
EFFICIENT PARTITIONING OF GRAPHS IN
COLLABORATIVE WORKFLOW EDITOR SYSTEMS

Gergely Sipos, Péter Kacsuk
MTA SZTAKI, Hungarian Academy of Sciences

Budapest, Hungary
{sipos, kacsuk}@sztaki.hu

ABSTRACT

Collaborative editing systems allow a group of users to view and edit a shared item from geographically dispersed sites.
Consistency maintenance in the face of concurrent accesses to shared entities is one of the core issues in the design of
these systems. Workflow modelling is a popular technique to describe business processes, scientific experiments,
distributed applications. A workflow is directed graph which specifies tasks and data/control dependencies. The paper
introduces protocols by which workflow developer environments can enable the concurrent editing of graphs by multiple
users. The proposed graph partitioning and pessimistic locking algorithms assure that collaborators cannot break the
consistency criteria of workflows by introducing cycles or invalid edges to them. We prove that the solution results
correct graphs even when collaborative parties know separate parts of the workflow and do not share their own sub-
graphs with each other in real time. A method to compare the efficiency of different graph partitioning algorithms is also
provided.

KEYWORDS

workflow, collaboration, DAG, groupware, locking, evaluation

1. INTRODUCTION

Workflow techniques are widely used methods for parallel and distributed processing in business [1] and
scientific environments [2]. Due to the widespread adoption of workflow technologies, the term “workflow”
is heavily overloaded and has various different definitions. We consider a workflow as a process that consists
of several steps (tasks) and defined in the form of a directed graph, in which vertices represent tasks to be
performed by human or computer services and edges represent dependencies among these tasks. (Data or
control dependency). A workflow has a development phase, during which the graph is defined in a graphical
environment, and an execution phase, when an enactment engine instantiates the process of the workflow.

With the advance of workflow technologies, workflow applications become more complex they integrate
more human knowledge. The development of complex and/or large workflows requires support for
collaborative work. Recent works from the field of collaborative development of workflows studied
concurrent access to workflows [3][4][5], but did not deal with inconsistency, a common issue in computer
supported collaborative working (CSCW) environments. In the current paper we propose a solution that
guarantees the consistency properties of workflow applications and enables not only effective, but also
correct interaction among users.

Maintaining consistency of workflows is highly important in any CSCW application because faults not
discovered at early stages can be debugged later only at high costs [6]. This paper focuses on the
maintenance of three graph consistency criteria: (1) workflows must remain acyclic, (2) edges in the
workflow must point to existing vertexes and (3) maximum one input edge can be connected to an input
channel of a workflow vertex (a vertex that represents e.g. a Web service can have more than one input
channels). These consistency rules are critical in those workflow languages, environments and managers that
do not support cycles and/or cannot handle broken connections between vertexes. Protecting against multiple
incoming edges assures that input data of a task is not overwritten from multiple sources. Several workflow
tools require these criteria, e.g. GriPhyn (Pegasus), Taverna (SCUFL), Grid Service Flow Language, Condor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48290951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DAGMan, Workflow Enactment Engine, just to name a few. Moreover, the approach is also applicable in
other domains where collaboratively edited entities are represented as acyclic graphs, e.g. in mind mapping
tools or automating product design processes [7]. The contribution of the paper to the collaborative
computing and to the workflow fields is a protocol that enables the real-time concurrent editing of graphs by
multiple parties and the proof that the protocol guarantees consistency of the shared entities.

The next section provides an overview of related works. In Section 3 the concept of lock based
collaborative editing of workflows is described. The problems related to workflow consistency are explained
in Section 4, where our consistency aware locking protocol is introduced and a proof of correctness given.
Section 5 provides discussion on additional properties of the solution such as deadlock and outlines a
performance analysis method to compare the new protocol with two of our earlier algorithms. Our summary
and conclusions are given in Section 6.

2. RELATED WORK

Real-time collaboration through shared, editable entities has recently become an intensively researched
topic within computer supported collaborative work (CSCW). Most of the related efforts focused on enabling
concurrent editing of items that are either unstructured (such as a drawing) or have hierarchical structure
(such as a document consisting of sections, subsections). Unstructured items do not have consistency
requirements and do not require consistency maintenance frameworks. Although consistency maintenance of
hierarchical structures is well understood, directed acyclic graphs cannot be mapped to hierarchical graphs
(tree graphs) and that is why they require slightly different consistency maintenance solutions.

Usage of CSCW approaches for the collaborative editing of workflow applications is a less researched
field. Although some solutions support the collaboration of workflow developers, these systems are often do
not provide services for real-time collaboration. For example, MyExperiment.org is a Web 2 style
community site where scientist can publish, discover and download workflows [8], but the concurrent editing
of these entities is not possible.

Some recent efforts in workflow research have focused on the knowledge sharing aspects of collaborative
workflows in multi-organizational environments. While these works provide detailed analysis on the users’
awareness and propose system architectural components, they rarely discuss concurrency control
mechanisms and implementations [9][10]. There are a few exceptions though. Lock based concurrency
control frameworks are given in [3][5]. Unfortunately none of these solutions protect the consistency of
workflow graphs so some concurrent editing scenarios can result inconsistent applications that can be later
executed only after corrections.

The HOBBES environment also provides lock based approach for concurrent editing of grid workflows
[4], however as we discussed in [11] it provides very poor collaborative performance, i.e. it allows only very
few users to work on the same graph concurrently. In our previous work [11] two versions of a lock-based
workflow partitioning algorithm have been introduced. Although both partitioning algorithms protect the
consistency of directed acyclic grid workflows, compared to the new solutions that is described in this paper
they either lock too large sub-graphs for each user – allowing only a few people to concurrently edit a
workflow – or use two types of locks, resulting a complicated system architecture that is difficult to add to
existing workflow editor environments. The current solution applies only one lock to distinguish the different
users’ graph components. Version Control Systems (VCS) such as CVS, SVN, Git, Mercurial are the typical
tools to support the concurrent engineering of software [6]. However these environments cannot help in the
collaborative development of workflows because (i) workflows are typically stored in a single file (e.g.
workflow description file) meanwhile VCS supports collaboration on file sets, not allowing the distribution
of a single file among several users; and (ii) VCS work at the level of text and cannot interpret and resolve
conflicts that happen at a higher abstraction level (in our case at the level of graph vertexes or edges).

3. COLLABORATIVE EDITING OF ACYCLIC GRAPHS

Collaborative development of workflows involves concurrent access to a single graph by multiple users.
Collaborative development tools must assure that the users’ contributions are integrated into a single,

coherent application without resulting loss of data or invalid state. Workflows are developed manually, i.e.
changes made on a workflow graph are results of human actions. In a collaborative environment if user A’s
changes on a workflow are lost, or dropped due to a user B’s concurrent changes, then this results wasted,
sometimes irreproducible effort for user A. An important requirement for collaborative development of
workflows is that no user’s development session should be aborted because of another concurrent user’s
work.

Turn-taking, serialization (often extended with operation transformation) and locking are the most
commonly used concurrency-control techniques in groupware environments [12]. In our previous papers we
argued that lock based concurrency control matches most with the needs of workflow developers [3][11]. We
suggested locks at graph component level, i.e. vertices and edges are the lockable units. In our collaborative
workflow editor architecture the lock manager appears as a central component. The role of the lock manager
is to accept lock requests from the users, evaluate these requests and grant or deny the locks based on
compatibility rules and protocols. In our previous paper [11] we introduced two different algorithms that can
be integrated into a lock manager to grant and deny locks. In Section 4 a brief overview of these two
algorithms will be given, and a third algorithm will be described. In the remaining part of the paper we call
these algorithms as “lock evaluator algorithms”. A lock evaluator algorithm can be modelled with a function
that receives a workflow graph and a lock request as inputs, and gives a partitioning of the graph as output.
The function partitions the graph to locked and unlocked parts. A locked sub-graph contains those elements
of the workflow that the lock requestors’ editing work will affect and must be locked for him/her to avoid
conflicts. If a lock cannot be granted, then the user must be informed about the denial so he/she can modify
the request or submit it at a later time.

When multiple users work on the same graph concurrently, then a series of locking requests reach the
lock manager. The lock evaluator algorithm evaluates each request separately, and allocates different parts of
the graph for the users:

G, RS � Lock evaluator algorithm � G = G1+G2+ ...+Gn+GU

where G marks the workflow graph on which n users work concurrently. RS = R1,R2,...,Rn marks the locking
requests of the users. Ri includes those graph components (vertices, edges) that user i wants to modify on the
graph. Such a request can be generated by the user e.g. through the graphical editor where he/she selects the
workflow components that he/she wishes to modify. G1, G2, ...Gn mark n sub-graphs of G that become locked
for the users. Gi gets locked owner of the Ri lock request. GU is the sub-graph of G that remains unlocked
even after all the n users begin concurrently editing the graph. Note that each of the sub-graphs contains
some vertices and some edges from G, but a Gi sub-graph is not necessarily connected. If e.g. a user intends
to modify the first and the last nodes of a pipe-line graph, then his/her locked sub-graph may contain only
these two nodes so the sub-graph is disconnected. Because of using exclusive locks

jinjijiGG ji ≠≤≤∀∅=∩ ,,1,,, and niGG U
i ≤≤∀∅=∩ 1, .

4. CONSISTENCY OF WORKFLOW GRAPHS

Collaborative workflow editors must assure that editing sessions bring graphs from a consistent state to
another consistent state. We identified the following three consistency criteria for workflow graphs [11]:

1. There is no “dangling” edge in the graph, i.e. an edge that refers to non-existing (already deleted) node
as its source and/or sink.

2. Maximum one edge can provide input data for an input channel of a node. If multiple edges are
connected to the same input channel, then the execution of the workflow would be unpredictable as the
data items that arrive through the edges overwrite each other. (This condition still allows a vertex to have
more than one input channel.)

3. The graph is acyclic.

In a collaborative editing scenario no party has the complete view of the workflow, thus maintaining
consistency is not self-evident. In sections 4.1, 4.2 and 4.3 protocols are introduced to maintain the above
consistency criteria in lock based environments.

4.1 Preventing Dangling Edges and Multiple Incoming Edges

A dangling edge appears in the graph when a transaction deletes a node without the removal of its edges.
Multiple incoming edges come into existence when concurrent users connect input edges to the same input
channel of the same node. In [11] we proved that any lock evaluator algorithm can protect against dangling
edges and against multiple incoming edges if it implements the following protocol (See also Fig. 1):

• An edge can be locked for a transaction only if both of its end nodes can be locked for the same user.
This assures that a locked Gi sub-graph is always enclosed by nodes.

• Within each locked sub-graph the users’ editors can check for dangling edges. (In the same way as a
single-user editor does.)

• Only the owner of a locked vertex can connect an edge to that vertex. This rule implicitly declares
that no vertex can be shared between multiple users, so locks cannot be used at a finer granularity,
e.g. at the level of parameters of vertexes.

• When an editing session is finished (the user clicks “Save workflow” in the editor) then the updated
components of his/her locked sub-graph must be merged into the complete graph residing on the
server. If the user deleted a vertex that was connected to other sub-graphs, then these edges must be
deleted by the server. Because these edges are not locked for any user, their removals do not make
any transaction abort, do not waste any users’ work.

This protocol guarantees that workflow developers can perform any modification within their own sub-
graphs and when these changes are merged into the complete graph they do not result dangling edges,
multiple incoming edges and aborted transactions.

Locked sub-graph of user2 (G2)

Edges that connect locked
sub-graphs together are not
locked for anybody (GU)

Locked sub-graph of user1 (G1)

Locked sub-graph of user3 (G3)

Fig 1. Graph partitioning protocol that prevents dangling edges and multiple incoming edges.

4.2 Preventing Cycles

Collaborative workflow editors can recognize and eliminate cycles within their own sub-graphs, however,
none of the editors or even the central lock manager knows the current state of the whole workflow during an
editing session. In extreme cases it can happen that nonetheless no cycle exists in any of the locked sub-
graphs, a cycle exists in the whole workflow [11]. Although a central component that validates every edge-
creation operation could allow only valid modifications to the graph, such a component would surely slow
down client side editors and would make offline editing impossible. Our proposed solution for this problem
is a lock partitioning protocol that creates sub-graphs in such a way that no edge creation operation within
any of the locked sub-graphs can result cycle in the whole graph. In our previous paper we introduced two
graph partitioning algorithms that implement the protocol from Section 4.1 and that also prevent cycles [11].

The first algorithm of that paper (to be called v1 algorithm now) locks complete branches of a graph, i.e.
if a V vertex needs to be locked for user A, then every child vertex of V and every child edge of V also
become locked for A. If either V, or any of its child components are already locked for a user B, then A’s
locking request is denied, the system does not try to find a smaller, but lockable sub-graph.

The second algorithm from our previous paper (to be called v2 algorithm now) is an improved version of
v1, because it uses two types of locks. Those components that user A requested to lock should be locked with
USER lock (U lock). The child vertices and child edges of these components are locked with SYSTEM
locked (S lock). While U locks are visible for users and mark the editable components, S locks are invisible
to users and seen only by the lock evaluator algorithm to decide about lock compatibility. U locks are
incompatible with each other, i.e. no more than one user can have U lock on a component. On the other hand,
we proved that multiple S locks can exists on the same component, moreover, in some cases both an S lock
and an U lock is allowed on the same component. It has been proven that a lock request must be denied only,
if it puts an U lock on a component that already has an S lock and at the same time it puts an S lock on a
component that already has an U lock.

Our new algorithm (to be called v3 algorithm now) uses only one lock. (Like the v1 algorithm, or like to
U lock in the v2 algorithm.). It uses a new concept, called “contiguity graph” to decide about
granting/denying locks. Before describing the v3 algorithm we provide a definition of the “contiguity graph”.

Definition: A contiguity graph is a graph that represents the connections among locked sub-graphs, and
among locked sub-graphs and unlocked vertices of a workflow. The contiguity graph C=C(VC, EC) of a
G=G(V, E)=G1+G2+..+Gn+GU workflow can be generated with the below described Algorithm (1). In the
contiguity graph every locked sub-graph of the G graph appears as a single node (Step 2); every edge that
connects two locked sub-graphs together appears as an edge (Step 3), and every unlocked component (vertex
or edge) appears as it is (a vertex or an edge) (Step 4 and 5).

Algorithm (1): Generating contiguity graph:

1) VC = {}, EC = {}
2) For ∀ Gi

Add a new vertex denoted as Vi
C to VC

3) For ∀ Gi,Gj ∈ V (i≠ j)
 For ∀ e=e(vk, vl), e∈E | vk∈Gi , vl∈Gj

 Add eC=c(vi
C, vj

C) to EC
4) For ∀ v∈GU

Add a new vertex denoted as Vi
C to VC

5) For ∀ e=e(vi, vj)∈GU
Add a new edge denoted as eC=eC(vi

C, vj
C) to VC

The v3 lock evaluator algorithm uses the contiguity graph to decide about lock requests and it is defined with
Algorithm (2) below. V3 first allocates all those components that the submitter of Ri wants to write (Step 2).
It then allocates the end nodes of all the requested edges (Step 3). This is required to protect against dangling
edges and multiple incoming edges as it defined in Section 4.1. In Step 4 the manager checks whether any of
the components that should be locked is already locked. It denies the lock if this is the case. If still all the
components are available for locking then it generates the contiguity graph (Step 5) and checks whether there
is a cycle in it (Step 6). If a cycle is found, then it denies the lock. If there is no cycle in the contiguity graph
then it locks the components and notifies the user (Step 7, 8). The editor can allow the user edit these
components and when the workflow is saved it propagates the modified components back to the server where
they are used to update the complete workflow.

Algorithm (2): Consistency-aware lock evaluator algorithm (v3 algorithm):

Input: Ri - The locking request to evaluate. Ri includes those components of the
graph that its owner wants to modify or delete
Output: Gi - The sub-graph that must be locked to serve the request. If Gi is
empty, then the request is denied and no lock is granted.

1) Gi = {}
2) Add every component from Ri to Gi
3) Add the end nodes of every edge from Ri to Gi
4) If (any component of Gi is already locked) then Gi = {}
5) Generate the contiguity graph of G � GC
6) If (cycle exist in GC) then Gi = {}
7) Lock elements of Gi
8) Return Gi to the owner of Ri

The v3 lock evaluator algorithm assures that there is no need to abort or modify any users’ editing
session, his/her changes can be integrated into the complete workflow without breaking its consistency. An
important step in algorithm (2) is Step 6, as it claims that a lock request must be denied if a cycle exists in the
contiguity graph. We prove now that checking for cycle in the contiguity graph is enough to protect against
cycles in workflows.

Statement: If an editing session is able to create a cycle in a workflow, then a cycle must have existed in the
contiguity graph of the workflow when the editing session started.

Proof: Assume that userA, userB, … userM concurrently edit a G graph. Assume that the modifications made
by user1, user2, … useri (i<=M) result a cycle in G. Denote with e1, e2, ..., ei those edges that were added by
user1, user2, … useri to the cycle respectively. Observations:

• Because these user could add new edges to their sub-graphs (G1,G2,,...Gi) there must be at least 2-2
nodes in every sub-graph. (If a transaction holds lock on an edge then it must hold locks on its source
and sink nodes too – see Step 3 of the algorithm.)

• Because adding the e1, e2, ..., ei edges to the G1, G2,, ...Gi sub-graphs results a cycle in G, there must be
directed routes among the G1, G2,, ...Gi sub-graphs before the editing sessions started. If this would not
be true, and the route between some Ga and Gb sub-graphs was created by some userx, then Gx sub-graph
should hold common nodes with Ga and Gb sub-graphs. This is impossible because the above algorithm
denies the start of editing sessions with overlapping components, so it would deny the parallel work of
userx. usera and userb.

So when the Ri was evaluated by the algorithm then already at least 2-2 nodes exist from the cycle in
G1,G2,,...Gi and there were already directed routes between these sub-graphs. In the continuity graph every of
these sub-graphs is represented as a single node, so there must be a cycle in the contiguity graph. �

5. DISCUSSION AND PERFORMANCE ANALYSIS

All the three lock evaluator algorithms (v1, v2 and v3) provide such a partitioning of acyclic graphs, that
the consistency rules cannot be broken by any editing user. However, none of the solutions guarantee
deadlock free editing scenarios. It can happen that user A locks sub-graph Ga, user B locks sub-graph Gb and
they both wait for each others sub-graphs to become unlocked in order to extend their own sub-graphs with
those components. Prohibiting users to hold locks on more than one workflow component could be a solution
as it is applied in the GroupGraph system [5]. However, in this way operations that affect multiple
components (e.g. a definition of a new edge) cannot be performed. That is why we suggest the inclusion of
awareness tools in the graph editors, so users can see the topology of locks on the whole graph, can contact
each other and can manually delay locks in favour of others. Groupware widgets, such as the MAUI Toolkit
[14] can be used to increase the developers’ group awareness.

The three algorithms use different policies to evaluate lock requests, and consequently can result different
partitioning of a graph. In the same situation one algorithm can deny the lock request, while another
algorithm can grant the locks. From the users’ point of view the algorithm that allows the most developers to
work on the same graph concurrently, provides the best collaborative performance. The more users can
access to a workflow the sooner they can finish the definition process and can proceed to workflow
execution. Groupware systems are typically evaluated through prototype implementations with laboratory
studies or through production implementations with real-life scenarios [13]. Because the decision made by a
lock evaluator algorithm in a given locking situation can be predicted, we are in better situation and can
compare the collaborative performance of the algorithms in a purely theoretical way.

The decision made by a lock evaluator algorithm depends only on the current state of the workflow graph,
the topology of the existing locks, and the topology of the requested locks. The decision is independent from
several other parameters, such as the unsaved parts of the graph (These are visible only in the client side
editors.) When an algorithm evaluates the RS = R1,R2,...,Rn sequence of locking requests on a G graph, then
besides partitioning G to locked sub-graphs and an unlocked sub-graph, the algorithm implicitly returns a 0
or a 1 value for each request. 0 means that the lock request is denied, 1 means that the request can be served.
The more 1 digits are given for the evaluation of an RS lock request on a G graph, the more users are

allowed to concurrently edit the workflow. Consequently, by comparing the binary vectors of the algorithms
for a given editing situation, the collaborative performance of these algorithms can be compared. It is easy to
see that the v2 algorithm provides a better collaborative performance than the v1 algorithm. In situations
when a user’s lock request does not require S lock on the graph the v2 algorithm results the same lock
topology than the v1 algorithm, so it allows exactly the same persons to work with the graph. However, when
S locks must be used by v2 and only S locks cause collision, then v2 allows more people to edit the
workflow. As a consequence the v2 algorithm gives better user satisfaction than the v1 algorithm in any
collaborative workflow editor environment.

The comparison of the v2 and v3 algorithms does not result such a clear answer. We found, that in some
editing situations the v2 algorithm allows more users to work on the graph, while in other cases the v3
algorithm provides better collaborative performance. Fig. 2 gives one example for each of these situations.

The upper half of Fig 2. shows three users requesting locks on a G graph. While v3 algorithm allows all
the three persons to lock and work, v2 would deny the third request. The bottom half of Fig. 2 shows that v2
allows two users to work on an F graph, while v3 allows locks only to the first person. Our current research
focuses on the categorisation of editing cases and then on the definition of an intelligent lock evaluator
algorithm, that uses both S locks and contiguity graphs to maximise the success of locks, to provide better
collaborative performance than v2 and v3.

V
3

pr
ov

id
es

 b
e

tte
r

pe
rf

or
m

a
nc

e
th

a
n

v2

Users’ lock requests:

R1={A},
R2={B},
R3={C, D}

Evaluation outcome:
• v2 denies lock for R3

because it puts S lock on
U lock and U lock on S
lock.

• V3 allows lock for R3

because there is no cycle
in the contiguity graph

G graph with locks issued by v2:

B S

2 U

3 S1 U

2 S

A

B

D

C

3 UPutting an S lock on
an existing U lock

Putting an U lock on an existing S lock

Contiguity graph of G:

v2
 p

ro
vi

de
s

be
tte

r
pe

rf
or

m
a

nc
e

th
a

n
v3

Users’ lock requests:

R1={A}
R2={B, D}

Evaluation outcome:
• v2 allows lock for R2

because it causes no lock
collision

• v3 denies lock for R3

because ther is cycle in
the contiguity graph

F graph with locks issued by v2:

2 U

2 S

2 U

1 U

A

B

C

D

Contiguity graph of F:

G2

C

G1

Fig 2. Example scenarios that demonstrate the difference in the collaborative performance of v2 and v3 algorithms.
(Notations: 1 U: component locked with U lock for R1; 1 S: component locked with S lock for R1, …)

G2

G3ba

bc

da
G1

6. SUMMARY AND CONCLUSIONS

The paper presented a method for the collaborative editing of workflows with protecting consistency of
graphs. The solution is based on a pessimistic locking approach which ensures that graphs are partitioned for
users in such a way that their contributions cannot result cycles, dangling or overlapping edges in the graph.
The solution assures that no user’s editing transaction is aborted and no user’s development effort is wasted.
The introduced algorithm uses a different method to decide about locks than the two other algorithms that we
discussed in our previous work [11]. A method to compare the collaborative performance of graph locking
algorithms was also presented. While the second algorithm can perform better than the third, there cannot be
clear decision made between the second and third algorithms. Currently, we are performing a detailed
analysis of the collaborative graph editing scenarios to be able to define the most powerful algorithm, which
would allow the highest number of users to share a graph.

We have a prototype implementation of a collaborative workflow editor environment [3]. It is called
Collaborative P-GRADE Grid Portal and it demonstrates that an originally single-user workflow tool can be
turned into a groupware application with lock based concurrency control techniques. Once the most efficient
graph partitioning algorithm is found we intend to further develop the Collaborative P-GRADE Grid Portal
and make it use this solution for lock request evaluation.

REFERENCES

1. Diimitrios Georgakopoulos, Mark Hornick, Amit Sheth: An overview of workflow management: From process
modeling to workflow automation infrastructure, Journal of Distributed and Parallel Databases, Volume 3, Number 2.
1995, pp. 119-153.

2. Ian Foster, Carl Kesselman (eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann,
1998.

3. Sipos, G. et al, 2005, Workflow-oriented Collaborative Grid Portals, Advances in Grid Computing, In. Proc. of
European Grid Conference, EGC 2005, LNCS 3470, Amsterdam, The Netherlands, pp. 434-443.

4. Held, M., Blochinger, W., 2009, Structured Collaborative Workflow Design, In. Future Generation Computer
Systems, Vol. 25, Issue 6, Pages 638-65.

5. H. A. S. Lima Filho, Celso M. Hirata, GroupGraph: A Collaborative Hierarchical Graph Editor Based on the Internet,
Proceedings of the 35th Annual Simulatin Symposium, 2002.

6. Dewan, P., Riedl, J., 1993, Toward computer-supported concurrent software engineering, In IEEE Computer, vol. 26,
no. 1, pp. 17-27.

7. Huang, C.J. Liao, L.M., 2007, An intelligent agent-based collaborative workflow for inter-enterprise PCB product
design, In Proc of IEEE International Conference on Industrial Engineering and Engineering Management,
Singapore, pp. 189-193

8. Goble C.A., De Roure D.C., 2007, MyExperiment: Social Networking for Workflow-Using E-scientists, In
Proceedings of the 2nd workshop on Workflows in support of large-scale science, Monterey, California, USA. ACM,
New York, USA

9. Schuster, H. et al., 2000, The collaboration management infrastructure, In Proc. of ICDE Conference, San Diego,
California., USA, pp 677–678.

10. Friese, T., et al, 2006, Collaborative Grid Process Creation Support in an Engineering Domain, In proc of High
Performance Computing - HiPC 2006, pp. 263-276.

11. Sipos, G., Kacsuk, P., 2009, Maintaining Consistency Properties of Grid Workflows in Collaborative Editing
Systems, Proc. of Grid and Collaborative Computing Conference (GCC09), IEEE-publishing, Lanzhou, China,
pp.168-175.

12. Chengzheng Sun , Xiaohua Jia , Yanchun Zhang , Yun Yang , David Chen, Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems, ACM Transactions on Computer-
Human Interaction (TOCHI), vol.5 no.1, pp.63-108, 1998.

13. Pinelle, D., and Gutwin, C., 2000, A Review of Groupware Evaluations, Proceedings of Ninth IEEE WETICE 2000
Workshops on Enabling Technologies, Gaithersburg, Maryland, pp. 86-91, 2000.

14. Hill, J., Gutwin, C., 2004, The MAUI Toolkit: Groupware Widgets for Group Awareness, In Journal of Computer
Supported Cooperative Work (CSCW), Vol. 13 No. 5-6, pp. 539-571.

