such as CVS, SVN, Git, Mercurial are the typical
tools to support the concurrent engineering of software. However these environments
cannot help in the collaborative development of workflows because (i) workflows are
typically stored in a single file (e.g. workflow description file) meanwhile VCS sup-
ports collaboration on file sets; and (ii) VCS work at the level of text and cannot in-
terpret and resolve conflicts that happen at a higher abstraction level (in our case at
the level of graph vertexes or edges).

The most widely adopted method to evaluate groupware environments is the analy-
sis through real or artificial user scenarios [15]. At the same time this method is also
criticized, mainly because the whole spectrum of groupware use cases cannot be cov-
ered in this way [16]. Our work focuses on a narrow aspect of groupware usability, on
the number of people that are allowed by a graph partitioning algorithm to work con-
currently on a single workflow. Because of the well defined focus, we can perform a
purely theoretical analysis. Baeza-Yates and Pino analyze groupware systems in a
similar fashion [17]. However, they focus on the quality of shared entities, and try to
describe this parameter as the function of group size.

3 Collaborative Editing of Grid Workflow Graphs

The collaborative development of workflows requires concurrent access to a single
graph by multiple users. Collaborative development tools (groupware tools) must
assure that the users’ contributions are integrated into a single, coherent application
without resulting loss of data or invalid state. Grid workflows are developed manu-
ally, i.e. changes made on a workflow are results of human actions. In a collaborative
environment if user A’s changes on a workflow is lost, or dropped due to a user B’s
concurrent changes, then this results wasted, sometimes irreproducible effort for user
A. As we described in our previous papers, an important requirement for collabora-
tive development of grid workflows is that no user’s development session should be
aborted because of another user’s concurrent work [13][20].

Turn-taking, serialization (often extended with operation transformation) and
locking are the most commonly used concurrency-control techniques in groupware
environments [12]. In our earlier works we argued that lock based concurrency con-
trol matches most with the needs of workflow developers, particularly of grid work-
flow developers [1][6]. We suggest locks at graph component level, i.e. vertices and
edges in a workflow are the lockable units. In our collaborative workflow editor

 Efficient Graph Partitioning Algorithms 53

architecture the lock manager appears as a central component. The role of the lock
manager is to accept lock requests from the users, evaluate these requests and grant or
deny the locks based on compatibility rules and protocols (See also Fig 3.).

In our previous papers we introduced three different algorithms that can be inte-
grated into a lock manager to grant and deny locks [13][20]. We call these algorithms
as “lock evaluator algorithms”. A lock evaluator algorithm can be imagined as a func-
tion that receives a workflow graph and a set of lock request as inputs, and gives a
partitioning of the graph as output. The lock requests are generated by the workflow
developers, and each of the requests refers to a subset of the vertexes and subset of the
edges in the workflow. The person who generated the request (through his/her editor)
would like to modify these components.

A lock evaluator algorithm partitions the graph to locked and unlocked parts. A
locked sub-graph minimally contains those elements of the workflow that a given
lock requestors’ editing work will affect and must be locked for him/her to avoid
conflicts. If a lock cannot be granted, then the user must be informed about the denial
so he/she can modify the request or submit it at a later time. The way how this can be
done is outside of the focus of this paper.

When multiple users work on the same graph concurrently, then a series of lock-
ing requests reach the lock evaluator algorithm. The algorithm evaluates each request
separately, and allocates different parts of the graph for the users:

SRG, Lock evaluator algorithm U
n GGGGG ∪∪∪∪= ...21

where G marks the workflow graph on which n users work concurrently.
RS = R1,R2,...,Rn marks the lock requests of the users. Ri includes those graph compo-
nents (vertices, edges) that user i wants to modify on the graph. Such a request can be
generated by the user e.g. through the graphical editor where he/she selects the work-
flow components that he/she wishes to modify. G1, G2, ...Gn mark n sub-graphs of G
that become locked for the users. Gi gets locked for the owner of the Ri request. GU is
the sub-graph of G that remains unlocked even after all the n users begin to concur-
rently edit the graph. Note that each of the sub-graphs contains some vertices and
some edges from G, but a Gi sub-graph is not necessarily connected. If e.g. a user
intends to modify the first and the last vertexes of a pipe-line graph, then his/her
locked sub-graph may contain only these two vertexes so the sub-graph is discon-
nected. Because of using exclusive locks jinjijiGG ji ≠≤≤∀∅=∩ ,,1,,, and

niGG U
i ≤≤∀∅=∩ 1, .

4 Consistency of Grid Workflow Graphs

Collaborative workflow editors must assure that editing sessions bring graphs from
one consistent state to another consistent state. Consistency of a workflow can be
defined at two levels: (1) component-level consistency: consistency of individual
vertexes, individual edges; (2) graph-level consistency: consistency of multiple, con-
nected components.

Component-level consistency defines what a valid parameter set is for a given
workflow vertex or edge (e.g. what parameters can describe a Grid service or Grid job

54 G. Sipos and P. Kacsuk

in the workflow). In the workflow domain that we work in the following three graph-
level consistency criteria were found for workflow graphs [20]:

1. There can be no “dangling” edge in the graph, i.e. an edge that refers to non-
existing (already deleted) vertex as its source and/or sink.

2. Maximum one edge can provide input data for an input channel of a vertex. If
multiple edges are connected to the same input channel, then the execution of the
workflow would be unpredictable as the data items that arrive through the edges
overwrite each other. (This condition still allows a vertex to have more than one
input channels.)

3. The graph must be acyclic.

Our research focuses on the graph-level consistency rules because in a multi-user
editing scenario no party has the complete view of the whole workflow, thus main-
taining graph-level consistency is not self-evident. In [20] we defined a protocol that
– if implemented by a lock evaluator algorithm – can prevent dangling edges and
multiple incoming edges. The protocol basically prohibits users to hold lock on an
edge without holding locks on the source and the sink vertexes of this edge. The pro-
tocol automatically extends a user’s locked sub-graph with those vertexes that are
connected the user’s edges.

In has been also shown in [20] that not a single, but several different protocols ex-
ist that can prevent cycles in workflows. These protocols partition workflow graphs in
such a way that no edge creation operations within these sub-graphs can result cycle
in the complete graph. In [20] we defined two of such algorithms, and in [13] we gave
a third algorithm. In the current paper our goal is to evaluate the usability of these
algorithms, so we shortly summarize how the three algorithms work.

The three algorithms implement the above described protocol so they protect
against invalid edges by extending the users’ locked sub-graphs with extra vertexes.
The algorithms do not allow any component (any vertex or any edge) to be locked by
two users at the same time. Should the same component be locked by two concurrent
users the algorithms return a lock denial answer for the second user. (The one who’s
lock request reached the system later in time.)

The first algorithm (to be called v1 algorithm now) locks complete branches of a
graph, i.e. if a V vertex needs to be locked for user A, then every child vertex of V and
every child edge of V becomes locked for A too. If either V, or any of its child com-
ponents are already locked for a user B, then A’s locking request is denied, the system
does not identify a smaller, but lockable sub-graph.

The second algorithm (to be called v2 algorithm now) is an improved version of
v1, because it uses two types of locks. Those components that the user A requested to
lock become locked with USER lock (U lock). The child vertices and child edges of
these U-locked components become locked with SYSTEM lock (S lock). While U
locks are visible for users and mark editable components, S locks are invisible to
users and are used only by the lock evaluator algorithm to decide about lock compati-
bility. U locks are incompatible with each other, i.e. no more than one user can have
U lock on a component. On the other hand, we proved that multiple S locks can exists
on the same component, moreover, in some cases both S lock and U lock is allowed
on the same component [20]. It has been also proven that a lock request must be

 Efficient Graph Partitioning Algorithms 55

denied only, if it puts U lock on a component that already has S lock and at the same
time it puts S lock on a component that already has U lock.

In [13] we defined a third algorithm (to be called v3 algorithm now). V3 uses only
one lock (like the v1 algorithm, or like to U lock in the v2 algorithm), and it applies a
different concept, called “contiguity graph” to decide about granting/denying locks. A
contiguity graph is a graph that represents the connections among locked sub-graphs,
and among locked sub-graphs and unlocked components of a workflow. In the conti-
guity graph of a G workflow graph every locked sub-graph of G appears as a single
node; every edge that connects two locked sub-graphs together appears as an edge,
and every unlocked component (vertex or edge) appears as it is (a vertex or an edge).
When a new lock request arrives from a user the v3 algorithm generates the contiguity
graph of the workflow and denies the lock only if it generates a cycle in the contiguity
graph, i.e. if the vertex that represents the newly locked sub-graph closes a cycle in
the contiguity graph.

5 Collaborative Performance of Lock Algorithms

The three lock evaluator algorithms (v1, v2 and v3) provide such partitioning of
acyclic graphs that the consistency rules cannot be broken by any of the collaborative
users. The three algorithms use different policies to evaluate lock requests and can
result different partitioning of a graph. In the same situation one algorithm can deny
the lock request, while another algorithm can grant the locks. From the users’ point
of view the algorithm that allows the most developers to work on the same graph
concurrently provides the best collaborative performance. The more users can access
the workflow at the same time the sooner they can finish the graph definition process
and can proceed to workflow execution. Because the three algorithms protect the
consistency of graphs, there is no need to include a consistency checking stage after
the workflow definition process. Workflow execution can begin right away.

The lock grant/denial decision of a lock evaluator algorithm depends only on the
current state of the workflow graph, the topology of the existing locks, and the topol-
ogy of the requested locks. The decision is independent from several other factors,
such as the unsaved parts of the graph (these are visible only in the client side edi-
tors), the start time and finish time of an editing session, etc. When an algorithm
evaluates the RS = R1,R2,...,Rn sequence of lock requests on a G graph, then, besides
partitioning G to locked sub-graphs and an unlocked sub-graph, the algorithm implic-
itly also returns a 0 or a 1 value for each lock requestor. 0 means that the lock request
is denied, 1 means that the locks are granted. The more 1 digits are given by an algo-
rithm for an RS lock request on a G graph the more users are allowed to concurrently
edit the workflow. Consequently, by comparing the binary vectors of the algorithms in
a given editing situation, the collaborative performance of these algorithms can be
compared.

Definition 1. Given a G graph and an RS = R1,R2,...,Rn sequence of lock requests. We
say that an X lock evaluator algorithm has better collaborative performance than an
Y algorithm, if there are more 1 digits in the vector returned by X than in the vector
returned by Y.

56 G. Sipos and P. Kacsuk

Definition 2. We say that an X lock evaluator algorithm has better overall collabora-
tive performance than an Y algorithm, if for any G graph and RS = R1,R2,...,Rn se-
quence of lock requests there are at least as many 1 digits in the vector returned by X
than in the vector returned by Y, and there is at least one F graph with one
SS = S1,S2,...,Sn lock requests sequence where more 1 digits are in the vector returned
by X than in the vector returned by Y.

5.1 Comparing the v1 and v2 Algorithms

It is easy to see that the v2 algorithm provides a better overall collaborative perform-
ance than the v1 algorithm. In situations when a user’s lock request does not require S
lock on the graph (the requested components do not have child nodes) the v2 algo-
rithm results exactly the same lock topology than the v1 algorithm. In these cases the
two algorithms allow the same persons to work on the graph and they return the same
binary vectors.

However, when S locks must be used by v2 and only S locks collide during the
evaluation of the request, then v2 allows more people to edit the workflow. See a
simple example for this in Fig 1. As a consequence, the v2 algorithm gives better user
satisfaction than the v1 algorithm in any collaborative workflow editor environment.

Lock requests Locks issued by v1 Locks issued by v2

R1={A}
R2={B }

G1

A

B

ab

R2 causes lock collision with
G1, the R2 request is denied.

S1

G2

G1

A

B

ab

S lock is compatible with U

lock, both R1 and R2 are served.

Fig. 1. Collaborative workflow development scenario to demonstrate that the v2 algorithm
provides a better collaborative performance than v1. (Notations: G1, G2: sub-graphs locked with
U lock for R1 and R2; S2: sub-graph locked with S lock for R2).

5.2 Comparing the v2 and v3 Algorithms

The situation with the v2 and v3 algorithms is more complicated. We found, that in
some editing scenarios the v2 algorithm allows more users to work on the graph,
while in other cases the v3 algorithm provides better collaborative performance.
Fig 2. gives examples for each of these situations.

The second column of Fig 2. shows two users requesting locks on a G graph that
consists of 4 vertexes and 3 edges. While v2 allows both users to work with the re-
quested components, v3 grants locks only for the first person because the second
user’s request results cycle in the contiguity graph. Consequently, v2 provides better
collaborative performance in this case.

 Efficient Graph Partitioning Algorithms 57

 v2 provides better performance than v3 V3 provides better performance than v2

L
oc

k

re
qu

es
ts

R1={A}
R2={B, D}

R1={A},
R2={B},
R3={C, D}

L
oc

ks
 is

su
ed

 b
y

v2

G2

S2

G2

G1

A

B

C

D

ab

bc

cd

S2

G2

S3G1

S2

A

B

D

C

G3

Putting an S lock on an existing U lock

Putting an U lock on an existing S lock

da

bc

ba

on
ti

gu
it

y
gr

ap
h

of
 v

3

G2

C

G1

ab

bc cd

G2

G3ba

bc

da
G1

E
va

lu
at

io
n

ou
tc

om
e

• v2 allows lock for R2 because it
causes no lock collision. V2 returns
the [1, 1] binary vector.

• v3 denies lock for R2 because there
is cycle in the contiguity graph.
V3 returns the [1, 0] binary vector.

• v2 denies lock for R3 because it puts S
lock on U lock and put U lock on S lock.
V2 returns the [1,1,0] binary vector.

• v3 allows lock for R3 because there is
no cycle in the contiguity graph.
V3 returns the [1,1,1] binary vector.

Fig. 2. Collaborative workflow development scenarios that demonstrate the difference in the
collaborative performance of the v2 and v3 lock evaluator algorithms. (Notations: G1: sub-
graph locked with U lock for R1; S1: sub-graph locked with S lock for R1, …).

The third column shows 3 users requesting locks on a graph (on a different graph
than in the second column). In this case v2 denies the lock for the third user, because
the request puts U lock on S lock and puts S lock on U lock at the same time. V3
grants locks for all the three users, and provides better collaborative performance in
this case.

These examples demonstrate that depending on the topology of the workflow
graph and the topology and order of the lock requests, sometimes the v2, sometimes

58 G. Sipos and P. Kacsuk

the v3 algorithm allows more users to work on a graph. Because actions cannot be
predicted in a generic groupware environment we cannot know in advance what graph
and in what distribution will be developed. In order to be prepared for any editing
situation we should define a new, v4 lock evaluator algorithm that provides better
overall collaborative performance than v2 and v3. (We should not consider v1 any
longer because v2 provides better overall performance.)

The number of possible editing cases in a collaborative workflow developer envi-
ronment is huge. Any directed acyclic graph can be extended in numerous ways and
going through these cases one by one is impossible. We instead propose a different
and relatively simple solution to achieve v4: v4 can be created with the integration of
the v2 and v3 algorithms. This integrated v4 algorithm first generates the S locks as it
is done by v2 and checks if the requested locks can be granted. If they can, then the
algorithm allocates the locks, otherwise generates the contiguity graph as it is done by
v3. If the contiguity graph allows the locks (i.e. there is no cycle in it) then the locks
are granted. The v4 algorithm allows the locks if either v2 or v3 allows it. V4 denies
the lock only if both v2 and v3 denies. Because both v2 and v3 prevents workflow
inconsistencies, either of them allow the editing work of a user the final workflow
will not break the consistency rules.

6 Discussion and Implementation

All the four lock evaluator algorithms (v1, v2, v3 and v4) provide such a partitioning
of acyclic graphs that the three consistency rules cannot be broken by any editor.
However, none of the solutions guarantee deadlock free editing. It can happen that
user A locks sub-graph Ga, user B locks sub-graph Gb and they both wait for each
others sub-graphs to become unlocked in order to extend their own sub-graphs with
those components. Prohibiting users to hold locks on more than one workflow com-
ponent could be a solution as it is applied in the GroupGraph system [23]. However,
in this way operations that affect multiple components (e.g. a definition of a new edge
requires two end vertexes) cannot be performed. That is why we suggest instead the
inclusion of awareness tools in the editors. These tools could show the topology of
locks on the whole workflow, can help users contact each other to discuss and manu-
ally resolve deadlock situations. Groupware widgets, such as the MAUI Toolkit [7]
can be used to increase the developers’ group awareness.

To demonstrate the introduced concepts we extended a single-user grid workflow
environment with collaborative capabilities. We choose P-GRADE Grid Portal [21]
for this purpose, because it is a widely used tool in production grids (e.g. in the EGEE
grid, UK NGS, US OSG) and because it uses a client-server architecture. P-GRADE
Portal has a Web based graphical server for the execution and monitoring of data-
driven computational workflows, and it has a client side editor for the editing of
graphs. One can define a grid workflow in this editor by connecting sequential and
parallel batch jobs into data driven applications. P-GRADE Portal server uses Condor
DAGMan workflow engine to schedule workflows to computational resources, so the
acyclic property of graphs and the proper connection between vertices are important
consistency requirements in the system. We extended both the client and the server of
P-GRADE Grid Portal with collaborative features. The new architecture is presented
in Fig 3.

 Efficient Graph Partitioning Algorithms 59

Collaborative P-GRADE Portal server

Lock
manager

Workflow
storage

Workflow editor 1

Workflow editor 2

Lock
evaluator
algorithm

Lock components

Fig. 3. Architectural overview of Collaborative P-GRADE Grid Portal

Users can request locks on components of a workflow in the collaborative editor.
Requests are forwarded by the editors to the server side lock manager then to the lock
evaluator algorithm to estimate which components of the graph need to be, and can be
locked. Multiple users can possess locks on the same graph simultaneously. Fig 3.
demonstrates this with showing different users’ sub-graphs within green boxes, while
keeping the rest of the graph semi-transparent. Users can share their graph modifica-
tions with each other through the server in real-time, and if they wish can see each
others modifications as well. Because the locked components can be modified locally,
the system provides good responsiveness. P-GRADE Grid Portal uses the server side
file system to store workflows and locks, however any other storage could be used as
long as workflow components can be flagged „locked” and „unlocked” in it.

Our current implementation does not maintain any waiting queue for denied lock
requests, thus users with denied requests must manually re-request locks once they
see that other users finished working with the components they need.

7 Conclusions

The paper provided an evaluation of three algorithms that can be used for the intelli-
gent portioning of workflow graphs in real-time collaborative editing systems, and
made suggestion for an integrated solution. The locked based collaborative develop-
ment concept assures that no user’s editing session is aborted, no user’s effort is
wasted, and that the consistency of workflows is guaranteed. The analysis of the three
algorithms revealed that the second algorithm performs better than the first, but one
cannot decide for the second or the third algorithm so easily. We showed a simple
solution to achieve an overall best algorithm with the integration of this second and
third solution.

The lock based concurrency control groupware mechanisms has been implemented
in the prototype version of the Collaborative P-GRADE Grid Portal and it will be

60 G. Sipos and P. Kacsuk

used by the Grid Application Support Centre (GASuC) [22] of MTA SZTAKI to
enable scientific applications on the European Grid Infrastructure (EGI). EGI is based
on the federation of individual National Grid Infrastructures coordinated by the
EGI.eu organization. The extension of an existing single-user grid workflow tool
demonstrates that an originally single-user grid software can be transformed to a
groupware application. Although our tool has been defined for grid application devel-
opers, the graph partitioning algorithms are independent from grid computing and
could be used in other workflow based groupware tools as well.

References

1. Sipos, G., Lewis, G.J., Kacsuk, P., Alexandrov, V.N.: Workflow-oriented Collaborative
Grid Portals. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.)
EGC 2005. LNCS, vol. 3470, pp. 434–443. Springer, Heidelberg (2005)

2. Kacsuk, P., Sipos, G.: Multi-Grid, Multi-User Workflows in the P-GRADE Portal. Journal
of Grid Computing 3(3-4), 221–238 (2005)

3. Nacar, A.M., et al.: VLab: collaborative Grid services and portals to support computational
material science. Concurrency and Computation: Practice and Experience 19(12),
1717–1728 (2007)

4. Yu, O., Lia, A., Caoa, Y., Yina, L., Liaoa, M., Xua, H.: Multi-domain Lambda Grid data
portal for collaborative Grid applications. Future Generation Computer Systems 22(8),
993–1003 (2006)

5. Goble, C.A., De Roure, D.C.: MyExperiment: Social Networking for Workflow-Using
E-scientists. In: Proceedings of the 2nd Workshop on Workflows in Support of Large-scale
Science, Monterey, California, USA. ACM, New York (2007)

6. Sipos, G., Kacsuk, P.: Collaborative Workflow Editing in the P-GRADE Portal. In: Proc.
of Microcad 2005 International Conference, Miskolc, Hungary, pp. 353–358 (2005)

7. Hill, J., Gutwin, C.: The MAUI Toolkit: Groupware Widgets for Group Awareness. Jour-
nal of Computer Supported Cooperative Work (CSCW) 13(5-6), 539–571 (2004)

8. Schuster, H., Baker, D., Cichocki, A., Georgakopoulos, D., Rusinkiewicz, M.: The col-
laboration management infrastructure. In: Proc. of ICDE Conference, San Diego, Califor-
nia, USA, pp. 677–678 (2000)

9. Zhao, Z., Booms, S., Belloum, A., de Laat, C., Hertzberger, B.: VLE-WFBus: A Scientific
Workflow Bus for Multi e-Science Domains. In: Proc. of Second IEEE International Con-
ference on E-Science and Grid Computing (e-Science 2006), Asterdam, The Netherlands,
p. 11 (2006)

10. Müller, J.M., Zhang, G., Lapayre, J.C., Müller, P.: Service-oriented Support of Coopera-
tive Workflows. Considerations for Urban Planning Processes. In: Proc. of 11th Confer-
ence of the Association for Information And Management, Luxemburg (2006)

11. Held, M., Blochinger, W.: Structured Collaborative Workflow Design. Future Generation
Computer Systems 25(6), 638–653 (2009)

12. Friese, T., Smith, M., Freisleben, B., Reichwald, J., Barth, T., Grauer, M.: Collaborative
Grid Process Creation Support in an Engineering Domain. In: Robert, Y., Parashar, M.,
Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 263–276. Springer,
Heidelberg (2006)

13. Sipos, G., Kacsuk, P.: Efficient Partitioning of Graphs in Collaborative Workflow Editor
Systems. In: Proceedings of IADIS International Conference Collaborative Technologies,
Freiburg, Germany (to appear 2010)

 Efficient Graph Partitioning Algorithms 61

14. McPhillipsa, T., Bowersa, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere
mortals. Future Generation Computer Systems 25(5), 541–551 (2008)

15. Pinelle, D., Gutwin, C.: A Review of Groupware Evaluations. In: Proceedings of Ninth
IEEE WETICE 2000 Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, Gaithersburg, Maryland, pp. 86–91 (2000)

16. Araujo, R.M., Santoro, F.M., Borges, M.R.S.: The CSCW Lab for groupware evaluation.
In: Haake, J.M., Pino, J.A. (eds.) CRIWG 2002. LNCS, vol. 2440, pp. 222–231. Springer,
Heidelberg (2002)

17. Baeza-Yates, R., Pino, J.: A first step to formally evaluate collaborative work. In: Proceed-
ings of the International ACM SIGGROUP Conference on Supporting Group Work: the
Integration Challenge, Phoenix, Arizona, USA, November 16-19, pp. 56–60 (1997)

18. Dewan, P., Riedl, J.: Toward computer-supported concurrent software engineering. IEEE
Computer 26(1), 17–27 (1993)

19. Foster, I., Kesselman, C.: Computational Grids. In: Foster, I., Kesselmann, C. (eds.) The
Grid: Blueprint for a New Computing Infrastructure, pp. 2–48. Morgan Kaufmann, San
Francisco (1999)

20. Sipos, G., Kacsuk, P.: Maintaining Consistency Properties of Grid Workflows in Collabo-
rative Editing Systems. In: Proc. of Grid and Collaborative Computing Conference (GCC
2009), pp. 168–175. IEEE-Publishing, Lanzhou (2009)

21. P-GRADE Grid Portal,
http://www.portal.p-grade.hu,
http://sourceforge.net/projects/pgportal/

22. MTA SZTAKI Grid Application Support Centre (GASuC),
http://www.lpds.sztaki.hu/gasuc

23. Lima Filho, H.A.S., Hirata, C.M.: GroupGraph: A Collaborative Hierarchical Graph Editor
Based on the Internet. In: Proceedings of the 35th Annual Simulation Symposium (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

