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Discrete time minimax tracking control with disturbance estimation

Péter Bauer, Balázs Kulcsár and József Bokor

Abstract— The paper proposes an alternative way to solve ro-
bust reference tracking problem. Instead of rejecting the effect
of the disturbance directly, an intermediate step is built into the
state estimation problem. The advantage of the methodology
is to elaborate a modified optimal state estimation problem
taking the unbiased estimate of the disturbance into account.
Henceforward, the solution of the discrete time, optimal LQ
minimax tracking problem is modified and subjected to atten-
uate the disturbance residual. The paper addresses the nominal
case for constant reference and disturbance signal showing
the asymptotical stability and the tracking performance of the
discrete time, optimal min-max control. Suboptimal solution
is given for time varying reference and disturbance signal.
A linearized hovering quadrotor example demonstrates the
importance of the suggested technique.

Index Terms— LQ optimal minimax tracking, state and
disturbance estimation

I. INTRODUCTION

Robust tracking control solutions with output feedback

make use of the systems' estimated states [7]. Here, the

objective is to attenuate the disturbance level on the perfor-

mance output by introducing and minimizing the induced

L2 norm. Accordingly, the disturbance rejection property

plays an important role in minimax respectively H∞ control

techniques. If the disturbance lies in the low frequency

range, difficulties arise in providing acceptable tracking

performance, since there is a trade-off in tuning the sensi-

tivity respectively complementary sensitivity functions. The

literature proposes solutions in the preview control field

with disturbance preview (see ex. [2], [3], [4], [5], [6]),

sometimes even with reference anticipation ([5],[6]). Con-

sequently, there is a high demand on the estimation of the

disturbance allowing accurate reference tracking.

Similarly to [8], our goal is to eliminate as much of the

effects of the deterministic disturbance as we can, based on

coupled state and disturbance estimation (see [10], [9]). The

stabilizing minimax control has to guarantee zero steady state

tracking error (at least for constant reference and disturbance

signals) and has to be be optimal over an infinite horizon for

constant signals. The motivation of the work is to develop

optimal and tracking control solutions when deterministic
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(and mostly constant or slowly varying) disturbance perturb

the plant. The disturbance effect might be considered as a

quasi stationary load, therefore an adequate solution is cer-

tainly to increase the number of the state in the state space by

co-state variables. The co-state variables assigns dynamics to

the exogenous disturbance signal under the form of a random

walk model. However, our approach is different from the

above mentioned state augmentation problem. The core of

the idea is to compute the estimated and unbiased disturbance

value of the previous step and actualize it either by taking

it constant or filter it through an a-priori known dynamics.

Even if the disturbance reconstruction is unbiased, due to the

transient behavior, the disturbance residual could influence

the performance a lot. Therefore, the elaborated minimax

control solution has to reject the value of the disturbance in

the transient phase. These goals can be achieved through

a multi step design procedure explained further into the

details. The properties of the resulted control technique are

examined for constant and partially time-varying reference

and disturbance signals.

The paper is organized as follows. In Section II the

problem is formulated and the steps of the proposed multi

step solution are listed. In section III, the solution steps are

detailed. In Section IV, the properties for constant references

and disturbances are stated and proven. In the Section V,the

method is compared with an H∞ design through a simple

example. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION AND THE STEPS OF THE

PROPOSED SOLUTION

The considered system class is DT, LTI systems with

deterministic disturbances:

xk+1 =Axk +Bũk +Gdk

yrk =Crxk

yk =Cxk

dk+1 =Ad
yk
dk ‖Ad

yk
‖2 < ∞

(1)

Where xk ∈ R
n, ũk ∈ R

m, dk ∈ R
d yrk ∈ R

r yk ∈
R

p are the system state, input, disturbance, tracking output

and measured output respectively and A,B,G,Cr, C have

appropriate dimensions. The last equation shows that the

disturbance is assumed to be characterized by an autonomous

dynamical system which depends on the measured system

outputs. This assumption can be applied in considering the

wind disturbances on a moving aerial vehicle for example.

Assumption 1: Assume that n ≥ m, n > d, r ≤ m,

p > d, rank(CG) = rank(G), the pair (A,B) is stabi-

lizable and the pair (C,A) is observable. Assume also that

rank(CrB) = r.
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The goal is to track a prescribed constant or time-varying ref-

erence signal with maximum disturbance attenuation (min-

imum tracking error). The developed multi-step solution is

similar to the method applied in [8]. The steps of the solution

are as follows:

1) Design a stabilizing state feedback control input for

system (1). This makes step 2 and 4 feasible.

2) Design the optimal state and disturbance estimator for

the stabilized system (the method described in [10] and

[9] is modified to be used for noiseless LTI systems)

3) Construct the system input which cancels the distur-

bance effects in a LS optimal way.

4) Design another control input, which guarantees zero

steady state tracking error in case of constant reference

and disturbance signals.

5) Center the original system (constructed in step 1)

dynamics (this is suggested in [1]) with the steady

state equilibrium point achieved in the previous step,

and design an LQ optimal minimax tracker for this

centered dynamics (at first, for finite and then for

infinite horizon).

6) Construct the final required input signal ũk summing

up all the inputs designed in the previous steps.

In the next Section the above steps will be followed to

construct the final optimal (for constant references and

disturbances) and sub-optimal (for time-varying references

and disturbances) controllers.

III. THE STEPS OF THE DESIGN PROCEDURE

Step1: Design of a stabilizing state feedback controller for

(A,B)
This can be solved either with pole placement or with

LQ optimal regulator design. The resulting system equations

can be written as follows (considering additional input to

guarantee tracking):

ũk =−Kx1xk + uk

xk+1 =(A−BKx1)
︸ ︷︷ ︸

φ

xk +Buk +Gdk

yrk =Crxk yk = Cxk

(2)

Step 2: Design an optimal state and disturbance estimator

for (φ,C,G)
This can be solved (Me and K can be designed) applying

the modified results of [10] and [9] for LTI systems without

noises:

xk = φx̂k−1 +Buk−1 → x̂k = xk +K (yk − Cxk)

d̂k−1 = Me (yk − Cxk) → d̂k = Ad
yk−1

d̂k−1

(3)

Here the estimation of the disturbance does not need any

information about its dynamics, but if its dynamics is known

d̂k can be used in control instead of d̂k−1 and so, better

results can be achieved.

An important thing is the really poor performance of the

disturbance estimate in the first 5-10 time steps (it depends

on the estimator dynamics). This is caused by the initially

zero estimated state (see (3)). So, it is worth not to apply the

first 5-10 samples of the disturbance estimate in the control!

Step3: LS optimal disturbance cancellation with the control

input

The task is to find a control input component which

cancels most of the disturbances using their estimated value

(from here ()+ stands for the left or right inverse of a

rectangular matrix (depending on left or right invertibility)):

Bu∗
k = −Gd̂k → u∗

k = −B+Gd̂k

uk = ûk + u∗
k = ûk −B+Gd̂k

(4)

The equation has an exact solution if G = B otherwise this

solution is only LS optimal.

Step4: Determining the solution of the zero steady state

tracking error problem considering constant reference and

disturbance

The equation to be solved can be constructed considering

(2) and (4) (here d∞ = d̂∞ and r∞ denotes the constant

disturbance and reference signal respectively).

x∞ = φx∞ +Bû∞ +Gd∞ −BB+Gd̂∞

yr∞ = Crx∞ = Cr (I − φ)
−1

B
︸ ︷︷ ︸

F

û∞+

+ Cr (I − φ)
−1

(I −BB+)Gd̂∞ = r∞

û∞ = F +r∞−

− F +Cr (I − φ)
−1

(I −BB+)Gd̂∞

(5)

Here the existence of (I − φ)
−1

is guaranteed by step 1,

and the right inverse F + exists because rank(CrB) = r
(r ≤ m).

Step5/1: Derivation of the LQ optimal finite horizon solution

for the centered output tracking minimax problem

The required steady state input to track a constant refer-

ence signal can be calculated using (5). However, the control

of the transient from initial state to steady state should be

considered. This can be designed together with the solution

of cases with time varying references in a unified framework

as follows.

The centered state dynamic equation results from (2), (4)

and the steady state system equation (5):

xk+1 = φxk +Bûk +Gdk −BB+Gd̂k

x∞ = φx∞ +Bû∞ +Gd∞ −BB+Gd̂∞

xk+1 − x∞ = φ (xk − x∞) +B (ûk − û∞)+

+G (dk − d∞)−BB+G
(

d̂k − d̂∞

)

∆d̃k = G∆dk −BB+G∆d̂k

∆xk+1 = φ∆xk +B∆ûk +∆d̃k

(6)

The last equation in (6) gives a disturbed system dynamics

around the steady state. This equation together with the

centered reference signal ∆rk = rk−r∞ can be used to form

an LQ optimal minimax tracking problem for the transient

(in case of constant references) or for the case with time
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varying references. The formulated problem is similar to the

case in [11]. At first, the finite horizon solution should be

derived considering the following functional (for the detailed

functional formulation see [11])

∆x̃k = CT
r

(
CrC

T
r

)−1
∆rk = H∆rk:

J =
1

2

N−1∑

k=0

((∆xk −∆x̃k)
T
Q (∆xk −∆x̃k)+

+∆ûT
kRu∆ûk − γ2∆d̃TkRd∆d̃k)+

+ (∆xN −∆x̃N )
T
Q (∆xN −∆x̃N ) where :

Q = C
T
Q1C + CT

r Q2Cr

C =
(

I − CT
r

(
CrC

T
r

)−1
Cr

)

(7)

Here Q2 weights the tracking error (∆ek = ∆yrk −∆rk)

and Q1 the orthogonal projection of the state vector onto

the nullspace of Cr (∆yk = C∆xk). From this point the

Lagrange multiplier method can be applied to (7) and to the

last equation in (6). The costate update equation, optimal

control, worst case disturbance and the structure of the

costate variable results as:

λk = Q (∆xk −∆x̃k) + φTλk+1

∆ûk = −Ru
−1BTλk+1

∆d̃∗k =
1

γ2
Rd

−1λk+1

λk = Pk∆xk + Sk∆x̃k+1 −Q∆x̃k

λN = Q∆xN −Q∆x̃N → PN = Q, SN = 0

(8)

Finally, the Modified Riccati Difference Equation (MRDE)

and an additional recursive equation results. The last expres-

sion in (9) is the expanded form of the costate variable. The

optimal control and worst case disturbance can be calculated

using this and (8).

Pk = Q+ φTPk+1[I +BR−1B
T

︸ ︷︷ ︸

M

Pk+1]
−1φ

SRk = Q∆x̃k + φT
[

I + Pk+1BR−1B
T
]−1

SRk+1

SRk+1 = Q∆x̃k+1 − Sk+1∆x̃k+2

B =
[
B I

]
R =

[
Ru 0
0 −γ2Rd

]

λk+1 = Pk+1 [I +MPk+1]
−1

φ∆xk−

− [I + Pk+1M ]
−1

(QH∆rk+1 − Sk+1H∆rk+2)

(9)

This completes the derivation of the minimax tracking

controller for finite horizon problems. All the calculation

expressions in (9) are recursive, so they need the knowledge

of the reference signal on the whole horizon in advance. This

difficulty should be solved considering the infinite horizon

solution.

Step 5/2: Derivation of LQ optimal and LQ sub-optimal

infinite horizon solutions

For infinite horizon the MDARE can be easily constructed

from (9). Denote its solution by P∞. Now the generalized

form of the costate variable can be written as:

λk+1 = P∞ [I +MP∞]
−1

φ∆xk−

− [I + P∞M ]
−1

(S1∆rk+1 − S2∆rk+2)
(10)

This way uk = −R−1
u BTλk+1 and ∆d̃∗k = 1

γ2Rd
−1λk+1

are satisfied if one writes back λk+1 into them. To get an

LQ optimal solution S1 and S2 should be selected to satisfy

the other requirement λk = Q∆xk − QH∆rk + φTλk+1.

Substituting the general expression for λ (10) into this last

requirement and doing some manipulations considering the

last equation in (9) and assuming φ is invertible (this can be

guaranteed with pole placement design in Step 1) results in

the following system of equations:

P∞∆xk = Q∆xk + φTP∞ [I +MP∞]
−1

φ∆xk (11)

−S1∆rk = −QH∆rk (12)

S2∆rk+1 = −φT [I + P∞M ]
−1

S1∆rk+1 (13)

0 = φT [I + P∞M ]
−1

S2∆rk+2 (14)

In (11) the MDARE is written which is satisfied for all ∆xk.

For constant reference signal (12),(13) and (14) are also

satisfied and so, the obtained solution is optimal. However,

unfortunately it is impossible to satisfy the last two equations

for time-varying (nonzero ∆rk+2) references. So, the general

LQ optimal solution of the problem is impossible. However,

in real applications at time instant k ∆rk+2 usually should be

considered with linear extrapolation because it is not known

(see [11]). Considering this fact a sub-optimal selection of

S1 and S2 is possible (defining M2 = [I + P∞M ]
−1

):

∆rk+2 = 2∆rk+1 −∆rk

− S1∆rk = −QH∆rk − φTM2S2∆rk

S2∆rk+1 = −φTM2S1∆rk+1 + 2φTM2S2∆rk+1
[

I −φTM2

φTM2 I − 2φTM2

]

︸ ︷︷ ︸

Z

[
S1

S2

]

=

[
QH
0

] (15)

In (15) Z is an invertible matrix. This way the sub-optimal

solution for S1 and S2 results as:

S1 =

[

I − φTM2

((
I − φTM2

)2
)−1

φTM2

]

QH

S2 = −
((

I − φTM2

)2
)−1

φTM2QH

(16)

Finally the control input and worst case disturbance for the

centralized problem:

∆ûk = −Kx2∆xk +KS1
∆rk+1 +KS2

∆rk

KS1
= KS1

− 2KS2

Kx2 = R−1
u BTP∞

[

I +BR−1B
T
P∞

]−1

φ

KS1
= R−1

u BT
[

I + P∞BR−1B
T
]−1

S1

KS2
= R−1

u BT
[

I + P∞BR−1B
T
]−1

S2

(17)
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∆d̃∗k = Lxk
∆xk − (LS1

− 2LS2
)∆rk+1 − LS2

∆rk

Lxk
=

1

γ2
Rd

−1P∞

[

I +BR−1B
T
P∞

]−1

φ

LS1
=

1

γ2
Rd

−1
[

I + P∞BR−1B
T
]−1

S1

LS2
=

1

γ2
Rd

−1
[

I + P∞BR−1B
T
]−1

S2

(18)

Step 6: The construction of the final control input signal

The final control input signal can be constructed conside-

ring (2), (4), (5), (6) and (17). The final result is:

ũk = −Kxx̂k −KS2
(rk+1 − rk) +Kr∞rk+1+

+Kd∞
d̂k where Kx = Kx1 +Kx2

Kr∞ =
(

Kx2 (I − φ)
−1

B + I
)

F +

M3 = (I −BB+)

Kd∞
= [Kx2 (I − φ)

−1
M3−

−Kx2 (I − φ)
−1

BF +Cr (I − φ)
−1

M3−

− F +Cr (I − φ)
−1

M3 −B+]G

(19)

Note that the estimated state is used instead of the real system

state, the rk+1 reference is used with Kr∞ instead of r∞
and d̂k is used instead of d̂∞ and this provides the appli-

cability both for constant and time-varying references and

disturbances. The control input of the state and disturbance

estimator uk should be calculated using Kx2 instead of Kx

(and φ should be used instead of A!). In the next Section

the statement and proof of properties for constant references

and disturbances will be done.

IV. PROPERTIES FOR CONSTANT REFERENCES AND

DISTURBANCES

Theorem 1 (Properties for const. refs. and dists.): The

augmented system formulated with the proposed control

method satisfies the separation principle, is asymptotically

stable and guarantees zero steady state tracking error for

constant reference and disturbance signals

Proof: From (3), (1) and (19) the augmented system

dynamics results as follows:

xe
k = x̂k − xk = (I −KC)φxe

k−1 = Lxe
k−1

dek = −Ad
yk−1

MeCφxe
k−1





xk+1

xe
k+1

d̂k+1





︸ ︷︷ ︸

xa

k+1

=





φ2 −BKx BKd∞

0 L 0
0 −Ad

yk
MeCφ 0





︸ ︷︷ ︸

Aa





xk

xe
k

d̂k



+

+





G
0

Ad
yk





︸ ︷︷ ︸

Ga

dk +





− (BKS2
−BKr∞) rk+1 +BKS2

rk
0
0





︸ ︷︷ ︸

Ba(k)

(20)

(20) shows that the augmented system satisfies the separa-

tion principle, because neither the system state xk nor the

reference terms rk+1, rk affect the dynamics of the state and

disturbance estimator. The stability of the augmented state

matrix Aa can be easily proven. Calculate now the steady

state of the system with constant references and disturbances

(of course rk+1 = rk = r∞ = const, dk+1 = dk = d∞ =
const and Ad

yk
= I should be substituted).

xa
∞ = (Aa)

∞
xa
0

︸ ︷︷ ︸

=0

+

+ (I −Aa)
−1

Gad∞ + (I −Aa)
−1

Ba(∞)

(21)

(21) shows that the system is asymptotically stable for finite,

constant references and disturbances. From (1), (19), (20)

and (21) a straightforward calculation leads to:





yr∞ = Crx∞

xe
∞

d̂∞



 =





r∞
0
d∞



 (22)

This shows that the steady state estimation error is zero, the

estimated disturbance equals the real disturbance in steady

state and the zero tracking error is guaranteed.

Theorem 2 (Finite functional value): The functional with

constant reference and disturbance values is finite even

considering infinite horizon.

Proof:

The proof is straightforward from the definition of the terms

in the functional:

J
(

∆x,∆x̃,∆û,∆d̃
)

=

=
1

2

∞∑

k=0

((∆xk −∆x̃k)
T
Q (∆xk −∆x̃k)+

+∆ûT
kRu∆ûk − γ2∆d̃TkRd∆d̃k)

here :

∆xk = xk − x∞ → 0 as k → ∞

∆ûk = ûk − û∞ → 0 as k → ∞

∆x̃k = H∆rk = H (rk − r∞) = 0 ∀k

∆d̃k = G (dk − d∞)
︸ ︷︷ ︸

=0 ∀k

−BB+G
(

d̂k − d̂∞

)

→ 0 as k → ∞

(23)

This way the functional in (23) describes the well known

minimax regulator problem, where the states and worst case

disturbances go to zero together with the control input and

this way the value of the infinite horizon functional is finite.

V. THE SIMULATION EXAMPLES

The following simple, discrete time (and its continuous

time equivalent) longitudinal quadrotor dynamical model

was considered in simulations (linearized model around

hovering):
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A =







0.9994 0 −1.95e− 5 −0.0196
0 0.9992 0 0
0 0 0.9815 0
0 0 0.0020 1.0000







B =







−8.79e− 7 8.79e− 7
−1.71e− 3 −1.71e− 3

0.134 −0.134
1.34e− 4 −1.34e− 4







G =







−1.54e− 3 0
0 −2.23e− 3
0 0
0 0







C =





1 0 0 0
0 1 0 0
0 0 1 0





xT =
[
u w Q θ

]
dT =

[
du dw

]

(24)

The sample time was T = 0.002sec which results from

the model simplicity (neglecting motor dynamics for exam-

ple). The bandwidth of more complex guadrotor models is

smaller. The elements of the state vector are: u,w velocity

components and Q angular rate in body coordinate system

(coord. sys.), and θ pitch angle in earth coord. sys. The

disturbance vector considers wind disturbance on u and w.

Its transformation from wind (earth) coord. sys. to body is

neglected because of small θ angles. The control goal is to

track a given uref velocity and Qref = 0 angular rate with

rejecting the wind disturbances which means forward flight.

Two tracking controllers were designed for this model.

The first uses the method proposed here (further denoted

by MM(=Minimax) method), the second is an H∞ tracker

designed for disturbance rejection.

The latter could be designed only by completing the

system with the integral of eu(k) = u(k)−uref (k) tracking

error as a state and considering Qref = 0 reference which

means that it is enough to stabilize Q, tracking error mini-

mization is not required. Otherwise, completing also with the

integral of eQ(k) = Q(k)−Qref (k) the resulting augmented

system was not controllable with the input and so, the design

task was unfeasible. An LMI based continuous time solution

was obtained and the resulting controller was discretized

after.

The other controller was designed following the proposed

6 steps (see Section II). During the design the MDARE

should be solved with γ iteration using the so called bisection

algorithm as in the continuous time (CT) case. But the

MDARE should be solved using the augmented input matrix

B (see (9)) and this way it considers also the worst case

disturbance as a useful input applicable to stabilize the

system. This can result in an unstable system at the achieved

minimum γ value if one does not generate also the worst case

disturbance as a control input. But in real applications the

generation of worst case disturbance as an input is usually

impossible (such as here). This problem is pointed out also in

[12] for CT minimax control. The solution similar to the one

proposed in [12] is to do γ iteration not for the solvability

or unsolvability of the MDARE but for the stability or

instability of φ−BKx2 instead. This way larger final gamma

value results, but the controlled system will be stable purely

with the control input (the worst case disturbance is not

needed).

The achieved γ value in H∞ design is 0.812 which is good

for disturbance rejection and tracking. With MM method γ =
592.3178 resulted which is a huge value but small enough

to reject the small disturbance residuals as can be seen from

simulation results.

Both two methods were tested with uref = 1 (using a

ramp transient from 0 to 1) Qref = 0, du = 0.5625 and

dw = 0.04. This latter two are converted values related to

−0.25m/s wind along X, and 0.2m/s along Z axis of earth

coord. sys. (the conversion is needed because a simplified air

drag calculation formula was used to determine the elements

of G).

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

The tracking of u reference

Time [s]

u
 [

m
/s

]

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

−100

−50

0

50

The tracking of Q reference

Time [s]

Q
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d
e

g
/s

]

 

 

ref

MM

H
∞

ref

MM

H
∞

Fig. 1. The tracking of references
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−80

−60

−40

−20

0

20

40
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u
1
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g
]

 

 

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

40

60

80
Force change on aft rotor

Time [s]

u
2
 [

g
]

 

 

MM

H
∞

MM

H
∞

Fig. 2. Control inputs

The simulation results can be seen in Figures 1 and 2.

Both methods were capable to well track the u reference
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and set Q to zero rejecting the disturbances (see Figure 1). In

the application of MM method the control input component

generated by KS2
(see (19)) was originally very large and

needed saturation. With the proper selection of saturating

values the tracking could be tuned to achieve acceptable

control inputs and good tracking performance. This property

gives an extra degrees of freedom in the application of the

design.

The two methods can be compared considering the track-

ing performance and required control input. The tracking

performances can be seen in Figure 1. The H∞ controller

tracks u with a small almost constant error, meanwhile the

MM method has larger tracking errors where the slope of

uref changes, but almost zero error at the linear sections.

The truncated two norms of the errors are the following

(considering 10sec simulation):

Eu =
√
∑N

k=0 eu(k)
2, EQ =

√
∑N

k=0 eQ(k)
2

EH∞

u = 0.8078, EMM
u = 1.0117

The norm is a bit larger in case of MM method, but consider

also the results for Q:

EH∞

Q = 11.7983, EMM
Q = 6.7346

this case both the norm and the extremal values are better for

MM method (see Figure 1). MM generates smaller Q rates

which is good for the quadrotor structure and can make it

possible to stay in the linear range around hovering state.

The steady state eu and eQ values are also better with MM

method: after 11 sec:

eMM
u = 1.55e− 14, eMM

Q = 2.7e− 15
meanwhile with H∞ method after 20 sec:

eH∞

u = 1e− 5, eH∞

Q = 2e− 8

The comparison of the control inputs also gives better

results with MM. The maximum control input signals are

smaller for MM (see Figure 2) and also the truncated two

norms are smaller (for 10sec):

EH∞

u1
= 3.5148, EMM

u1
= 2.052

EH∞

u2
= 3.5455, EMM

u2
= 1.985

As a conclusion it can be said that the tracking perfor-

mance is almost the same for the two methods (considering

only u), but the used amount of control energy and the

extremal values of Q are better for MM method. Another

advantage of MM method is the need to represent only a

4 state dynamical controller (state and disturbance estimator

see [10].) instead of an 8 state resulting from the augmented

plant of the H∞ design.

VI. CONCLUSIONS

This paper presents an LQ optimal minimax tracking

solution for DT, LTI systems with deterministic disturbances.

The solution can be designed with a multi step method

containing stabilization with state feedback, state and dis-

turbance estimation, LS optimal disturbance cancellation,

steady state tracking solution, centering of original system

dynamics and minimax tracker design. The final required

control input is the sum of components designed during

the different steps. The properties for constant references

and disturbances are stated and proven (satisfaction of the

separation principle, asymptotic stability, zero steady state

tracking error and finite functional value on infinite horizon).

The method was compared with an H∞ optimal tracker

applied to the control of a quadrotor longitudinal model.

The goal was to change from hovering to forward flight.

The velocity tracking properties of the two methods are

almost the same, but the proposed new method used less

control energy, induced smaller angular rates and requires to

implement only a 4 state estimator instead of the 8 state H∞

controller.

Both methods were tested also for time varying u reference

giving promising results. However, the examination of the

properties of proposed method with time-varying references

and disturbances will be the topic of another article.

The introduction of state and measurement noises can

highly affect these noiseless results so, this should be later

also examined, together with the robustness properties and

possible extension to time-varying systems.
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