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Abstract. We consider planning in a Markovian decision problem, i.e.,
the problem of finding a good policy given access to a generative model
of the environment. We propose to use fitted Q-iteration with penalized
(or regularized) least-squares regression as the regression subroutine to
address the problem of controlling model-complexity. The algorithm is
presented in detail for the case when the function space is a reproducing-
kernel Hilbert space underlying a user-chosen kernel function. We derive
bounds on the quality of the solution and argue that data-dependent
penalties can lead to almost optimal performance. A simple example is
used to illustrate the benefits of using a penalized procedure.

1 Introduction

We consider planning in a discounted Markovian Decision Problem (MDP) with
continuous state space and finite action space. We assume that transitions can
be generated at any selected state for any given action. The algorithm that we
consider is fitted Q-iteration (e.g., [8]), an instance of sample-based approximate
dynamic programming.

The algorithm’s main distinguishing characteristic is that the value function
iterates are obtained by solving appropriately defined regularized least-squares
regression problems. We give the particular form of the algorithm when the
value functions considered in the iterations belong to some Reproducing Kernel
Hilbert Space (RKHS). Our main theoretical results bound the quality of the
solutions as a function of the number of samples used by the algorithm, the
relation of the RKHS and the MDP and the number of samples used. As usual
when regularization is employed, performance is tuned through the choice of a
single scalar parameter, the penalty factor, which, in turn, can be selected in a
data dependent manner to optimize the performance.

The rationale of studying the use of regularization in solving MDPs is that
regularization has proven to be an extremely effective tool in machine learning,
in particular in supervised learning. The main idea underlying regularization is
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to achieve model selection by considering the complexity of solution candidates
individually. This is done by adding an appropriate complexity penalty, multi-
plied by the so-called regularization coefficient, to the empirical risk functional.
When the reguralization coefficient is chosen in an appropriate way (based on
the data or by complexity regularization), automatic adaptation to the complex-
ity of the target function becomes possible: The rate of convergence of such a
method is almost as fast as if the complexity of the target function was known
beforehand (e.g., Theorem 21.2 of [10]).

As the regularization coeflicient effectively controls the size of the function
space where the solutions are sought in, our approach of using reguralization in
fitted Q-iteration can be considered as a way of tuning the function approxima-
tor in an approximate dynamic programming procedure. Recently this tuning
problem has received considerable attention (e.g., [18, 13, 15, 8, 7, 19]). However,
none of the previous works that we know of explored in a systematic manner
how regularization influences the performance of the resulting procedure. The
only works that we know of that used regularization are that of Jung and Polani
[11], Loth et al. [14] and Xu et al. [22]. In particular, Jung and Polani [11] ex-
plored penalizing the empirical L?-norm of the Bellman-residual for finding the
value function of a policy given a trajectory in a deterministic system, while
L'-penalties for the same problem were considered by Loth et al. [14]. As the
straightforward implementation of penalized least-squares involves a nontrivial
computational cost, both papers focused on computational efficiency. Xu et al.
[22], on the other hand, used sparsification in Least Squares Temporal Difference
learning (LSTD) as an implicit form of regularization and studied the perfor-
mance of the resulting algorithm experimentally. In our more recent work, we
analyzed Regularized Policy Iteration methods that use LSTD and a modified
version of Bellman Residual Minimization (BRM)and provided finite time per-
formance bounds [9].

Works where planning in generative models were considered include those
of Kearns et al. [12] and Ng and Jordan [17]. Our work is complementary: Our
method is guaranteed to achieve optimality in the limit (unlike [17] where policy
search with a fixed policy class is considered) and it does not scale exponentially
with the effective planning horizon (unlike the lookahead tree building method
of [12]). However, our method comes with other restrictions: The MDP has to
be sufficiently regular in a sense that will be discussed later. The immediate
precursor of this work is that of Munos and Szepesvari [16], where fitted value-
iteration was studied in the same framework. In contrast to the approach followed
here, Munos and Szepesvari considered state-value functions and they did not
study regularization. Although our toolkit is the same, due to these differences
our results are different than those in [16], as will be further discussed below.

1.1 The organization of the paper

We present the notations and the necessary background on MDPs in Section 2.
The fitted Q-iteration algorithm is recalled in Section 3. The first main result
that relates the performance of the eventual policy and the LP-norms of the



errors committed during the iterations is presented in Section 4. This result is
in turn used in Section 5 to arrive at specific bounds for L? regularization. The
behavior of the algorithm and the tradeoffs involved are illustrated on a simple
domain in Section 6.

2 Background and notation

Because we consider continuous state spaces, we need a few concepts from analy-
sis. These are introduced first. This is followed by the introduction of the notation
and concepts used in connection to MDPs. We refer the reader to Bertsekas and
Shreve [4] for further details in connection to these.

For a measurable space with domain S, we let M(S) denote the set of prob-
ability measures over S. For p > 1, a probability measure v € M(S), and a
measurable function f: S — R, we let || f[|, , denote the LP(v)-norm of f:

T / | (s)[Pu(ds).

For brevity, we shall write || f||, to denote the L?(v)-norm of f. The supremum-
norm, || f||.., of f is defined by | f|l,, = sup,cx |f(x)]. We denote the space
of bounded measurable functions with domain X by B(X), and the space of
measurable functions with bound 0 < K < co by B(X; K).

A finite-action discounted MDP is defined by a quintuple (X, A, P, S,~),
where X is the (possibly infinite) state space, A = {a1,az,...,an} is the fi-
nite set of actions, P : X x A — M(X) is the transition probability kernel
with P(-|x,a) being the next-state distribution upon taking action a in state =,
S(-|z, a) gives the corresponding distribution of immediate rewards and v € (0, 1)
is the discount factor. We make the following assumptions on the MDP:

Assumption Al X is a compact subset of the d-dimensional Euclidean space.
We assume that the random immediate rewards are between — Ryax and Rpyax,
and the expected immediate rewards r(z,a) = [rS(dr|z,a) are bounded by

Ruax: |7]loc < Rmax. (Note that Rupax < Rmax.)

A stationary Markov policy is specified by a measurable mapping 7 : X —
M(A). Such a policy and a random initial state X € X gives rise to a random
trajectory (Xi, A¢, Ri)ien that we call a trajectory of m: Here A; ~ w(|X}),
Ri ~ S(:|X¢, Ap) and X¢pq1 ~ P(-| X, A¢). A policy is deterministic if 7(-|x)
concentrates on a single action for all states € X'. Such a policy will be identified
with a mapping 7 : X — A in the obvious way. In the rest of this paper, we use
the term policy to refer to stationary Markov policies.

The wvalue of a policy m when it is started from a state x is defined as the
total expected discounted reward that is incurred while the policy is executed:

V™(z) = By lzytm

t=0

onx], reX.



Here (Xy, A¢, R:) is a random trajectory underlying 7 (signified by the use of 7
as the subindex of the expectation operator in the definition of V™), where Xy is
such that the support of its distribution is the full state space X' (otherwise this
distribution can be chosen arbitrarily). Function V™ is also called the state-value
function of policy w. Closely related to V™ is the action-value function of :

Q" (x,a) =E, lZ”tht Xo=z,A=al, (x,a)€e X x A

t=0

Here the distribution of X is restricted as previously, Ag is such that at time zero
all actions are selected with positive probability everywhere (P (A¢ = a|Xo = z) >
0, ({E, CL) S XX.A), Rg ~ S(|X0, AQ), X1~ P(|X0, Ao) and otherwise (Xt, At, Rt)tZI
is a trajectory underlying 7. It is easy to see that for any m, the functions V™
and Q™ are bounded by Rpyax/(1 — 7).

Given an MDP, the goal is to find a policy that attains the best possible
values,

V*(z) = 8171rp V7 (x)

simultaneously for all states © € X'. A policy achieving this goal (i.e., V™ = V*)
is called an optimal policy. Function V* is called the optimal value function.

In order to characterize optimal policies let us define the optimal action-value
function,

Q" (x,a) =sup Q" (z,a), (,a) € X X A,

and the concept of greedy policies: A deterministic policy 7 is greedy w.r.t. an
action-value function @ € B(X x A) if, for all z € X and a € A, w(x) €
argmax, . 4 Q(z,a). Although greedy policies are non-unique, we will write (by
slightly abusing the notation) 7 = #(.; Q). Because A is finite, a greedy policy
always exists no matter how ) is chosen. The importance of Q* is that any
greedy policy w.r.t. @ is optimal. Hence, to find an optimal policy it suffices to
determine Q*.
The Bellman optimality operator T : B(X x A) — B(X x A) is defined by

(TQ)(w.) = r(wa) +7 [ maxQu.a')Pldylz.a)

As it is well known, T' is a contraction operator w.r.t. the supremum-norm with
index v: |TQ - TQ'|| . < 7IQ — Q|| @, Q" € B(X). Moreover, the optimal
action-value function is the unique fixed point of T: TQ* = Q*. Starting from any
Qo € B(X x A), Qi1 = TQy, is thus guaranteed to converge (at an exponential
rate) to Q*. This procedure is called value iteration.

Throughout the paper we will use 7 C { f : X — R} to denote some subset
of real-valued functions over the state-space X. For convenience, we will treat
elements of FM as real-valued functions f defined over X x A with the obvious
identification f = (f1,..., fm), f(z,a;) = fj(z), j=1,..., M (note that M de-
notes the number of actions). The set 7™ will be the set of admissible functions
used in the optimization step of our algorithm.



3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted Q-iteration
method (e.g., [8]), whose pseudo-code is shown in Fig. 1. The algorithm attempts

FittedQ(D,K,Qo)
// D: samples
// K: number of iterations
// Qo: Initial action-value function
Q — Qo // Initialization
for k=0to K —1do
Q' — FitQ(Q, D, k)
Q—q
end for
return @

Fig. 1. Fitted Q-Iteration

to approximate the optimal action-value function @* and mimics value iteration.
Since computing the Bellman operator applied to the last iterate at any point in-
volves evaluating a high-dimensional integral, we use a Monte-Carlo approxima-
tion together with a regression procedure. For this purpose a set of samples, D is
generated: D = {(X1, 41, R1, X{),...,(Xn,An,Rn, X))} Here, R, X] are the
reward and the next-state when action A; is chosen in state X;: Ry ~ S(+| X4, Ar),
X[ ~ P(:|Xt, A¢). For the sake of simplicity, we assume that the actions are gen-
erated by some fixed stochastic stationary policy my: Ay ~ mp(-| X:) and {X;} is
an i.i.d. sequence. We will denote the common distribution underlying (X, A)
by v. The state-marginal of v is denoted by vx. We assume that v is a strictly
positive measure, i.e., its support is X x A. Intuitively, this ensures that the
samples cover the whole state-action space. In particular for this we must have
that mo = minge 4 infyex mp(alx) > 0.

The fitting procedure FitQ studied in this paper is penalized least-squares.
Assuming that in the k™ iteration we use samples with index Ny < i < Ny +
My = Npy1 — 1, the (k + 1)™ iterate is obtained by

Np+Mp—1

Qry1 = argmin — g [RZ- +ymax Qr(X/,a) — Q(X;, Ai)]Q + APen(Q),
QeFM k =N, a’e A
(1)

where Pen(Q) is a customary penalty term and A > 0 is the regularization coeffi-
cient.? The first term is the sample-based least-squares error of using Q(X;, 4;)

3 Note that in practice one would generate the samples whenever they are needed, i.e.,
there is no need to generate and store all the samples. However, it is also possible
to reuse the samples if sample generation is expensive. In such a case the analysis
needs to be changed slightly.



to predict R; + ymaxg e Qr(X],a') at (X;, A;). This term is the empirical
counterpart to the loss Li(Q) = E [(R; +ymaxaea Qu(X',a') — Q(X, A))?].
The minimizer of this loss function is the regression function, which, for any
fixed Qg, in our case is just T'Qy:

E Ri—l—”ymaﬁQk(X;,alﬂXi:x,Ai:a = (TQk)(z,a).
a’ €

As the number of samples grows to infinite, the empirical loss converges to
Ly, and we expect the iterate Qx4+1 to converge to T Q. To achieve this, one
needs to balance the expressiveness of the function class and its complexity (or
the resulting function would be overfitted or underfitted). This is the job of
the second term on the right hand side of (1). This term implicitly regulates
the acceptable complexity of solutions: Choosing larger A means searching in a
smaller space of functions.

When F is a Sobolev-space? of appropriate smoothness order and Pen(Q) is
the corresponding Sobolev-space norm (the L2-norm of the generalized partials
of @), this optimization leads to thin-plate spline estimates, popular in the non-
parametric statistics literature [10]. When searching for a solution in general,
the order of smoothness is unknown. Further, the optimal choice of the regular-
ization coefficient would depend on the target function. In order to tune these
unknown “parameters” in regression one tries different smoothness orders (this
corresponds to choosing the penalty term) with different regularization coeffi-
cients and choose the one giving the best empirical error on a hold-out set. The
same procedure (though is quite expensive) can be used with fitted Q-iteration.
This leads to estimates whose order of rate of convergence is essentially optimal.
Further, the convergence rate will scale with the actual roughness, Pen(TQy),
of the target function.

Optimizing over a Sobolev-space is a particular case of optimization in a
reproducing kernel Hilbert space (RKHS). The latter can be accomplished in a
computationally feasible way if one has access to the Mercer kernel function k
underlying the RKHS H and sets Pen(Q) to be the norm of @ in H [20]. This
way we obtain

Np+Mp—1
= argmin — R +ymax Qp(X),d') — Q(X;, A)]> + A QII%, .
Qo —mgmingr 3[R+ v QulXid) - QU 4] + M QIS

(2)
According to the Representer Theorem (see, e.g., Theorem 4.2 in [20]), any
solution to Eq. (2) is the sum of kernels centered on the observed samples: i.e.,
Ny+Mj,—1
Qr.a)= > ain1k((Xi, A), (2,0)),
i=Ng

4 Sobolev-spaces generalize Holder spaces, which in turn put constraints on the point-
wise smoothness of functions. In particular, Sobolev-spaces allow functions which are
only almost everywhere differentiable. Thus, they can be useful for control problems
where value-functions often have ridges.



where o = (g, ..., an, )" are the coefficients that must be determined. Let us

assume that @, was obtained previously in a similar form:

Ni_1+My_1

Qulz,a)= Y aly k(X A), (,0),

i=Np_1

and let us collect the coefficients in the expansion of Qj into a vector a*®) €
RMr-1_ Replacing @ in Eq. (2) by its expansion and using RKHS properties, we
get

1 2
a* D) = aremin — Hrk +yKia® — KkaH + ' Ka, (3)
acRMk Mk

with K, € RMex M| CF ¢ RMix My

[K1)ij = k((Xic14 N, Aic14n,)s (X143 Aj—148,))

k
(K i = k(X v A )y (XN s Ajm1an )

where A;k) = argmax,c 4 Qr(X},a), and vy, = (Ry,,..., Ry, yam, 1) . Solving
Eq. (3) for a we obtain

a* ) = (K}, + M) 7 (g, + v K a®).

The computational complexity of iteration k& with a straightforward implemen-
tation is O(M}) as it involves the inversion of a matrix. When data is reused
between the iterates (N = 1, M} = N) only one matrix inversion is necessary
as Ky becomes independent of k. However, the total cost as compared when
My = N/K and when we do K iteration is K?-times more. Using fast ap-
proximate inversion techniques one may get the best of both worlds: Cheaper
execution and better use of the samples. In any ways, what remains is to under-
stand how the number of samples influences the quality of the solutions. This is
what we study in the next two sections.

4 Error propagation

In order to analyze how the imperfect fitting procedure influences the final error
it is customary to rewrite Fitted Q-iteration in the form

Qi1 =TQr —ex, k>0,
E-1= Q* - Qo.

Note that these equations define the error sequence e: ¢ : X x A — R, g =
TQr — Qr+1. The “initial error function”, €_1, is introduced for the sake of
simplifying some expressions that will follow.

The question studied in this section is how the errors {ej} influence the
performance of the policy greedy w.r.t. Qi (K > 0 is the number of iterations

(4)



in the algorithm; see Fig. 1). The idea is that the regression procedure controls
the size of the error functions e, hence it must be possible to obtain good policies
eventually, provided that we can show that if the functions e are “small” in a
sense to be specified below then the final error is also small. For k£ > 0 let
7 be a greedy policy w.r.t. Qp: mp = 7(+; Qk). With this notation our goal is
to bound the norm of V* — V™« > (. In order to arrive at such a bound we
need the definition of discounted-average concentrability. The motivation for the
definition is that we need to relate the norm of errors under v (the distribution
underlying the samples) to the norm p chosen by the user (which could be e.g.
the uniform distribution).

Definition 1 (Discounted-average Concentrability of Future-State Dis-
tributions) Given p € M(X), v € M(X xA), m > 0 and an arbitrary sequence
of stationary policies {Tmtm>1 let p™ ™ € M(X x A) denote the (future)
state-action distribution obtained when the first state is obtained from p and then
we follow policy 71, then policy 7, ..., then my,_1 at which step a random action
1s selected with m,,. Define

d pﬂ'l)"wﬂ'm
cpp(m) = sup g‘ ,
Ty Tm dv 00
with the understanding that c,,(m) = oo if the future state-action distribu-

tion p™v ™™ gs not absolutely continuous w.r.t. v. The first-order k-shifted
(k > 0, k € N) discounted-average concentrability of future-state distributions
1s defined by

COF = (1= > Y cpw(m+k).
m=0
Similarly, the second-order k-shifted (k > 0, k € N) discounted-average concen-
trability of future-state distributions is defined by

C,gi;k) =(1-7)? Z mwmflcp,l,(m + k).
m=0

In general ¢, ., (m) diverges to infinity as m — oco. However, if the rate of diver-
gence of ¢, ,(m) is sub-exponential, i.e., if I' = limsup,,, ., 1/mlogc, . (m) <0
then C,()f,’f ) will be finite. Note that the definition given here is not identical
to the previous similar definition by Munos and Szepesvéri [16]. The main dif-
ference is that unlike in [16], here p is a distribution over the states and v is a
distribution over state-action pairs. The reason is that here we work with action-
value functions, while in [16] state-value functions were considered. Note that
it is possible to avoid changing this definition (as it was done in Antos et al.
2), but the price is that the bounds will be more conservative. Interestingly, the
bounds here avoid the supremum norm arguments used by Antos et al. [2] and
are thus less conservative. Note, however, that the arguments presented here do
not extend to continuous action spaces studied in [2].

The main result of this section is the following theorem that bounds the loss
of using the learned policy mx as a function of the losses of the solutions of the
regression problems solved while running the algorithm:



Theorem 1 (LP-bound) Consider a discounted MDP with a finite number of
actions. Let p > 1. Assume that Q. and ey, satisfy (4) and that m is a policy
greedy w.r.t. Qy. Fiz K > 0. Define Eg = 1|, and €x = maxo<r<k ekl , -
Then,

« ” 2 K 1 1
Vs =V, < = % Bot (1= (©f50)F + ()

5 L2-bound for regularized kernel-based regression

In this section we assume that Q41 is obtained by solving the RKHS regular-
ization problem of Eq. (2). By using Prop. 3 of Zhou [23], the following gener-
alization of Theorem 21.1 of Gyorfi et al. [10] to arbitrarily RKHS with smooth
kernel functions can be obtained. The result is for the case when X = [0, 1]%, but
can be generalized to other compact spaces with “regular” boundaries relatively
easily.

Theorem 2 Assume that X = [0,1]%, k € Lip*(s,C(X, X)) and Qy is such
that TQy € H(= Hx).5 Furthermore, (for the sake of simplicity) assume that all
functions involved in the regression problem (the reward function, Q, and the
result of the optimization problem Q1) are bounded by some constant L > 0.
Let Qr41 be the solution of (2) with some A > 0. Then

01L4 C2 10g(1/5)

—TOQLI? <2ATO|I?
Qr+1 — TQIl;, < 2X QkIIH+MkAd/S ML

holds with probability (w.p.) at least 1 — ¢, for some c1,¢cq > 0.

Note the trade-off in the bound: increasing A increases the first term, but de-
creases the second. The optimal choice strikes a balance between these two terms.
This choice will depend on the number of samples My, the complexity of the
target function T'Qy measured by |TQj ||$1{7 the dimension d of X', and the degree

1/(14d/s)

of smoothness measured by s. With A = cM, the rate of convergence is

O(M,;l/(Hd/S)), showing that smoother problems give rise to a better rate — an
intuitive result. To find the best A in a data-dependent manner, one may set up
a grid of As, for any given A generate a new independent sample and choose the
A that gives the lowest risk estimated on the new sample. If the same A is used
in all iterations then a good value can be selected by again setting up a grid and
for any value of A\ estimate the performance of the obtained policy by following
it from a set of start states generated from p and then pick the best policy.

As an immediate corollary of this result and Theorem 1 we get the following
result, assuming that in each iteration we are using the same regularization
parameter.

® For the definition of the generalized Lipschitz space Lip* see Zhou [23].
5 When this does not hold, a truncation argument is needed, but the result would
essentially be left unchanged.
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Corollary 3 (L?-bound) Assume that the conditions of the previous theorem
hold and that we use the same regularization parameter and the same number of
samples in each iteration: M1 = My = ... = Mg. Let mx be greedy w.r.t. the

K™ jterate, Qi, B = maxo<k<k HTkQOHi(' Then, for any § >0,

* T 2 K
[v:—vrey, < a=sp [72 lle-1ll +

4 1/2
(=D o)) [ans+ 528 + eCE0)] }

My Ad/s My LA
holds w.p. at least 1 — § for some universal constants c1,ca,c3 > 0.

Note that by choosing A = chl/(Hd/s) the second term is made converging to
zero with M7 — oo at a rate O(Mfl/(z(Hd/s))), corresponding to the optimal
regression rate for smoothness order s/2. On the other hand, by choosing larger
K, one can make the first term as small as desired.

6 Illustration

In this section, we use a simple illustrative problem that we call the “sinus
world” to investigate the behavior of the proposed algorithm. The “sinus world”
is designed so as to make it is easy to illustrate the role of the choice of the
RKHS, the regularization coefficient, the relation of it to the wiggliness of the
reward function or how the noise in the dynamics or that in the observed rewards
influences the difficulty of the problem. The state space is X = [—5,5] and the
problem is to navigate an agent to where rewards are large. The agent can move
left or right, its actions are noisy and the boundaries of the state space are
absorbing. The discount factor is v = 0.8. The reward function is a sine function
with some frequency w. For the details see Table 1.

Initial State: zg = —5

Zip1 Te41 € (=5, +5),
Transitions: xi41 =< =5 441 < =5,
+5  Zip1 > +5.

Tep1 =z +ar+m 5 e~ N(O, Uf]), ; ar € {—0.2,0.2}

Rewards: r(ze) = sin(wze) + &, & ~ N(0,02)

Table 1. The “sinus world”. The default parameters are w = 4, o, = 0.05 and o, = 1.
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We used the regularized fitting procedure of Eq. (2) and the kernel function
k((:z:, a), («, a’)) = k(z,2") If4—q'y, where the state kernel is Gaussian k(z,z") =
exp (— ||z — 2|)? /(20%)) with o7 = 0.1.7

In order to understand what makes the problem difficult for our procedure
remember that we use an RKHS norm as the penalty in our fitting procedure.
Thus, we expect performance to deteriorate for problems where the target func-
tions, T'Qg, have a larger RKHS norm. With our choice of the kernel, for a
function f : X — R we have ||f||%, o [|f(w)[>e"*“dw, where f is the Fourier
transform of f. We see that energies at higher frequencies get exponentially
boosted, making the norm to prefer functions with low high frequency content.
Now, our target functions have the form TQ = r + yPMQ, where Q € H,
M : B(X x A) — B(X) is an operator defined by (MQ)(z) = maxeea Q(z,a),
and P is the Markov kernel underlying the dynamics. Operator M generally in-
creases the high frequency content of its input, but operator P (due to the noise
of the dynamics) reduces it. Thus, a noisier dynamics helps to reduce ||T'Q||,-
However, a noisier dynamics increases the sample variance (i.e., decreases the
signal-to-noise ratio), hence we cannot conclude that a noisier dynamics gener-
ally helps. On the other hand, the role of the reward function r is largely clear:
|TQ|l,; can be expected to scale with ||7||,,. For our problem, 7#(w) is a Dirac
function centered at w. Thus, a larger w should give rise to more difficult prob-
lems. Another source of difficulty is the noise in the observed rewards. This noise
does not decrease || TQ||,;, but only decreases the signal-to-noise ratio.

When solving (2), for the sake of computational efficiency and to increase
numerical stability, we used sparsification. In particular, we used the method of
Engel et al. [6] which selectively adds state-action pairs to a set of dictionary
state-action pairs, which are in turn used as a basis for approximating the full
solution.® The base distribution used to sample the states X; is uniform. In all
cases we used K = 50 iterations and the full dataset in all iterations (N7 = ... =
Nxk=1,My=...= M, =N).

Performance is evaluated by the relative error, max,c 4 (

Q" (x,0) = QK (x,a)ll, )

Q* (=)l :
Here the L? norm is estimated on a grid of 1000 points evenly spaced in the state
space. An approximation to the optimal action-value function Q* is calculated
by discretizing the problem using the same regular grid.

Fig. 2(a) (Fig. 2(b)) show the performance of our algorithm as a function
of the regularization coefficient A, for three values of w (resp., o). All curves
are averaged over 30 independent runs of the experiments (across algorithms
the same random seeds were used). In Fig. 2(a) the results were obtained using
N = 2000 samples, whereas in Fig. 2(b), the results were obtained using N =
1000 samples. On both figures the error bounds are standard error (standard
deviation divided by the square-root of the number of runs; here 30).

7 I; gy denotes the indicator function: Ifzy = 1 if and only if L is true and I;;; = 0,
otherwise.

8 Sparsification limits the complexity of the fitted functions and consequently acts as
implicit regularization, thus reducing the chance of overfitting. This is also apparent
from the stability of the curves in the following figures as A — 0.
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Fig. 2. (a) Effect of changing the reward frequency on the performance of our algo-
rithm. (b) Effect of adding noise to the reward function on the performance of our
algorithm.

The results of Fig. 2(a) confirm that increasing the reward frequency in-
creases the generalization error. They also show that for each reward frequency
there exists a regularization coefficient A that attains the minimum error. The
minimum is pronounced. Thus, with an appropriate choice of A (which can be
found by e.g. using a hold-out set) significant saving in computation time is pos-
sible as one needs less samples to achieve better results. The same conclusion
holds for the case when the noise of the observed rewards is varied (Fig. 2(b)).

In order to gain further insight into the behavior of the algorithm we plotted
the optimal action-value function for the left action along with the action-value
functions found by our algorithm for three different values of A (Fig. 3). In
this experiment, we used N = 200 samples. We see that when \ is too small
(A = 1079) the procedure overfits, while if \ is too large (A = 0.5), underfitting
happens. Finally, an intermediate value (A = 0.01) gives acceptable fits.

7 Discussion

In this paper we proposed to use penalized least-squares as the regression al-
gorithm in fitted Q-iteration for solving planning problems when a generative
model of the environment is available. The problem addressed is that in fitted
value iteration and other sample-based planning methods for small sample sizes
the function space has to be chosen not only to fit the MDP but also to control
over- or underfitting.

As one main contribution of the paper we analyzed the finite-sample perfor-
mance of the proposed procedure. Although finite-sample performance of fitted
value iteration has been considered earlier [1, 2], to the best of our knowledge,
this is the first work that addresses finite-sample performance of a regularized RL
algorithm and gives a concrete algorithm to implement it. The analysis presented
here builds on these previous works, but extends and improves them.
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Fig. 3. The optimal action-value function (for the left action) and action-value func-
tions estimated by our algorithm for three values of A and N = 200.

As future work, we plan to investigate fitted Q-iteration in multi-kernel sit-
uations (different kernel functions correspond to different smoothness classes).
Adapting to the situation when the data lies on a low dimensional sub-manifold
of the observation space or when certain variables are irrelevant calls for tech-
niques that allow parameterized kernel families. For such a situation ideas of
Srebro and Ben-David [21] could be useful. Feature selection could also be ad-
dressed by introducing an L!-penalty in a LASSO-like procedure (e.g., [5]). An-
other important research topic is to optimize the sample distribution. One idea
is to use the estimated action-value function while running the algorithm to
actively choose the most informative samples for the next iteration. It would
also be desirable to gain experience by applying the proposed method in some
realistic problems. Currently, one main limitation is that the procedure is quite
expensive to run.

Finally, let us note that even though the results of this paper are presented
for planning, the extension to the learning scenario when a good policy is to
be learned given a long, representative trajectory of some behavior policy looks
possible along the lines of the works [1, 2, 3].
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