-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by SZTAKI Publication Repository

EFFICIENT PARTITIONING OF GRAPHSIN
COLLABORATIVE WORKFLOW EDITOR SYSTEMS

Gergely Sipos, Péter Kacsuk
MTA SZTAKI, Hungarian Academy of Sciences
Budapest, Hungary
{sipos, kacsuk}@sztaki.hu

ABSTRACT

Collaborative editing systems allow a group of agerview and edit a shared item from geographici#ipersed sites.
Consistency maintenance in the face of concurrecesses to shared entities is one of the coresissube design of
these systems. Workflow modelling is a popular mégphe to describe business processes, scientifierarents,
distributed applications. A workflow is directedagh which specifies tasks and data/control depamgienThe paper
introduces protocols by which workflow developevieonments can enable the concurrent editing gblgseby multiple
users. The proposed graph partitioning and pedsiniecking algorithms assure that collaboratorsrza break the
consistency criteria of workflows by introducingctss or invalid edges to them. We prove that tHetiso results
correct graphs even when collaborative parties keeparate parts of the workflow and do not shae# thwn sub-
graphs with each other in real time. A method tmgare the efficiency of different graph partitiogialgorithms is also
provided.

KEYWORDS

workflow, collaboration, DAG, groupware, lockingiauation

1. INTRODUCTION

Workflow techniques are widely used methods foaferand distributed processing in business [1] an
scientific environments [2]. Due to the widespreadption of workflow technologies, the term “wodkl’
is heavily overloaded and has various differeninitédns. We consider a workflow as a process toaisists
of several steps (tasks) and defined in the forra dfrected graph, in which vertices representstasibe
performed by human or computer services and edggresent dependencies among these tasks. (Data or
control dependency). A workflow has a developmérase, during which the graph is defined in a greghi
environment, and an execution phase, when an eeatengine instantiates the process of the workflow

With the advance of workflow technologies, workflayplications become more complex they integrate
more human knowledge. The development of compled/canlarge workflows requires support for
collaborative work. Recent works from the field ofllaborative development of workflows studied
concurrent access to workflows [3][4][5], but didtrdeal with inconsistency, a common issue in cdempu
supported collaborative working (CSCW) environmemtsthe current paper we propose a solution that
guarantees the consistency properties of workflpplieations and enables not only effective, bubals
correct interaction among users

Maintaining consistency of workflows is highly impant in any CSCW application because faults not
discovered at early stages can be debugged latgr ainhigh costs [6]. This paper focuses on the
maintenance of three graph consistency criteriq: wWdrkflows must remain acyclic, (2) edges in the
workflow must point to existing vertexes and (3)xmaum one input edge can be connected to an input
channelof a workflow vertex (a vertex that represents e.gVeb service can have more than one input
channels). These consistency rules are criticdlose workflow languages, environments and manabats
do not support cycles and/or cannot handle brokemections between vertexes. Protecting againgtpteul
incoming edges assures that input data of a tas&tisverwritten from multiple sources. Several kflaw
tools require these criteria, e.g. GriPhyn (Pegadus/erna (SCUFL), Grid Service Flow Language, @wn

https://core.ac.uk/display/48290951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DAGMan, Workflow Enactment Engine, just to nameew.fMoreover, the approach is also applicable in
other domains where collaboratively edited entities represented as acyclic graphs, e.g. in mirbimg
tools or automating product design processes [He Tontribution of the paper to the collaborative
computing and to the workflow fields is a prototiwht enables the real-time concurrent editing apbs by
multiple parties and the proof that the protocairgmtees consistency of the shared entities.

The next section provides an overview of relatedkaolIn Section 3 the concept of lock based
collaborative editing of workflows is described.€eTproblems related to workflow consistency are a&xjed
in Section 4, where our consistency aware lockirgggol is introduced and a proof of correctnes®igi
Section 5 provides discussion on additional progerof the solution such as deadlock and outlines a
performance analysis method to compare the nevagubtvith two of our earlier algorithms. Our summar
and conclusions are given in Section 6.

2. RELATED WORK

Real-time collaboration through shared, editablties has recently become an intensively researche
topic within computer supported collaborative wégSCW). Most of the related efforts focused on éngb
concurrent editing of items that are either unstmed (such as a drawing) or have hierarchicalcaire
(such as a document consisting of sections, subsslt Unstructured items do not have consistency
requirements and do not require consistency maanian frameworks. Although consistency maintenarice o
hierarchical structures is well understoddected acyclic graphs cannot be mapped to hidraa graphs
(tree graphs) and that is why they require sligtifferent consistency maintenance solutions.

Usage of CSCW approaches for the collaborativaneditf workflow applications is a less researched
field. Although some solutions support the collatian of workflow developers, these systems arenofto
not provide services for real-time collaborationor Fexample, MyExperiment.org is a Web 2 style
community site where scientist can publish, discaral download workflows [8], but the concurrenitiad
of these entities is not possible.

Some recent efforts in workflow research have fedusn the knowledge sharing aspects of collab@ativ
workflows in multi-organizational environments. Whthese works provide detailed analysis on thestise
awareness and propose system architectural comizonéimey rarely discuss concurrency control
mechanisms and implementations [9][10]. There arfeva exceptions though. Lock based concurrency
control frameworks are given in [3][5]. Unfortungtenone of these solutions protect the consistenfcy
workflow graphs so some concurrent editing scesatam result inconsistent applications that catats
executed only after corrections.

The HOBBES environment also provides lock basedagmh for concurrent editing of grid workflows
[4], however as we discussed in [11] it providesyy@oor collaborative performance, i.e. it allowsdyovery
few users to work on the same graph concurrenilyour previous work [11] two versions of a lock-eds
workflow partitioning algorithm have been introddceAlthough both partitioning algorithms proteceth
consistency of directed acyclic grid workflows, quemed to the new solutions that is described is paiper
they either lock too large sub-graphs for each usatlowing only a few people to concurrently edit
workflow — or use two types of locks, resulting@nplicated system architecture that is difficultaid to
existing workflow editor environments. The currentution applies only one lock to distinguish tliéedent
users’ graph components. Version Control Systen@)Vsuch as CVS, SVN, Git, Mercurial are the typica
tools to support the concurrent engineering ofveafe [6]. However these environments cannot helnén
collaborative development of workflows becausew@rkflows are typically stored in a single file de.
workflow description file) meanwhile VCS supporidlaboration on file sets, not allowing the distriion
of a single file among several users; and (ii) M@@k at the level of text and cannot interpret agsblve
conflicts that happen at a higher abstraction |émebur case at the level of graph vertexes oesjig

3. COLLABORATIVE EDITING OF ACYCLIC GRAPHS

Collaborative development of workflows involves carrent access to a single graph by multiple users.
Collaborative development tools must assure thatubers’ contributions are integrated into a single

coherent application without resulting loss of datanvalid state. Workflows are developed manyall.
changes made on a workflow graph are results ofanuactions. In a collaborative environment if uskr
changes on a workflow are lost, or dropped due tisaaB’s concurrent changes, then this results wasted,
sometimes irreproducible effort for us&r An important requirement for collaborative develapr of
workflows is that no user’s development sessionlghibe aborted because of another concurrent user's
work.

Turn-taking, serialization (often extended with @i®n transformation) and locking are the most
commonly used concurrency-control techniques iugwnare environments [12]. In our previous papers we
argued that lock based concurrency control matotsg with the needs of workflow developers [3][1e
suggested locks at graph component level, i.eicesrind edges are the lockable units. In our lolktive
workflow editor architecture the lock manager appess a central component. The role of the lockagan
is to accept lock requests from the users, evalthese requests and grant or deny the locks based o
compatibility rules and protocols. In our previquegper [11] we introduced two different algorithrhattcan
be integrated into a lock manager to grant and dedls. In Section 4 a brief overview of these two
algorithms will be given, and a third algorithm Mile described. In the remaining part of the papercall
these algorithms addck evaluator algorithmis A lock evaluator algorithm can be modelled wéthunction
that receives a workflow graph and a lock requeshputs, and gives a partitioning of the graploatput.
The function partitions the graph to locked andoukéd parts. A locked sub-graph contains those exiésn
of the workflow that the lock requestors’ editingnk will affect and must be locked for him/her teoa
conflicts. If a lock cannot be granted, then theruaust be informed about the denial so he/sherwatify
the request or submit it at a later time.

When multiple users work on the same graph conetlyrethen a series of locking requests reach the
lock manager. The lock evaluator algorithm evalsi@gch request separately, and allocates diffeeets of
the graph for the users:

G, R® 9 Lock evaluator algorithm > G = G1+Gy+ ...+G+G

whereG marks the workflow graph on whighusers work concurrentl®® = Ry,R,,...,R, marks the locking
requests of the userR.includes those graph components (vertices, edigasyseii wants to modify on the
graph. Such a request can be generated by thegsehrough the graphical editor where he/shetethe
workflow components that he/she wishes to mod#y.G,, ...G, markn sub-graphs o6 that become locked
for the usersG, gets locked owner of th lock requestG' is the sub-graph db that remains unlocked
even after all then users begin concurrently editing the graph. Nbt tach of the sub-graphs contains
some vertices and some edges from G, W8t sub-graph is not necessarily connected. If eigses intends
to modify the first and the last nodes of a pipezlgraph, then his/her locked sub-graph may corutain
these two nodes so the sub-graph is disconnectedcauBe of using exclusive locks

G NG, =@,vi,jl<i,j<ni=jandG NG’ =@, vi<i<n.

4. CONSISTENCY OF WORKFLOW GRAPHS

Collaborative workflow editors must assure thatiedisessions bring graphs from a consistent $tate
another consistent state. We identified the follaypihree consistency criteria for workflow graph][

1. There is no “dangling” edge in the graph, i.e. dgeethat refers to non-existing (already deletex)en
as its source and/or sink.

2. Maximum one edge can provide input data for an tinghannel of a node. If multiple edges are
connected to the same input channel, then the ggraoof the workflow would be unpredictable as the
data items that arrive through the edges overwsteh other. (This condition still allows a vertexhave
more than one input channel.)

3. The graph is acyclic.

In a collaborative editing scenario no party has tomplete view of the workflow, thus maintaining
consistency is not self-evident. In sections 4.2,ahd 4.3 protocols are introduced to maintainabheve
consistency criteria in lock based environments.

4.1 Preventing Dangling Edges and M ultiple Incoming Edges

A dangling edge appears in the graph when a tréinaateletes a node without the removal of its edge
Multiple incoming edges come into existence whencoorent users connect input edges to the samé inpu
channel of the same node. In [11] we proved thgtlark evaluator algorithm can protect against diagg
edges and against multiple incoming edges if it@ments the following protocol (See also Fig. 1):

¢ An edge can be locked for a transaction only ihbaftits end nodes can be locked for the same user.
This assures that a lock&l sub-graph islwaysenclosed by nodes.

¢ Within each locked sub-graph the users’ editorsateeck for dangling edges. (In the same way as a
single-user editor does.)

¢ Only the owner of a locked vertex can connect agedd that vertexThis rule implicitly declares
that no vertex can be shared between multiple usersocks cannot be used at a finer granularity,
e.g. at the level of parameters of vertexes.

¢ When an editing session is finished (the user sli@ave workflow” in the editor) then the updated
components of his/her locked sub-graph must be edengto the complete graph residing on the
server. If the user deleted a vertex that was aiedeo other sub-graphs, then these edges must be
deleted by the serveBecause these edges are not locked for any user,rdmovals do not make
any transaction abort, do not waste any users’ work

This protocol guarantees that workflow developens perform any modification within their own sub-
graphs and when these changes are merged intoothplaete graph they do not result dangling edges,
multiple incoming edges and aborted transactions.

Edges that connect locked
sub-graphs together are not
locked for anybody (GY)

Fig 1. Graph partitioning protocol that prevents dangkuiges and multiple incoming edges.

4.2 Preventing Cycles

Collaborative workflow editors can recognize anch&late cycles within their own sub-graphs, however
none of the editors or even the central lock mankgews the current state of the whole workflowidgran
editing sessionln extreme cases it can happen that nonethelessycle exists in any of the locked sub-
graphs, a cycle exists in the whole workflow [1Although a central component that validates eweshye-
creation operation could allow only valid modificats to the graph, such a component would surely sl
down client side editors and would make offlinetiedi impossible. Our proposed solution for thiskpem
is a lock partitioning protocol that creates subplrs in such a way that no edge creation operatithrin
any of the locked sub-graphs can result cycle evthole graph. In our previous paper we introdueen
graph partitioning algorithms that implement thetpcol from Section 4.1 and that also prevent cyfld4].

The first algorithm of that paper (to be calledalgorithm now) locks complete branches of a gragh,
if a V vertex needs to be locked for user A, thearg child vertex of V and every child edge of \sal
become locked for A. If either V, or any of its ltchcomponents are already locked for a user B, tien
locking request is denied, the system does ndbtfipnd a smaller, but lockable sub-graph.

The second algorithm from our previous paper (todled v2 algorithm now) is an improved version of
vl, because it uses two types of locks. Those caemis that user A requested to lock should be thekth
USER lock (U lock). The child vertices and childged of these components are locked with SYSTEM
locked (S lock). While U locks are visible for usemd mark the editable components, S locks aisilihe
to users and seen only by the lock evaluator algaorito decide about lock compatibility. U locks are
incompatible with each other, i.e. no more than wser can have U lock on a component. On the bted,
we proved that multiple S locks can exists on #raes component, moreover, in some cases both ackS lo
and an U lock is allowed on the same componehtdtbeen proven that a lock request must be denigd
if it puts an U lock on a component that alreadg ha S lock and at the same time it puts an Sdock
component that already has an U lock.

Our new algorithm (to be called v3 algorithm nows only one lock. (Like the v1 algorithm, or like
U lock in the v2 algorithm.). It uses a new congepalled “contiguity graph” to decide about
granting/denying locks. Before describing the \goathm we provide a definition of the “contiguigyaph”.

Definition: A contiguity graphis a graph that represents the connections ammeigd sub-graphs, and
among locked sub-graphs and unlocked vertices wbikflow. The contiguity graptC=C(\V°, E°) of a
G=G(V, E)=G+G,+..+G,+G" workflow can be generated with the below describ&gbrithm (1). In the
contiguity graph every locked sub-graph of thgraph appears as a single node (Step 2); evewy thdg
connects two locked sub-graphs together appeas adge (Step 3), and every unlocked componertegver
or edge) appears as it is (a vertex or an edgep @Gand 5).

Algorithm (1): Generating contiguity graph:

1) Ve={}, Ec={}
2) For V @G
Add a new vertex denoted as V. to
3) For V G,G e V (i #j)
For V e=e(vy, Vi), ecE| veG , vieqG
Add e®=c(v;% v;9 to E°
4) For V veG’
Add a new vertex denoted as V. to
5) For V e=e(vi, v;)eG’
Add a new edge denoted as e=e<(v;% v;9 to \©

The v3 lock evaluator algorithm uses the contiggigph to decide about lock requests and it imddfiith
Algorithm (2) below. V3 first allocates all thoseraponents that the submitter Rfwants to write (Step 2).
It then allocates the end nodes of all the reqdestiges (Step 3). This is required to protect agaiangling
edges and multiple incoming edges as it definesection 4.1. In Step 4 the manager checks whetheofa
the components that should be locked is alreadyetihclt denies the lock if this is the case. Ifl sl the
components are available for locking then it getearéhe contiguity graph (Step 5) and checks whetteze

is a cycle in it (Step 6). If a cycle is found, rthie denies the lock. If there is no cycle in tloatiguity graph
then it locks the components and notifies the (S¢ep 7, 8). The editor can allow the user edis¢he
components and when the workflow is saved it prapegthe modified components back to the serverevhe
they are used to update the complete workflow.

Algorithm (2): Consistency-aware lock evaluator algorithm (v3 athm):

Input: R - The |l ocking request to evaluate. R includes those conponents of the
graph that its owner wants to nodify or delete

Qutput: G - The sub-graph that nust be | ocked to serve the request. If G is
enpty, then the request is denied and no lock is granted.

1) G ={}

2) Add every conponent fromR to G

3) Add the end nodes of every edge fromR to G

4) 1f (any conponent of G is already |locked) then G = {}
5) Generate the contiguity graph of G > G

6) If (cycle exist in G then G = {}

7) Lock elenents of G

8) Return G to the owner of R

The v3 lock evaluator algorithm assures that therao need to abort or modify any users’ editing
session, his/her changes can be integrated intoctmglete workflow without breaking its consistenéy
important step in algorithm (2) is Step 6, asdtims that lock request must be denied if a cycle existisan
contiguity graph We prove now that checking for cycle in the cgaity graph is enough to protect against
cycles in workflows.

Statement: If an editing session is able to create a cycle workflow, then a cycle must have existed in the
contiguity graph of the workflow when the editingssion started

Proof: Assume thatisep, useg, ... usek, concurrently edit & graph. Assume that the modifications made
by uses, uses, ... user (i<=M) result a cycle irG. Denote withey, e, ..., those edges that were added by
uses, Uses, ... user to the cycle respectively. Observations:

e Because these user could add new edges to thegrapbs G.,G,,,...G) there must be at least 2-2
nodes in every sub-graph. (If a transaction hadd& bn an edge then it must hold locks on its seurc
and sink nodes too — see Step 3 of the algorithm.)

e Because adding the, e,, ..., e edges to th&,, G,,, ...G sub-graphs results a cycle®) there must be
directed routes among t&, G,,, ...G sub-graphs before the editing sessions startedislfwould not
be true, and the route between sdB@ndG, sub-graphs was created by samsek, thenG, sub-graph
should hold common nodes wi€y, andG, sub-graphs. This is impossible because the aldgeeitam
denies the start of editing sessions with overlagpmomponents, so it would deny the parallel wdrk o
user. usey andusey,.

So when theR was evaluated by the algorithm then already at [2&s nodes exist from the cycle in
G1,G,,,...G and there were already directed routes betweese theb-graphs. In the continuity graph every of
these sub-graphs is represented as a single rotleere must be a cycle in the contiguity graph.

5. DISCUSSION AND PERFORMANCE ANALYSIS

All the three lock evaluator algorithms (v1, v2 ar8) provide such a partitioning of acyclic graptist
the consistency rules cannot be broken by anynegditiser. However, none of the solutions guarantee
deadlock free editing scenarios. It can happenubattA locks sub-graplt,, userB locks sub-grapl, and
they both wait for each others sub-graphs to beaanh@cked in order to extend their own sub-grapite w
those components. Prohibiting users to hold lockmore than one workflow component could be a swiut
as it is applied in the GroupGraph system [5]. Hesve in this way operations that affect multiple
components (e.g. a definition of a new edge) cabegberformed. That is why we suggest the inclusion
awareness tools in the graph editors, so usersamthe topology of locks on the whole graph, cartact
each other and can manually delay locks in favéwtlwers. Groupware widgets, such as the MAUI Tibolk
[14] can be used to increase the developers’ gaggreness.

The three algorithms use different policies to eae lock requests, and consequently can restdrelit
partitioning of a graph. In the same situation @igorithm can deny the lock request, while another
algorithm can grant the lockBrom the users’ point of view the algorithm thdbwmls the most developers to
work on the same graph concurrently, provides thet bollaborative performanceThe more users can
access to a workflow the sooner they can finish deénition process and can proceed to workflow
execution. Groupware systems are typically evatudteough prototype implementations with laboratory
studies or through production implementations wal-life scenarios [13]. Because the decision niade
lock evaluator algorithm in a given locking sitwetican be predicted, we are in better situation eard
compare the collaborative performance of the allgars in a purely theoretical way.

The decision made by a lock evaluator algorithmedels only on the current state of the workflow ¢rap
the topology of the existing locks, and the topglofithe requested locks. The decision is indepenfiem
several other parameters, such as the unsavedqiatie graph (These are visible only in the clisiue
editors.) When an algorithm evaluates B Ry,R,,...,R, sequence of locking requests on a G graph, then
besides partitioning G to locked sub-graphs andrdacked sub-graph, the algorithm implicitly retsira O
or a 1 value for each request. 0 means that thkerémpiest is denied, 1 means that the requestecaerled.
The more 1 digits are given for the evaluation of R lock request on a G graph, the more users are

allowed to concurrently edit the workflow. Consetflye by comparing the binary vectors of the alturs
for a given editing situation, the collaborativerfmgmance of these algorithms can be compalieid.easy to
see that the v2 algorithm provides a better cotatidee performance than the v1 algorithm. In sitrat
when a user’s lock request does not require S tactkhe graph the v2 algorithm results the same lock
topology than the v1 algorithm, so it allows exgattie same persons to work with the graph. Howenkeen
S locks must be used by v2 and only S locks caoflision, then v2 allows more people to edit the
workflow. As a consequence the v2 algorithm gives better sesfaction than the v1 algorithm in any
collaborative workflow editor environment

The comparison of the v2 and v3 algorithms doesemilt such a clear answer. We found, that in some
editing situations the v2 algorithm allows morergs® work on the graph, while in other cases tBe v
algorithm provides better collaborative performarkig. 2 gives one example for each of these $itust

The upper half of Fig 2. shows three users requegdticks on a G graph. While v3 algorithm allows al
the three persons to lock and work, v2 would dérmythird request. The bottom half of Fig. 2 sholet tv2
allows two users to work on an F graph, while UBvas locks only to the first person. Our currerga&rch
focuses on the categorisation of editing casesthad on the definition of an intelligent lock evalar
algorithm, that uses both S locks and contiguigphis to maximise the success of locks, to provetteb
collaborative performance than v2 and v3.

Users’ lock requests: G graph with locks issued by v2: Contiguity graph of G:
R]_:{A},
R=(B}, Putting an S lock on /W 3s N 3y)

an existing U lock

R3:{C, D}
® ®
« Evaluation outcome: \—1 y da
7 o Vv2 denies lock for Ry
. ba
because it puts S lock gn BS /
U lock and U lock on S B be
lock. ¢
e V3 allows lock for Ry L 2Uu 2s))
because there is no cycle I
in the contiguity graph Putting an U lock on an existing S lock
F graph with locks issued by v2: Contiguity graph of F:

Users' lock requests:
R]_:{A} ‘ A ’
R,={B, D} @

Evaluation outcome:

e Vv2 allows lock for R
because it causes no logk
collision

e V3 denies lock for R e 28

because ther is cycle in

the contiguity graph
Fig 2. Example scenarios that demonstrate the differentteei collaborative performance of v2 and v3 atbans.
(Notations: 1 U: component locked with U lock fof; R S: component locked with S lock fog,R..)

H
B
®

v2 provides better performance than y3V3 provides better performance than

6. SUMMARY AND CONCLUSIONS

The paper presented a method for the collaborativing of workflows with protecting consistency of
graphs. The solution is based on a pessimistigigcapproach which ensures that graphs are paeitidor
users in such a way that their contributions camesilt cycles, dangling or overlapping edges eghaph.
The solution assures that no user’s editing tratisads aborted and no user’s development effovtasted
The introduced algorithm uses a different methodettide about locks than the two other algorithimas e
discussed in our previous work [11]. A method tepare the collaborative performance of graph lagkin
algorithms was also presented. While the seconatitigh can perform better than the third, therencarbe
clear decision made between the second and thgoritdms. Currently, we are performing a detailed
analysis of the collaborative graph editing scessard be able to define the most powerful algorijtiarich
would allow the highest number of users to shageaph.

We have a prototype implementation of a collabweatvorkflow editor environment [3]. It is called
Collaborative P-GRADE Grid Portal and it demongsathat an originally single-user workflow tool da
turned into a groupware application with lock basedcurrency control techniques. Once the mostiefft
graph partitioning algorithm is found we intendfoother develop the Collaborative P-GRADE Grid Bbrt
and make it use this solution for lock request eathbn.

REFERENCES

1. Diimitrios Georgakopoulos, Mark Hornick, Amit ShetAn overview of workflow management: From process
modeling to workflow automation infrastructure, dual of Distributed and Parallel Databases, Vol@nsumber 2.
1995, pp. 119-153.

2. lan Foster, Carl Kesselman (eds.), The Grid: Blimegor a New Computing Infrastructure, Morgan Kiauainn,
1998.

3. Sipos, G. et al, 2005, Workflow-oriented CollabomtGrid Portals, Advances in Grid Computing, Imo® of
European Grid Conference, EGC 2005, LNCS 3470, &rdatm, The Netherlands, pp. 434-443.

4. Held, M., Blochinger, W., 2009, Structured Colladtore Workflow Design, In.Future Generation Computer
SystemsVol. 25, Issue 6, Pages 638-65.

5. H. A. S. Lima Filho, Celso M. Hirata, GroupGraphChllaborative Hierarchical Graph Editor Based lua nternet,
Proceedings of the 35th Annual Simulatin Symposiz002.

6. Dewan, P., Riedl, J., 1993, Toward computer-sugpocbncurrent software engineering, In IEEE Computd. 26,
no. 1, pp. 17-27.

7. Huang, C.J. Liao, L.M., 2007, An intelligent agdased collaborative workflow for inter-enterprBEB product
design, In Proc of IEEE International Conference lodustrial Engineering and Engineering Management,
Singapore, pp. 189-193

8. Goble C.A., De Roure D.C., 2007, MyExperiment: &bdNetworking for Workflow-Using E-scientists, In
Proceedings of the 2nd workshop on Workflows ipstdmf large-scale scienconterey, California, USA. ACM,
New York, USA

9. Schuster, H. et al., 2000, The collaboration mamege infrastructure, liProc. of ICDE ConferengeSan Diego,
California., USA, pp 677-678.

10. Friese, T., et al, 2006, Collaborative Grid Proc€seation Support in an Engineering Domain, In pobdigh
Performance Computing - HiPC 2006, pp. 263-276.

11.Sipos, G., Kacsuk, P., 2009, Maintaining ConsisteRecoperties of Grid Workflows in Collaborative Edg
Systems,Proc. of Grid and Collaborative Computing ConferengGCCO09) IEEE-publishing, Lanzhou, China,
pp.168-175.

12.Chengzheng Sun , Xiaohua Jia , Yanchun Zhang , Yamg , David Chen, Achieving convergence, causality
preservation, and intention preservation in reakticooperative editing systems, ACM Transaction€omputer-
Human Interaction (TOCHI), vol.5 no.1, pp.63-10898&.

13. Pinelle, D., and Gutwin, C., 2000, A Review of Quaare Evaluations, Proceedings of Ninth IEEE WET EIBO0
Workshops on Enabling Technologies, Gaithersbumyytnd, pp. 86-91, 2000.

14 Hill, J., Gutwin, C., 2004, The MAUI Toolkit: Grouwgare Widgets for Group Awareness, In Journal of Quater
Supported Cooperative Work (CSCW), Vol. 13 No. P, 539-571.

