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Abstract

An important subcase of the hidden subgroup problem is equivalent

to the shift problem over abelian groups. An efficient solution to the lat-

ter problem would serve as a building block of quantum hidden subgroup

algorithms over solvable groups. The main idea of a promising approach

to the shift problem is reduction to solving systems of certain random dis-

equations in finite abelian groups. The random disequations are actually

generalizations of linear functions distributed nearly uniformly over those

not containing a specific group element in the kernel. In this paper we

give an algorithm which finds the solutions of a system of N random lin-

ear disequations in an abelian p-group A in time polynomial in N , where

N = logO(q)|A|, and q is the exponent of A.

1 Introduction

In [5, 6] the following computational problem emerged as an important ingredi-
ent of quantum algorithms for the hidden subgroup problem in solvable groups.
Below A stands for an abelian group and c is a real number at least 1.

Random Linear Disequations(A, c) - search version
Oracle input: Sample from a distribution over characters of the fi-
nite abelian group A which is nearly uniform with tolerance c on
characters not containing a fixed element u in their kernels.
Output: The set of elements u with the property above.

A character of A is a homomorphism χ from A to the multiplicative group
of the complex numbers. The kernel kerχ of χ is the set of the group elements
on which χ takes value 1. The characters of A form a group A∗ where the
multiplication is defined by taking the product of function values. It is known

∗Computer and Automation Research Institute of the Hungarian Academy of Sciences,
Kende u. 13-17, H-1111 Budapest, Hungary. E-mail: Gabor.Ivanyos@sztaki.hu. Research
partially supported by the DIAMANT mathematics cluster in the Netherlands and the NWO
visitor’s grant Algebraic Aspects of Quantum Computing. Part of research was conducted
during the author’s visit at the Technical University of Eindhoven in fall 2006. A sketch
containing some of the ideas presented in this paper appeared in the appendix of [5].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48290794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0704.2988v1


that A∗ is actually isomorphic to A. By near uniformity we mean that the
distribution deviates from the uniform one within a constant factor expressed
by the parameter c. The formal definition is the following. We say that a
distribution over a finite set S is nearly uniform with a real tolerance parameter
c ≤ 1 over a subset S′ ⊆ S if Pr(s) = 0 if s ∈ S \S′ and 1/c|S′| ≤ Pr(s) ≤ c/|S′|
for s ∈ S′. If u is in the expected output than so is ut where t is relatively prime
to u – these are the elements which generate the same cyclic subgroup as u. The
output can be represented by any of such elements. The input is a sequence
of random characters drawn independently according to the distribution. For
an algorithm working with this kind of input we can interpret an access to an
input character as a query.

We assume that group elements and characters are represented by strings
of O(log|A|) bits. Note that it is standard to identify A∗ with A using a du-
ality between A and A∗ obtained from fixing a basis of A as well as choosing
appropriate roots of unity. We may assume that characters are given that way.

The name Random Linear Disequations is justified by the following.

Assume that A = Z
n
p where p is a prime number. Then fixing a pth root

of unity gives a one-to one correspondence between the characters of A and
homomorpisms from A to the group Zp. If we consider A as a vector space over
Zp (considered as a field) then these homomorphisms are actually the linear
functions from A to Zp. The task is to find the elements of A which fail to
satisfy any the homogeneous linear equations corresponding to the functions.

We will show that search problem Random Linear Disequations(A, c) is
in time poly(log |A|+exp (A)) reducible to the following decision version – over
subgroups A′ of A and with slightly bigger tolerance parameter c′ = 2c.

Random Linear Disequations(A′, c′) - decision version
Oracle input: Sample from a distribution over A′∗ which is
- either nearly uniform on characters not containing a fixed element
u in their kernels.
- or nearly uniform on the whole A′∗.
Task: Decide which is the case.

The reduction is based on the following. If A′ is a subgroup of A and we
restrict characters of A to A′ then we obtain a nearly uniform distribution
characters of A′ not containing u in their kernels. If u 6∈ A′ this is a nearly
uniform distribution over all characters of A′.

A possible solution of the decision problem could follow the lines below. If
the distribution is uniform over all characters then the kernels of the characters
from a sufficiently large sample will cover the whole A′. Therefore a possible way
to distinguish between the two cases is to collect a sufficiently large sample of
characters and to check if their kernels cover the whole group A′. Unfortunately,
this test is coNP-complete already for A′ = Z

n
3 . Indeed there is a straightforward

reduction for non-colorability of graphs by 3 colors to this problem.
In this paper we propose a classical randomized algorithm solving Random

Linear Disequations in p-groups. The method is based on replacing the
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covering condition with a stronger but much more easily testable one which is
still satisfied by not too many uniformly chosen characters. The running time is
polynomial in log|A| if the exponent of A is constant and apart from the random
input the algorithm dies not require any further random bits.

The structure of this paper is the following. In Section 2 we briefly sum-
marize the relationship between Random Linear Disequations and certain
quantum hidden subgroup algorithms. Readers not interested in quantum al-
gorithms may skip this part. In Section 3 we prove that the search version
in general abelian groups is reducible to the decision problem in groups of the
form Z

n
m. We describe an algorithm for p-groups in Section 4. We conclude

with some open questions in Section 5.

2 Background

One of the most important challenges in quantum computing is determining
the complexity of the so-called hidden subgroup problem (HSP). This paradigm
includes as special cases finding orders of group elements (e.g., in the mul-
tiplicative group of the integers modulo a composite number as an important
factorization tool), computing discrete logarithms and finding isomorphisms be-
tween graphs. Shor’s seminal work [12] gives solutions to the first two problems
and essentially the same method is applicable to the commutative case of the
HSP. For the HSP in non-commutative groups (this includes the third problem
mentioned above), there are only a few results. Roughly speaking, all the groups
in which hidden subgroups can be found efficiently by present algorithms are
very close to abelian ones.

In [5, 6] we showed that an efficient solution to the following algorithmic
problem can be used as an important tool for finding hidden subgroups in solv-
able groups.

Hidden Shift

Oracle input: Two injective functions f0, f1 from the abelian group
A to some finite set S such that there is an element 0 6= u ∈ A
satisfying f1(x) = f0(x+ u) for every x ∈ A.
Output: u.

Here the oracles for fi are given by unitary operations Ui which, on input
|x〉|0〉 return |x〉|fi(x)〉. We note that Hidden Shift on A is equivalent to
the most interesting subcase of the hidden subgroup problem in the semidirect
product A⋊Z2, where the non-identity element of Z2 acts on A as flipping signs
and the hidden subgroup is a conjugate of Z2. We refer the reader interested in
this connection to [10] for the definition of semidirect products.

The semidirect products of the form above include the dihedral groups Dn

of order 2n: these are the semidirect products of the cyclic groups Zn by Z2.
In [3] a two-step procedure is proposed for solving the dihedral hidden subgroup
problem. The procedure consists of a polynomial time (in logn) quantum part
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and an exponential classical post-processing phase without queries. The current
best dihedral hidden subgroup algorithm [9] has both query and computational
complexity exponential in

√
logn.

In [2] variants of the hidden shift problems with not necessarily injective
functions are considered. Some special cases – related to multiplicative number
theoretic characters – are shown to be solvable in polynomial time while the
most general case has exponential quantum query complexity. This is not the
case for our definition of the hidden shift problem as it is equivalent to a hidden
subgroup problem which has polynomial query complexity by [4].

In [5, 6] the following approach is proposed for solving Hidden Shift in
certain special cases. It is based on the following procedure which is actually a
version of the usual Fourier sampling in the groupA×Z2 (rather then in A⋊Z2).
See [7] for a description of quantum Fourier sampling in abelian groups.

Half-Fourier sampling

1. Create state
1

√

2|A|
∑

x∈A,i∈{0,1}

|x〉|i〉|0〉S .

2. By querying fi, create state

1
√

2|A|
∑

x∈A,i∈{0,1}

|x〉|i〉|fi(x)〉.

3. Measure the third register. If the measured value is f0(x), the sate of the
first two registers is

1√
2

(|x〉|0〉 + |x+ u〉|1〉) .

4. By computing the quantum Fourier transform of A× Z2, obtain state

1

2
√
A

∑

χ∈A∗

((χ(x) + χ(x+ u))|χ〉|0〉 + (χ(x) − χ(x+ u))|χ〉|1〉) .

5. Measure and output the first register if the second register contains bit 1.
Otherwise abort.

The probability of obtaining character χ as result of their procedure is

1

|A|2
∑

x∈A

|χ(x) − χ(x+ u)|2
4

=
|1 − χ(u)|2

4|A| . (1)

Note that the probability of that the procedure does not abort is

∑

χ∈A∗

|1 − χ(u)|2
4|A| =

1

4|A|
∑

χ∈A∗

(2 − χu − χ(u)) =
1

2
,
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where the last equality follows from the orthogonality relations (for the columns
of the character table of A) which give

∑

χ∈A∗ χ(u) = 0 as u 6= 0.
Obviously, the probability given by (1) is nonzero if and only if u is not con-

tained in the kernel of the character χ. The strategy for finding u is determining
the subgroup generated by u first from the characters obtained by the proce-
dure above. This reduces Hidden Shift to an instance where the Abelian
group is cyclic. This special instance is in turn equivalent with the dihedral
hidden subgroup problem which we can solve by an exhaustive search or even
with Kuperberg’s more efficient approach. (Note, however, that the complexity
of our present method for finding the subgroup generated by u dominates the
complexity of the whole procedure in both cases.)

Actually we only notice the subgroup of A∗ generated by the characters
χ observed. Equivalently, we can equalize the probability of characters that
generate equal subgroups of A∗ as follows. If character χ occurs as a result of
the procedure then we draw uniformly a number 0 < j < m which is prime to
the exponent m of A and replace χ with χj . We show below that we obtain a
distribution which is nearly uniform on the characters χ such that χ(u) 6= 1.

Lemma 1. Let ω be a primitive mth
0 root of unity, let m be a multiple of m0

and let m1 be the product of the prime divisors of m. Then

∑

0<j<m,(j,m)=1

ωj =

{

µ(m0)
m
m1

φ(m1

m0

), if m0|m1

0 otherwise,

where φ is Euler’s totient function and µ is the Möbius function.

Proof. For k|m we define f(k) =
∑

1≤j≤k,(j,k)=1 ω
m
k

j . Then for every k|m we

have
∑k

j=1 ω
m
k

j =
∑

d|k f(d). (This follows from the fact that every positive

integer j ≤ k can be uniquely written in the form j = k
d × j′ where d|k, 1 ≤

j′ ≤ d and (j′, d) = 1.) Let F (k) =
∑

d|k f(d) for k|m. Then, by the Möbius

inversion formula, f(m) =
∑

d|m µ(m
d )F (d). We know that F (d) = d if ω

m
d = 1

and F (d) = 0 otherwise. Hence the product µ(m
d )F (d) is nonzero if and only

if m0|md |m1. Therefore f(m) =
∑

m
m1

|d| m
m0

µ(m
d )d = m

m1

∑

d′|
m1

m0

µ(m1

d′
)d′ =

µ(m0)
m
m1

∑

d|
m1

m0

µ(m1/m0

d )d, if m0|m1 and f(m) = 0 otherwise. We conclude

by observing that if ℓ = p1 · · · pr where the pis are pairwise distinct primes then
∑

d|ℓ µ( ℓ
d)d =

∑

I⊆{1,...,r}(−1)ℓ−|I|
∏

i∈I pi =
∏r

i=1(pi − 1) = φ(ℓ).

Lemma 2. Let 1 6= ω be an mth root of unity. Then

1

2
≤ 1

2φ(m)

∑

0<j≤m,(m,j)=1

|1 − ωj |2 ≤ 2.

Proof. Let m0 be the order of ω and let m1 be the product of the prime divisors
ofm. Observe that |1−ωj|2 = 2−ωj−ω−j. Therefore 1

2φ(m)

∑

0<j≤m,(m,j=1) |1−
ωj|2 = 1− 1

φ(m)

∑

0<j≤m,(m,j=1) ω
j. By Lemma 1, the sum on the right hand side

5



is zero unless m0|m1. If m0|m1 then that sum has absolute value 1
φ(m)

m
m1

φ(m1

m0

).

The assertion for m0 > 2 follows from φ(m) = m
m1

φ(m1) = m
m1

φ(m0)φ(m1

m0

) ≥
2 m

m1

φ(m1

m0

). If m0 = 2 then ω = −1 and the sum is 2.

From Lemma 2 we immediately obtain the following.

Proposition 1. Let f0, f1 : A → S be an instance of Hidden Shift in a
finite abelian group A with solution u. Then, if we follow Half-Fourier sam-

pling by raising the resulting character to jth power where j is a random in-
teger prime to the exponent of A we obtain an instance of Random Linear

Disequations(A, 2).

Proof. Let m stand for the exponent of A. Then by (1), the probability of χ in
the resulting distribution is

1

2φ(m)|A|
∑

(j,m)=1

|1 − χ(u)j |2.

By Lemma 2, this probability is between 1
2|A| and 2

|A| .

3 Reductions

In this section we show that the search version of Random Linear Disequa-

tions is reducible to its decision version in abelian groups of the form Z
n
m.

For a finite abelian group A we denote by A∗ its character group. Assume
that H is a subgroup of A. Then taking restrictions of characters of A to H
gives a homomorphism form A∗ onto H∗. The kernel of this map is the set
of characters which contain H in their kernels. This set can be identified with
the character group (G/H)∗. It follows that every character of H has exactly
|(G/H)∗| extensions to A. It follows that if a distribution is nearly uniform on
characters of A then restriction to H results in a nearly uniform distribution
over characters of H with the same tolerance parameter.

The same holds in the reverse direction: taking uniformly random extensions
of characters of H to A transforms a nearly uniform distribution over H∗ to a
nearly uniform distribution over A∗ with the same parameter. And a similar
statement holds for distributions nearly uniform on the characters of H which
do not contain a specific u ∈ H in their kernels.

For restricting characters of A not containing the element u ∈ A in their
kernel we have the following.

Lemma 3. Let H be subgroup of a finite abelian group A, let χ be a character
of H and let u ∈ A. Then the number of characters of G extending χ such that
χ(u) 6= 1 is

{

|G : H |(k − 1)/k if k0 = k
|G : H | if k0 < k,

where k is the smallest positive integer such that k · u ∈ H and χ(k · u) = 1 and
k0 is the smallest integer such that k0 · u ∈ H.
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Proof. If k0 < k then χ(k0u) 6= 1 therefore ψ(u) 6= 1 for every ψ extending χ to
G. Assume that k0 = k. Let A′ be the subgroup of A generated by H and u and
let K = {x ∈ H | χ(x) = 1}. Then every character of G extending χ takes value
1 on K, therefore it is sufficient to consider the characters of A′/K extending
the characters of H/K. Equivalently, we may assume that K = 1, and k is the
order of u. Then A′ is the direct product of the cyclic group generated by u
and H . In this case there exists exactly one character of G extending χ which
take value 1 on u. Thus there are k−1

k |A′/H | characters of A′ with the desired
property extending χ and each of them has |A/A′| extensions to A.

Assume that we have an instance of the search version of Random Linear

Disequations(A, c) with solution u ∈ A. Then, by the lemma above, restrict-
ing characters of A toH gives an instance of the search version Random Linear

Disequations(H, 2c). This gives rise to the following.

Proposition 2. Let A be an abelian group and let p be the largest prime factor
of |A|. Then, for every number c ≥ 1, the search version of Random Linear

Disequations(A, c) is reducible to O(p · polylog|A|) instances of the decision
version of Random Linear Disequations(H, 2c) over subgroups H of A in
time poly(p · log|A|).

Proof. The first step of the reduction is a call to the decision version of Random

Linear Disequations(A, c). If it returns that the distribution is nearly uni-
form over the whole A∗ then we are done. Otherwise there is an element u ∈ A
such that the probability of drawing χ ∈ A∗ is zero if and only if χ(u) = 1. We
perform an iterative search for the subgroup generated by u using Random Lin-

ear Disequations over certain subgroups U of A. Initially set U = A Assume
first that U is not cyclic. Then we can find a prime q such that the q-Sylow sub-
group Q of U (the subgroup consisting of elements of U of q-power order) is not
cyclic. But then the factor group Q/qQ is not cyclic either and we can find two
subgroups M1 and M2 of Q of index q in Q such that the index the intersection
M = M1 ∩M2 in Q is q2. This implies Q/M ∼= Z

2
q . Let Q′ be the complement

of Q in G. (Recall that Q′ consists of the elements of G of order prime to q.)
Let N = M + Q′. Then M = N ∩ Q and G/N ∼= Q/(N ∩ Q) = Q/M ∼= Z

2
q .

The group Z
2
q has q + 1 subgroups of order q: these are the lines through the

origin in the finite plane Z
2
q . As a consequence, there are exactly q+1 subgroups

U1, . . . , Uq+1 with index q in G containing N . Furthermore, we can find these
subgroups in time polynomial in log|G| and q. Note that G = U1 ∪ . . . ∪ Uq+1.
Therefore, by an exhaustive search, using the decision version of Random Lin-

ear Disequations(Ui) for i = 1, . . . , q+1, we find an index i such that u ∈ Ui.
Then we proceed with Ui in place of U . In at most log|G| rounds we arrive
at a cyclic subgroup U containing the desired elements u. If U is cyclic then
the maximal subgroups of U are U1, . . . , Ul where the prime factors of |U | are
p1, . . . , pl and Ui = piU . Again using the decision version of Random Linear

Disequations(Ui) for i = 1, . . . , l, we either find a proper subgroup Ui contain-
ing the solutions u or find that the solutions cannot be contained in any proper
subgroup of U . In the latter case the required subgroup is U .
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Finally, for the decision problem we have the following.

Proposition 3. Let A = Zm1
⊕ . . .⊕Zmn

be a finite abelian group of exponent
m. (So m is the least common multiple of m1, . . . ,mn.) Then, for every real
number c ≥ 1, Random Linear Disequations(A, c) is reducible to Random

Linear Disequations(Zn
m, c) in time poly logA.

Proof. We can embed A into A′ = Z
n
m as m

m1

Zm ⊕ . . . ⊕ m
mn

Zm. We replace a
character ofA with a random extension to A′. As every character ofA has |A′/A|
extensions, this transforms an instate of Random Linear Disequations(A, c)
to Random Linear Disequations(A′, c).

4 Algorithms for p-groups

In this section we describe an algorithm which solves the decision version of
Random Linear Disequations in polynomial time over groups of the form
Z

n
pk , for every fixed prime power pk.

For better understanding of the main ideas it will be convenient to start
with a brief description of an algorithm which works in the case k = 1. This
case is – implicitly – also solved in [6] and in Section 3 of [5]. Here we present
a method similar to the above mentioned solutions. The principal difference is
that here we use polynomials rather than tensor powers. This – actually slight
– modification of the approach makes it possible to generalize the algorithm to
the case k > 1.

For the next few paragraphs we assume that k = 1, i.e., we are working on
an instance of Random Linear Disequations over the group A = Z

n
p . We

choose a basis of A, and fix a primitive pth root of unity ω. Then characters of
A are of the form χx, where x ∈ G and for y ∈ A the value χx(y) is ωx·y, where
x · y =

∑n
i=1 xiyi. (Here xi and yi are the coordinates of x and y, respectively,

in terms of the chosen basis. Note that, as ωp = 1, it is meaningful to consider
x · y as an element of Zp.)

Using this description of characters, we may – and will – assume that the
oracle returns the index x rather than the character χx itself. We also consider A
as an n-dimensional vector space over the finite field Zp equipped with the scalar
product x · y above. The algorithm will distinguish between a nearly uniform
distribution over the whole group A and an arbitrary distribution where the
probability of any vector orthogonal to a fixed vector 0 6= u is zero.

We claim that in the case of a distribution of the latter type there exists
a polynomial Q ∈ Zp[x1, . . . , xn] of degree p − 1. such that for every x which
occur with nonzero probability we have Q(x) = 0. Indeed, for any fixed u with
the property above, (

∑

uixi)
p−1 − 1 is such a polynomial by Fermat’s little

theorem.
On the other hand, if the distribution is nearly uniform over the whole

group then, for sufficiently large sample size N , with high probability there
is no nonzero polynomial Q ∈ Zp[x1, . . . , xn] of degree at most p − 1 such

8



that Q(a(i)) = Q(a
(i)
1 , . . . , an(i)) = 0 for every vector a(i) from the sample

a(1), . . . , a(N).
This can be seen as follows. Let us consider the vector space W of poly-

nomials of degree at most p − 1 in n variables over the field Zp. Substituting
a vector a = (a1, . . . , an) into polynomials Q is obviously a linear function on
W . Therefore for any N1 ≤ N , the polynomials vanishing at a(1), . . . , a(N1)

is a linear subspace WN1
of W . Furthermore, by the Schwartz–Zippel lemma

[11, 13], the probability of that a uniformly drawn vector a from Z
n
p is a zero of

a particular nonzero polynomial of degree p − 1 (or less) is at most (p − 1)/p.
This implies that with probability proportional to 1/cp, the subspace WN1+1 is
strictly smaller than WN1

unless WN1
is zero. This implies that, if the sample

size N is proportional to p ·dimW then with high probability, WN will be zero.
Also, we can compute WN by solving a system of N linear equations over Zp in
dimW =

(

n+p−1
n

)

= nO(p) variables.
Note that the key ingredient of the argument above – the Schwartz-Zippel

bound on the probability of hitting a nonzero of a polynomial – is also known
from coding theory. Namely we can encode such a polynomialQ(x) = Q(x1, . . . , xn)
with the vector consisting of all the values P (a) = P (a1, . . . , an) taken at all the
vectors a = (a1, . . . , an) in Z

n
p . This is a linear encoding of W and the image of

W under such an encoding is a well known generalized Reed–Muller code. The
relative distance of this code is (p− 1)/p.

We turn to the general case: below we present an algorithm solving Random

Linear Disequations in the group A = Z
n
pk where k is a positive integer.

Like in the case k = 1, the characters of the group A = Z
n
pk can be indexed by

elements of A when we fix a basis of A and a primitive pkth
root of unity ω:

χx(y) = ωx·y, where x · y is the sum of the product of the coordinates of x and
y in terms of the fixed basis. Again, we can consider x · y as an element of Zpk .
In view of this, it is sufficient to present a method that distinguishes between a
nearly uniform distribution over Z

n
pk , and an arbitrary one where vectors which

are orthogonal to a fixed vector u 6= 0 have zero probability.
The method is based on the idea outlined above for the case k = 1 com-

bined with an encoding of elements of Zpk by k-tuples of elements of Zp. The

encoding is the usual base p expansion, that is, the bijection δ :
∑k−1

j=0 ajp
j 7→

(a0, . . . , ak−1). We can extend this map to a bijection between Z
n
pk and Z

kn
p in

a natural way.
Obviously the image under δ of a nearly uniform distribution over Z

n
pk is

nearly uniform over Z
kn
p . In the next few lemmas we are going to show that for

every 0 6= u ∈ Z
n
pk there is a polynomial Q of ”low” degree in kn variables such

that for every vector a ∈ Z
n
pk not orthogonal to u, the codeword δ(a) is a zero

of Q.
We begin with a polynomial expressing the carry term of addition of two

base p digits.

Lemma 4. There is a polynomial C(x, y) ∈ Zp[x, y] of degree at most 2p − 2

9



such that for every pair of integers a, b ∈ {0, . . . , p− 1}, C(a, b) = 0 if a+ b < p
and C(a, b) = 1 otherwise.

Proof. For i ∈ {0, . . . , p− 1}, let Li(z) ∈ Zp[z] denote the Lagrange polynomial
∏

0≤j<p:j 6=i(z − j)/(i − j). We have Li(i) = 1 and Li(j) = 0 for j 6= i. Define
C(x, y) =

∑

0≤i,j<p:i+j≥p Li(x)Lj(y).

Using the carry polynomial C(x, y) we can also express the base p digits of
sums by polynomials.

Lemma 5. For every integer T ≥ 1, there exist polynomials Qi from the
polynomial ring Zp[y1,0, . . . , y1,k−1, . . . , yT,0, . . . , yT,k−1], (i = 0, . . . , k−1) with
degQi ≤ (2p− 2)i such that

δ

(

T
∑

t=1

at mod pk

)

= (Q0(δ(a1), . . . , δ(aT )), . . . , Qk−1(δ(a1), . . . , δ(aT )))

for every a1, . . . , aT ∈ Zpk .

Proof. The proof is accomplished by induction on k. For k = 1 the statement is
obvious: we can take Q0 =

∑T
t=1 yt,0. Now let k > 1. Again set Q0 =

∑T
t=1 yt,0

and for t = 2, . . . , T set Ct = C
(

(
∑t−1

j=1 yj,0), yt,0

)

. Then for every a1, . . . , aT ∈
Zpk , the digits s0, . . . , sk−1 of the sum s =

∑T
t=1 at mod pk satisfy

s0 = Q0(a1,0, . . . , an,0) mod p,

k−1
∑

j=1

sjp
j−1 =

T
∑

t=1

⌊at/p⌋ +

T
∑

t=2

ct mod pk−1,

where ct = Ct(a1,0, . . . , at,0). In other words, the 0th digit of the sum s is a
linear polynomial in at,0, and, for 1 ≤ j ≤ k − 1, the jth digit is the (j−1)th

digit in the RHS term of the second equation. There we have a sum of 2T − 1
terms and each digit of each term is a polynomial of degree at most 2p−2 in the
at,j. Therefore we can conclude using the inductive hypothesis applied to that
(longer) sum.

Recall that we extend δ to Z
n
pk in the natural way. To be specific, for a =

(a1, . . . , an) ∈ Z
n
pk we define δ(a) ∈ Z

kn
p as the vector (a1,0, . . . , an,k−1) ∈ Z

kn
p

where ai,j is the jth coordinate of δ(ai) ∈ Z
k
p . We can express the digits of the

scalar products of a vector from Z
n
pk with a fixed one as follows.

Lemma 6. For every u ∈ Z
n
pk , there exist polynomials Qi ∈ Zp[x1,0, . . . , xn,m−1]

of total degree at most (2p − 2)i, for i = 0, . . . , k − 1, such that δ(a · u) =
(Q0(δ(a)), . . . , Qk−1(δ(a))) for every a ∈ Z

n
pk .

Proof. The statement follows from Lemma 5 by repeating ui times the coordi-
nate xi, and taking the sum of all the terms obtained this way modulo pk.

10



In order to simplify notation, for the rest of this section we set xjp+i = xi,j

(j = 0, . . . , k−1, i = 1, . . . , n). For every positive integer D, let Z
D
p [x1, . . . , xnk]

be the linear subspace of polynomials of Zp[x1, . . . , xnk] whose total degree is
at most D and partial degrees are at most p−1 in each variable. W

Together with Fermat’s little theorem, the previous lemma implies a poly-
nomial characterization over Zp of vectors in Z

n
pk that are not orthogonal to a

fixed vector u ∈ Z
n
pk .

Lemma 7. Let D = (p−1)((2p−2)k−1)
2p−3 . For every u ∈ Z

n
pk , there exists a poly-

nomial Qu ∈ Z
D
p [x1, . . . , xnk] such that for every a ∈ Z

n
pk , a · u 6= 0 mod pk if

and only if Lδ(a) ·Qu = 0.

Proof. LetQ =
∏k−1

j=0 (Qp−1
j −1), where the polynomialsQj come from Lemma 6.

This polynomial has the required total degree. To ensure that partial degrees
are less than p−1, we replace xp

i terms with xi until every partial degree is at
most p − 1. Let Qu be the polynomial obtained this way. Then Qu and Q
encode the same function over Z

nk
p . Therefore, since Lδ(a) ·Qu = Qu(δ(a)), the

polynomial Qu satisfies the required conditions.

It remains to show that if N is large then with high probability, for a sample
a1, . . . , aN taken accordingly to a nearly uniform distribution over Z

nk
p , there is

no nonzero polynomial in Z
D
p [x1, . . . , xnk] vanishing at all the points a1, . . . , aN

where D is as in Lemma 7. Furthermore, we also need an efficient method for
demonstrating this.

To this end, for every a ∈ Z
nk
p , we denote by ℓa the linear function over

polynomials in Z
D
p [x1, . . . , xnk] that satisfies ℓa(Q) = Q(a). Deciding whether

the zero polynomial is the the only polynomial in Z
D
p [x1, . . . , xnk] such that

ℓai
(Q) = 0 amounts to determining the rank of the the N × ∆ matrix whose

entries are ℓai
(M) where M runs over the monomials in Z

D
p [x1, . . . , xnk]. Here

∆ stands for the dimension of Z
D
p [x1, . . . , xnk]. Note that ∆ ≤

(

kn+D−1
kn

)

.

The image of the space Z
D
p [x1, . . . , xnk] under the linear map L : Q 7→

(ℓa(Q))a∈Znk
p

is known as a generalized Reed–Muller code with minimal weight

at least (p − s)pnk−r−1 ≤ pnk−⌈D/(p−1)⌉, where r, s are integers such that 0 ≤
s < p− 1 and Max{D, (p− 1)nk} = r(p − 1) + s cf. [1]. For N1 ≤ N , let WN1

stand for the subspace of polynomials in Z
D
p [x1, . . . , xnk] vanishing at all the

points a1, . . . , aN1
. The minimal weight bound above gives that for N1 < N ,

Pr(WN1+1 < WN1
|WN1

6= 0) ≥ 1

c
· p−⌈D/(p−1)⌉.

Here c is the parameter of near uniformity. The formula above implies that if

N = O(cp⌈D/p−1⌉ dim Z
D
p [x1, . . . , xnk]) = c(pnk)O(2p)k

,

then with probability at least 2/3, WN will be zero - provided that we have a
nearly uniform distribution with parameter c. (In the second bound we have
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used that D = (p−1)((2p−2)k−1)
2p−3 = O((2p)k). Together with the remark on rank

computation this gives the following.

Theorem 1. Random Linear Disequations(Zn
pk , c) can be solved in time

c(pnk)O((2p)k) with (one-sided) error 1/3. In particular, for every fixed prime
power pk, and for every fixed constant c, Random Linear Disequations(Zn

pk , c)
can be solved in time polynomial in n.

5 Concluding remarks

We have shown that for any fixed prime power pk, the problem Random Linear

Disequations over the group Z
n
pk can be solved in time which is polynomial in

the rank n. Actually if we let the exponent pk grow as well then our method runs
in time polynomial in the rank n but exponential in the exponent pk. Note that
a brute force algorithm which takes a sample of size O(knpk log p) (the kernels
that many random characters cover the whole group with high probability)
and performs exhaustive search over all the the elements of Z

n
pk runs in time

(pkn)O(1) which is polynomial in the exponent pk and exponential in n. It would
be interesting to know if there exists a method which solves Random Linear

Disequations in time polynomial in both n and pk.
Also, the method of this paper exploits seriously that the exponent of the

group is a prime power. Existence of an algorithm for Random Linear Dise-

quations in Z
n
m of complexity polynomial in n for fixed m having more than

one prime divisors appears to be open, even in the smallest case m = 6.
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