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Physical science theories are often expressed as precise mathematical 

relationships from which researchers can derive empirically testable consequences. 

Mathematical modeling takes on additional tasks in the conduct of behavioral 

science research because behavioral science theories are typically expressed verbally, 

permitting a variety of mathematical representations for their conceptual 

relationships. This paper contains three different applications that (1) specify 

explicit mathematical models for various behavioral science theories, (2) verify the 

logical consistency of the formalized set of assumptions, and (3) examine the 

deductive content of the theories' models. 

The first application, "Stability in the Prisoners' Dilemma," corrects some 

theorems by Robert Axelrod and others asserting the existence of "evolutionarily 

stable strategies" and extends this work. This is accomplished by: (1) formalizing the 

concept of strategy for iterated games and showing that the original proofs only 

establish "pair-distinct" stability, (2) showing that all strategies for playing the 

Iterated Prisoners' Dilemma (IPO) are dynamically unstable, (3) deriving a measure 

of the degree of instability of IPD Strategies, and (4) demonstrating that mutual 

cooperation can reduce instability, even though it does not eliminate it. 

The second application, "Models for Long Cycles in War and Production," 

produces (1) a differential equation model consistent with Joshua Goldstein's long 

cycle theory that produces simple harmonic motion with fixed cycle times in contrast 
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to his observation that the duration of individual cycles varies from 30 to 70 years, and 

(2) a second model that corroborates three primary features of long cycles observed by 

Goldstein including variable cycle times. 

The third application, "Measuring the Rate of War Outbreak," (1) develops a 

variable intensity Poisson process model, (2) uses this model to explicitly derive 

statistically precise predictive estimates of the rate of war outbreak, and (3) derives 

descriptive estimates of the rate of war outbreak that provide strong, unanticipated 

corroboration of Goldstein's long cycle dating scheme and of the "resource 

interpretation" of his long cycle theory developed in the second application. 
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CHAPTER 1 

INTRODUCTION 

In this introduction I discuss the role of mathematics in representing and 

testing non-mathematical scientific theories. The three chapters that follow provide 

concrete illustrations for this discussion. 

In some areas of scientific research, notably the physical sciences, theories are 

often expressed from the start in the form of precise mathematical relationships. 

From these explicit mathematical assumptions, the researcher can unambiguously 

deduce particular testable consequences. If these deductions are falsified by 

controlled experiments, then the researcher can conclude with certainty that at least 

one of the theory's assumptions did not hold in the experiment. Iterative scientific 

progress is facilitated because (1) the theories motivate (potentially) decisive 

experiments, and (2) the results of these experiments can motivate choices among, or 

modifications and refinements of, the theories. 

In contrast behavioral science theories are often presented non-

mathematically, typically employing common language. Even if mathematical 

constructs are used, the use of precise quantitative laws (e.g., a: is a linear function of 

y) may have no empirical basis; instead, the hypothesized relationships should often 

be interpreted more genetically (e.g., JC increases with y). Thus the relationships 

among concepts in behavioral science theories are typically ambiguous, permitting a 

variety of mathematical representations for each relationship.1 Consequently, the 

^Some researchers have claimed that social and life science theories may (or even must) contain 
components that cannot, even in principle, be adequately captured mathematically. On the other 
hand, several methodologists (see, for example, Kaplan 1963, Carley 1981, and Seitz 1983) have 
espoused the use of explicit mathematical models to make the analysis and testing of social and 
life science theories more precise and productive. The chapters that follow provide evidence for this 
second approach in the form of successful explicit mathematical interpretations.of three social and 
life science theories. 
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testable hypotheses and other conclusions advanced by behavioral science theorists 

often cannot be deduced from the assumptions of their theories: at best, these 

conclusions are consistent with the theoretical assumptions; failing this, the 

conclusions are false. 

Because behavioral science theories are ambiguous, mathematical modeling 

acquires additional tasks in the conduct of behavioral science research. The first 

task is to establish the existence of at least one consistent logical representation of the 

theory in question, an interpretive model for the theory.2 Failing this, mathematical 

methods can be used to demonstrate that a theory is logically inconsistent, i.e., that 

there are no models for the theory. In each of the three chapters that follow, I 

produce interpretive models for various behavioral science theories, verifying the 

logical consistency of (at least a subset of) their assumptions. 

The next task is to examine the content of the theory's interpretive models. The 

goal is to produce, by introducing auxiliary assumptions, an interpretive model in 

which the theorist's conclusions can be deduced. Alternatively, mathematical 

methods can be used to show that a conclusion is false in any model for the theory, 

thus refuting the theory. In the first chapter to follow, "Stability in the Iterated 

Prisoners' Dilemma," I correct some published theorems asserting the existence of 

"evolutionarily stable strategies" (e.g., Axelrod 1984: 217). By formalizing the concept 

of strategy in the context of iterated games, I show that the original proofs only 

establish "pair-distinct" stability. I then show that all strategies for playing the 

Iterated Prisoners' Dilemma (IPD) are dynamically unstable. I use this analysis to 

derive a measure of the degree of instability of IPD strategies. Finally, I demonstrate 

2In terms of Kaplan (1963: 267), "Given a formal system, a model is constituted by any 
interpretation of the system which makes its postulates true. This is the sense in which the term is 
used by logicians, like Tarski and Suppes - 'a non-linguistic entity in which a theory is satisfied'; 

We may call them interpretive models to make their origin explicit. The system being 
interpreted is sometimes also called a model, especially when the interpretation is another 
linguistic system; we may speak here of formal models. An interpretive model is thus a model for 
a theory, while a formal model is a model of a theory." 
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that mutual cooperation can reduce instability, even though it does not eliminate it. 

Short of such a global refutation, producing any number of interpretive models 

in which the theorist's conclusions are false or cannot be deduced does not refute the 

theory. It merely confirms the assertion that behavioral science theories are often 

ambiguous, that they are deductively inadequate or logically deficient. In the second 

chapter to follow, "Models for Long Cycles in War and Production," I produce a 

differential equation model consistent with Joshua Goldstein's long cycle theory 

(Goldstein, 1987: 590, 593) that produces simple harmonic motion with fixed cycle 

times, in contrast to his observation (and theoretical goal) that the duration of 

individual long cycles has varied from as low as 30 years to as high as 70 years. Thus 

Goldstein's theory is empirically deficient. 

On the other hand, a single successful interpretive model demonstrates that 

the theory can be given sufficient explanatory power to achieve the theorist's goals. 

In "Models for Long Cycles in War and Production," I produce a second model that 

corroborates three primary features of long cycles observed by Goldstein; in 

particular cycle times can vary due to perturbation of the variables in this model. 

When constructing mathematical models to establish potential theoretical 

sufficiency, the emphasis is on tractability rather than predictive accuracy: an 

evocative caricature is preferred to a detailed replication of all empirical 

observations. Yet this does not necessarily render mathematical models constructed 

for this purpose empirically impotent. The long cycle model motivates statistics and 

indicators (empirical data hypothesized to correspond to the model's variables) that 

may be better able to substantiate the claims of long cycle researchers. Furthermore, 

in the final chapter to follow, "Measuring the Rate of War Outbreak," I develop a 

variable intensity Poisson process model that is clearly a caricature, positing that the 

rate of war outbreak takes on one of only two different levels. Despite this "over­

simplification" I use the model to explicitly derive statistically precise predictive 
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estimates of the rate of war outbreak. I also derive descriptive estimates of the rate of 

war outbreak that provide strong, unanticipated corroboration of Goldstein's long 

cycle dating scheme (1987: 576-7), and of my "resource model" interpretation of his 

long cycle theory. 
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CHAPTER 2 

STABILITY IN THE ITERATED PRISONERS' DILEMMA 

Introduction 

In game theory, a player's strategy is a specification of the choice that that 

player will make in any situation arising in the game. For a given game, we would 

like to determine the strategy (or set of strategies) that we can expect players to 

actually use. This has led game theorists to propose various solution concepts. In 

classical game theory, the solution of a game is determined by the assumption that 

the players each attempt to maximize their own payoff. In contrast, theoretical 

biologists studying the population dynamics that arise when the players' survival 

rates are determined by their game payoffs have introduced the concept of 

evolutionary stability as an alternative solution of a game. A strategy is an 

evolutionarily stable strategy (ESS) if, when used by nearly all of the players in a 

population, players using any other strategy will receive a lower payoff, on the 

average, than those players using the ESS. Stability of the ecosystem is achieved 

because players using other strategies will be less likely to survive. 

Axelrod (1984) has adapted this solution concept to the study of the Iterated 

Prisoners' Dilemma (IPD), introducing the concept of collective stability. A strategy 

A has collective stability if the expected payoff for a player using any other strategy B 

against A does not exceed the expected payoff for using strategy A against A. This 

solution concept is easier to satisfy than evolutionary stability: any strategy that has 

evolutionary stability also has collective stability, but there are strategies that have 

collective stability but do not have evolutionary stability. Axelrod proved that ALL-D, 

the strategy of always defecting, always has collective stability. He also showed that, 

if the value of future payoffs (relative to current payoffs) is sufficiently high, then TIT 
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FOR TAT, the strategy of beginning with cooperation and reciprocating the other 

player's previous move, also has collective stability. 

Axelrod further asserts that both of these strategies have evolutionary stability 

(1984: 217). This assertion is incorrect. In fact, I show that no strategy for playing 

IPD can have evolutionary stability.1 In particular, I show that cooperation is 

initially viable without clustering (compare with Axelrod, 1984: 21, 63). I obtain these 

results by demonstrating that the behavior (pattern of choices) produced by a given 

strategy can be mimicked by other strategies. Thus any population saturated with 

players using one strategy can be invaded by players using a mimicking strategy. 

However, even after such an invasion, the observable behavior in the population will 

remain unchanged. Could this behavior then be stable, even though the strategy is 

not? No: I show that the behavior produced by any strategy is unstable. Based on this 

analysis, I develop a measure of the persistence of IPD strategies; this measure 

varies inversely with the degree of instability. I conclude by showing that mutual 

cooperation can enhance the persistence of IPD strategies. Thus, even though we 

cannot always expect to see IPD players use mutually cooperative strategies, 

mutually cooperative ecologies can be more persistent than uncooperative ecologies. 

Strategies. Payoffs, and Dynamics of the Iterated Prisoners' Dilemma 

The Prisoners' Dilemma game is a two-player game in which each player can 

choose to either cooperate (C) or defect (D). The matrix of payoffs for the four possible 

combinations of choices appears in figure 1.1. In the Iterated Prisoners' Dilemma, 

the two players interact in a sequence of Prisoners' Dilemma games. 

Definition 1: Strategy. A strategy for IPD is a decision rule, d: M -> {CJ)}, 

used by a player to choose either C or D (the two elements in the range of d) when this 

player meets another player. M, the domain of d, is the union of all possible 

1Boyd and Lorberbaum (1987) showed that no pure strategy is an ESS for IPD. This paper presents 
the stronger result from Pudaite (1985) that no strategy, pure or mixed, is an ESS, in order to 
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sequences of n moves, Mn; elements of Mre take the form M <t= {(xi^i)}i=1,
2 

representing the n pairs of choices made by the two players in their first n 

encounters (the xi and yi take on values of C and D). If the players have not 

previously met, then %=0 and Mo = {Mo}, where Mo is an empty sequence (denoted by 

0). A mixed strategy is a strategy for which d(M) is a random variable for at least 

one sequence of moves Me ML 

Figure 1.1b displays a fist of all of the strategies discussed in this chapter. 

Let Mrt(X,Y).be the sequence of moves occurring in the first n encounters 

between players using strategies X and Y. Mn(X,Y) is a random variable with 

sample space Mn. For a sequence of n moves, Me Mn, Pr[M„(Z,Y)=M] is the 

probability of this sequence occurring in the first n encounters between a player 

using strategy X and a player using strategy Y. Pr[Af„(X,Y)=M] can be computed 

iteratively as follows. Let M <= {(x; Ji)}i=i, and for each j < n, let M/ *= {Oci,yi)};=i (in 
T i 

particular, M = M%) and M^ <= {(y î))*=i. Then 

Pr[Mo(Z,y)=0] = l [1.0a] 

Pr[M/(Z,Y)=M/] 

= Pr[Z(M/.i)=^] •Pr\YWLj.1)=yj\ Pr[M/_i(Z,y)=M,.i] for; = 1,2 n [1.0b] 

Figure 1.1c shows the probability of various sequences occurring for Z^, a set 

comprised of the last two strategies appearing in Figure 1.1b. 

In games involving a single move, a player's strategy is identified by the 

player's choice for that move. One of the critical differences between single move 

games and iterated games is that a player's sequences of choices in one iterated 

game does not identify the player's strategy. A strategy for an iterated game can be 

identified only by determining the player's response to every possible sequence of 

introduce a useful ecological framework for analyzing IPD. 
2Where "<=" denotes an assignment by definition; "=" denotes an assertion of equality. 
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moves. But in a given ecology, players may only be confronted by a small subset of the 

set of all move sequences. This leads to the following criterion for distinguishing 

among strategies. 

Definition 2: Identifying strategies in an ecology. Let I be a given set of 

strategies. Then two strategies X, X' e 1 are Irequivalent if and only if for all Y el, 

n > 0, and Me MJ% such that Pr[M„(Z,Y)=M] > 0, Pr[M„(X,Y)=M] = Pr[Mre(X',Y)=M]. 

If X and X' are not Z-equivalent, then they are Z-distinct. In this case, there exists at 

least one discriminator ofZandX', Ye Z, for which Pr[M„(X,Y)=M]*Pr[Mn(X',Y)=M] 

for some n > 0 and Me Mn with Pr[M„(X,Y)=M] > 0. 

Definition 3: Payoffs. Expected payoffs are computed so that the payoff of each 

move is worth some fraction w of the previous move {w is called the discount 

parameter). The expected payoff to a player using strategy A from encounters with a 

player using strategy B, 

E[A IB] <= (1-w) £ w»-l % Pr[Mn(A,B)=M] V(an,bn) [1.1] 
%=1 MeM n 

where an and bn are the players' respective choices for move n (i.e., M <= {(atM))^ 

and V(a,b) is the payoff to a player choosing a in a Prisoners' Dilemma game when 

the other player chooses 6; see figure 1.1a. The payoff matrix for an ecology 

Z t= %}^i istmNxN matrix E(Z) <= (E[Xt \XJ]). 

Assume that the players in an IPD ecosystem cannot interact preferentially 

with players using one particular strategy rather than with players using other 

strategies. Then the dynamics of this ecology are determined by I, the strategies 

present in the ecology, and the number of players using each strategy. Without loss 

of generality, the number of players using a given strategy will be measured by their 

proportion in the entire population. Thus the expected payoff to players using 
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strategy Xj in an ecology Z *= IX/}^ is 

N 
E[Xt] <= £ JSCXi IX;] IX; I = (E(Z) x)i [2.1] 

where IXI is the proportion of players using strategy X, and x = (IXi I,..., IX#I). 

The expected payoff for the entire ecology is 

N 
E<= £ E[Xt] \Xt\=x(E(Z)x) [2.3] 

i=l 

Note that E[X] and E are implicit functions of x. Figure 1.1c shows all of the expected 

payoffs for Zm. 

Assume that the expected payoffs and proportions of each strategy in the 

ecology contribute linearly to changes in the strategy's population. Let A(Z) represent 

the system of differential equations formed by substituting each XeZ into the 

following equation: 

^ j r - = (E[X\ - E) IXI; IXI e [0,1] [2.2] 

Note that because of the dynamics, E, E[X] and IXI are all implicit functions of time. 

This system of cubic differential equations has "been suggested by Taylor & Jonker 

(1978) and Zeeman [1980]" (Maynard Smith, 1982:183). It reflects the assumptions 

that expected payoffs to and proportions of players using a given strategy in the 

ecology contribute linearly to changes in the proportion of players using that strategy. 

Because 

£1X1=1 [2.4] 
Xel 

this system can be reduced to 2V-1 equations where N = iV(Z), the number of Z-distinct 

strategies in Z. The domain of this system of equations is then 
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JV-1 
£ \Xt I e [0,1]; IX; I > 0 for i = 1 to N-l [2.5] 
i=l 

Game Theoretic Stability and Dynamic Stability 

Evolutionary stability was defined verbally above. Here is a formal definition. 

Definition 4: Evolutionary stability (ES). A strategy X has ES if for any finite 

set of strategies Z such that Xe Z, then for all Ye Z with X and Y Z-distinct, X repels 

invasion by Y, i.e., either (1)E[X\X] >E[Y\X], or (2) if E[X\X] = E[Y\X] then 

E[X\Y]>E[Y\Y]. 

The criteria for evolutionary stability in this definition have been relaxed 

compared to standard versions3 in two ways: (1) the criteria are checked only for 

finite sets of strategies (not all possible sets of strategies); (2) the criteria are checked 

only against Z-distinct strategies, not all other decision rules. Yet even with these 

relaxations, there are still no strategies for IPD that have ES. Only by restricting 

consideration to pairs of strategies can we obtain a non-vacuous version of this 

solution concept for IPD. 

Definition 5: Pair-distinct stability (PS). If Yis {X,Y)-distinct fromX, then Yis 

pair-distinct from X; otherwise Y is pair-equivalent to X. A strategy X has PS if for 

any Y pair-distinct from X, X repels invasion by Y. 

Axelrod's assertion (1984: 217) that 

"All propositions in the text remain true if 'evolutionary stability* is substituted for 
'collective stability with the exception of the Characterization Theorem of Appendix 
B, where the characterization is necessary but no longer sufficient" 

is true provided that we replace "evolutionary stability" with "pair-distinct stability." 

The following theorem shows that an ecology saturated by a strategy is 

3See, for example, Maynard Smith (1982) p. 14. 



11 

asymptotically stable precisely if the strategy can repel "invasion" by strategies from 

which it is pair-distinct. 

Theorem 1: Equivalence of PS and asymptotic stability. If strategy X has PS 

and Z = {X,Y} with Y pair-distinct from X, then IXI = 1 is an asymptotically stable 

equilibrium point of A(Z). Conversely, if for any Z = {X,Y} with Y pair-distinct from X, 

IXI = l i s an asymptotically stable equilibrium point of A(Z), then X has PS. 

Proof. From equation 2.2, we obtain the differential equation 

dx 
dt 

= x ( W {x (ELXIXJ - E\Y\X]) + (1-x) (E[X\ Y] - E\Y\ Y])) [3] 

where x= IXI. 

Part i . PS implies asymptotic stability. If E[XIX] >E[YIX], then there exists 
dx 

8 > 0 such that for all*e( 1-8,1),^ > 0. If E[X\X\ = E[Y\X] and E[X\ Y] > E[Y\ Y], then 
dx 

forall*e(0,l),^pO. 

Part 2. Asymptotic stability implies PS. In order for IXI = 1 to be an 

asymptotically stable equilibrium point, we must have E[X\X] > £[YIXJ. If 

E[X\X] = E[Y\X] then we must have E[X\ Y] > E[Y\ Y]. # 

No Strategies Have Evolutionary Stability 

In order to show that no strategies have evolutionary stability, we need the 

following adaptation of Axelrod's Characterization Theorem. 

Theorem 2: Necessity of defection for PS. Let 

ra-l 

Vn[Y\X\ <= (1-w) X w'-l ViytM) [4.1] 
i=l 

be Ys discounted cumulative score from the moves before move n (here X( and yi are 

X and Ys choices on move i, respectively). Let X be pair-distinct from Y. Then X has 

PS only if X defects on the next move whenever 
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Vn[Y\X] > E[XIX] - wn-l (T + ^P\ [4.2] 

Proof. See Axelrod (1981:313-4). # 

Theorem 3: No IPD strategy has ES. Given any strategy X, there exists a set of 

strategies Z containing X' Z-distinct from X, such that X cannot repel invasion by X'. 

Sketch of proof. Since PS is a necessary condition for ES, we can ignore all 

strategies that do not have PS. Then for any strategy X with PS, we produce a set 

Z = {XX',Y] such that X andX' are Z-distinct but not pair-distinct. 

Remark. The rest of this paper focuses on the dynamic systems produced by 

sets of strategies of the form just described. Such a set represents a pair-equivalent 

invasion ecology of X (or just invasion ecology, for short): X' can invade an ecology 

saturated by Xbecause they are pair-equivalent. Thus, even though IXI = 1 is a 

stable equilibrium point of A(Z), it is not asymptotically stable. In an invasion ecology, 

X' is the pair-equivalent invader and Y is the discriminator (recall definition 2). 

Proof. Let X be an strategy with PS. LetX'be pair-equivalent to X. We 

seek a strategy Y, and a discrimination sequence of n moves M* such that 

Pr[Mn(XX)=M*] = 0 but Pr[Mn(X,Y)=M*] > 0. The proof can then be completed by 

choosing X'(M*)#X(M*).4 

In the following, for all j > 0, let M/ 4= [(ai,bi)}/=1 and M J «= ( ( W ^ . Now if for 

any k such that Pr[Mk(XX)=Mk] > 0, Pr[X(M&)=C]e {0,1} (i.e., X makes a 

deterministic choice), then (1) set Y(M/) <= X(M;) and Y(MJ) «= X(MJ) for all j < k, 

(2) set Y(M&) #X(M&) by letting Y(M&) <= C ifPr[X(M&)=D] > 0, else Y(M&) <= D, and 

(3) set n t= Jfe+1, M* <= M^+1 with an <= Y(M&) and bn <= X(MJ). This choice of Y, n, 

and M* fulfills the conditions required above because Pr[M/X,Y)=M/] = 

Pr[Mj{YX)=Mj] = Vr[Mj{XX)=Mj] > 0 for all j < n, but 

4 For mixed strategies, read X'(M*)<=>Z(M*) as Pr[Z'(M*)=C] <=> Pr[X(M*)=C], where "<=>" 
represents either equality ("=") or inequality ("#"). 
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Pr[Mn(XX)=M*-\ 

= Pr[X(Mj[)=6%] Pr[X(Mjfe)=are] Vr[Mk(XX)=Mk] = 0 [4.3] 

because Pr[X(M&)=o%] = 0, while 

Pr[Mw(X,Y)=M*] 

= Pr[X(M^)=6„] Pr[Y(M*)=an] Pr%(Y^)=M&] > 0 [4.4] 

because Pr[Y(M&)=On] > 0. Thus the only way we can fail to find Y and M* as required 

is if X is a completely mixed strategy, i.e., for all Me Ml, Pr[X(M)=C]e (0,1). But by 

theorem 2, there are sequences for which X must defect in order to have PS. Thus X 

cannot be a completely mixed strategy, and we can always find X' and Y such that X' 

is pair-equivalent to, but Z-distinct fromX. # 

The relationship between strategy and behavior in iterated games resembles 

the relationship between theory and observation in scientific research. Just as a 

given sequence of moves can be produced by more than one pair of strategies, a given 

experiment may be consistent with several theories. Nonetheless, if two theories are 

not logically equivalent, then there must be a "critical" experiment for which the 

theories make different predictions. Similarly, if two strategies are not equivalent, 

then there must be some sequence of moves that can discriminate between them, at 

least probabilistically. However, in the Iterated Prisoners' Dilemma, this 

discrimination can only be achieved by giving up strategic stability. 

The Initial Viability of Cooperation 

Theorem 3 shows that for any strategy X, there is a Z-distinct strategy X' that 

has no selective disadvantage in an ecology saturated by X. This theorem plays an 

important part in establishing that cooperation can be initially viable even without 

clustering (preferential interaction) of the cooperative players. Consider the dynamic 
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system A(Z%) where Zi = {XX',Y} <= { A L L - D , T F T - D , T F T - C } , where TFT-C is TlTFOR 

TAT and TFT-D is the strategy of starting with defection, then reciprocating the other 

player's previous move. In this system 

E[X]=P(x+x') + (T(l-w) + Pw)y [5.1] 

E[X'] = P(x+x') + ^~Ly [5.2] 

E[Y] = (S(l-w) + Pw)x + ̂ u7
Lx' + Ry [5.3] 

where x = IXI, x' = IX'I, and y = I Yl =l-x-x'. Figure 1.2 displays a phase portrait 

of A(Zi) using the values w = 4/5 and (SJPJt,T) = (0,1,3,5). The corners of the 

(equilateral) triangle XX'Y represent saturation of the ecology by the respective 

strategy labelled at that corner. Arrows superimposed on the trajectories show the 

direction of time evolution of the system. Notice that no arrows appear along the base 

of the triangle, the line segment XX' representing the region where none of the 

players use TFT-C (y = 0). This is because every point on this line is a critical point, 

this in turn is because X and X' are pair-equivalent. 

The existence of these non-isolated equilibria complicates the mathematical 

analysis (see also Maynard Smith 1982:189), but does not make analysis intractable.5 

The point Sc is a saddle point; all of the points on the line segment S(X' excluding Sc 

are unstable equilibria. The points on the line segment XSC (again, excluding Sc) are 

stable, but not asymptotically stable, equilibria. Y (saturation by TFT-C) is the only 

asymptotically stable equilibrium point of A(Zi). Because of this, the equilibrium 

5Zeeman (1980: 488-9) gives a conjectured classification for games with three strategies, according 
to topological equivalence of their flows. Although the classification is intended to be exhaustive, 
A(Si) does not appear in his list because he limits his analysis to stable games, games for which 
"perturbations of the pay-off matrix do not alter the qualitative nature of the flow," reasoning that "a 
model can only be an approximation of the reality, and so a perturbation may well be as good a 
model. Therefore only robust properties are reliable for prediction and testing of the model" (1981: 
250). Because single encounter (i.e., non-iterated) games that produce non-isolated equilibria are 
not stable, he omits the corresponding flows from his list. However, in ecologies of iterated game 
strategies, non-isolated equilibria may not be eliminated by perturbations of the single game 
payoff matrix if, as in Z%, some of the strategies are pair-equivalent. Thus non-isolated equilibria 
can be stable features of iterated games, even though they are never stable features of single 
encounter games. 
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segment XSC can be considered metastable: given a "small" perturbation6 from a 

point on XSC, the system may return to XSC (although it is unlikely that the system 

will return to the original point). However, any sufficiently large perturbation will 

result in a transition to saturation by TFT-C. Thus, in this example, cooperation is 

initially viable and perhaps even inevitable. 

Why is cooperation initially viable even without clustering? One conceptual 

explanation is that even if we do not observe cooperation among the players in a 

particular environment, we cannot conclude that none of the players are willing to 

cooperate. Some of the players may be waiting for others to take the initial risk of 

cooperation. If at any time there are enough of these "risk-averse" cooperators, then 

cooperation will be able to take hold in the environment. 

Discriminative Perturbation 

The previous section illustrated a method for invading a system saturated by 

strategies that do not initiate cooperation. But theorem 3 shows that even if saturated 

by strategies that initiate cooperation, any system can still be invaded. Does this 

mean that pure defection is also initially viable? In this section, I develop an example 

which motivates a useful technique for testing initial viability of a strategy. The 

example suggests that defection may not be initially viable. This hypothesis is 

confirmed later in the paper. 

Consider a second invasion ecology Zg = {XX'.Y} <= {TFT-C,ALL-C,BULLY}, 

where ALL-C is the strategy of always cooperating and BULLY is the strategy of 

defecting until the other player defects, and always cooperating after that. In this 

system 

E[X] = R (x+x) + ((S + Pw + Tw2) (1-w) + R u>3) y [6.1] 

E[X']=R(x+x') + Sy [6.2] 

^Perturbations might be produced by, for example, mutation (in biological applications) or 
experimentation (in social applications). 
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E[Y] = ((T + Pw+Sw2) (1-w) + Rw3)x + Tx' + (P (1-w) + Rw)y [6.3] 

Figure 1.3 displays a phase portrait of A%) using the values w =4/5 and 

(SJ>#,T) = (0,1,3,5). 

Both A(Zi) and A(Zg) display stable equilibria for corresponding line segments 

XSC. In particular, if we apply discriminative perturbation, raising the proportion of 

discriminators in the system fromy=0 toy=8>0, then for 8 sufficiently small, both 

systems will return to XSC. But in A(Zi) the trajectories near XSC lead away fromX; 

thus discriminative perturbation followed by selection (differential survival rates 

based on payoffs) will tend to reduce the proportion of players using ALL-D. On the 

other hand, in A(Zg) the corresponding trajectories lead toward X; discriminative 

perturbation of A(Zg) followed by selection eventually produces an increase in the 

proportion of players using TFT-C. 

Applying discriminative perturbation continuously over time (instead of one 

time only) produces an even more dramatic effect. For £ > 0, let A(Z;e) be the system of 

differential equations (perturbed from equation 2.2) produced by introducing 

discriminators into an invasion ecology at a small but continuous rate:7 

dx 

a^ = (E[X]-E-E)x [7.1] 
dx' 
^f=(E[Xr\-E-e)x' [7.2] 
^ = (E\Y]-E-e)y + e [7.3] 

Figures 1.4 and 1.5 display phase portraits of A(Zi;e) and A(Z2;e), respectively, with 

e *= .001. Because of discriminative perturbation, there are no longer any equilibria 

on the line XX' in either A(Zi;e) or A(Zg;e); furthermore, the remaining equilibria are 

all isolated. 

7For symmetry and generality, we could add perturbation terms corresponding to introduction of 
the two other strategies. These effects would become important for small levels of x or*'. However, 
since we are primarily interested in the behavior of the system for small y, this would just 
introduce unnecessary complication. 
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In A(Zi;e), for e sufficiently small, Sc is a saddle point while Se is an unstable 

equilibrium (numerical values appear in figure 1.4). The only stable point in A(Zi;e) 

corresponds to saturation by TFT-C. On the other hand, in A(Zg;e) Sc is a stable 

equilibrium, while Se is an unstable equilibrium (numerical values appear in figure 

1.5). 

Stability and Persistence of Behavior 

If we let e approach 0, then in both A(Zi;e) and AG&e), «SC approaches the point 

X (corresponding to saturation of the ecology by strategy X). However, in A(Zi;e), Sc 

remains an unstable (saddle) point, while in A(Z%;e), Sc remains a stable equilibrium 

point. Is Sc a stable equilibrium approaching X for any invasion ecology with 

X = TFT-C? The following example shows this conjecture is false. The example 

motivates a new solution concept that is formally stronger than PS but weaker than 

ES. 

Consider a third invasion ecology Zg = {X,X',Y} = {TFT-C,PR,1D}, where PR is 

the strategy of permanent retaliation (cooperate until the other player defects, then 

always defect after that; see Axelrod 1984,15-6), and ID is the strategy of defecting on 

the first move, then always cooperating after that. In this system 

E[X] = R (%+%') +((S + T w) (1-w) + R w%) y [8.1] 

E[X']=R{x+x') + (S{l-w) + Tw)y [8.2] 

E[Y\ = ({T + S w) (1-w) + Rw2)x + 

(T (1-w) + Sw)x'+(P (1-w) + R w) y [8.3] 

Figure 1.6 displays a phase portrait of A(Zg;E) for the same parameter values used 

previously. For this invasion ecology, the equilibrium point Sc (representing near 

saturation of the ecology by TFT-C) is not asymptotically stable. The phase portrait of 

A(Zs;e) differs from those of both A(Zi;e) and A(Ẑ ;e) in two ways. First of all, the 

equilibrium point Se does not appear. Second, there is a new, asymptotically stable 
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equilibrium point Sc on the line X'Y. If we let £ approach 0, then % approaches the 

point X' (corresponding to saturation of the ecology by PR). 

But note that if all of the players use either PR or TFT-C, then their choices 

produce mutual cooperation. Thus, even though TFT-C is not asymptotically stable 

under discriminative perturbation in this invasion ecology, as £ approaches 0, the 

behavior of the players at the only stable equilibrium point of this system becomes 

indistinguishable from an ecology saturated by TFT-C. This motivates the following 

solution concept for iterated games. 

Definition 6: Evolutionary stability of behavior (ESB). A strategy produces ESB 

if it can produce an asymptotically stable equilibrium for which the proportion of 

discriminators is arbitrarily small. Formally, a strategy X produces ESB if and only 

if (1) X has PS, and (2) for any invasion ecology Z = {X,X',Y} and some 8 > 0, there 

exists a sequence of sets of equiUbrium points C(e) such that (a) for all EG (0,8), the 

entire set C(E) is asymptotically stable in A(Z;E), and (b) lim sup y = 0.8 

e->0+ (x,x',y)eC(e) 

The conditions in this definition guarantee an asymptotically stable 

equilibrium for which the predominant behavior is identical to that observed in an 

ecology saturated by players using X, even though the ecology may contain a 

substantial portion of players using X'. I characterize this solution concept in 

game-theoretic terms below. Unfortunately, this solution concept is vacuous for IPD 

(although it may not be vacuous for other games). In the long run, all IPD strategies, 

and even the behavior they produce, are transient. However, proving the following 

characterization of ESB motivates a way to measure how long we can expect a 

behavioral equilibrium to survive. 

8The definition incorporates sets of equilibrium points because, as we will see, when 
E[X IY] = E[X' IY], none of the equilibria with small y are isolated. However, taking all of these 
equilibria together, the set may be asymptotically stable. Since the proportion of discriminators at 
any point in this entire set can be made arbitrarily small, the system still displays stability of the 
behavior produced by X. 
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Characterization of ESB in Terms of Expected Payoffs 

Theorem 4: Characterization of ESB. A strategy X produces ESB if and only if 

(1) X has PS, and (2) for any invasion ecology Z = {XX',Y}, either 

(a) E[X\ Y] > E[X' IY], or (b) X' repels invasion by Y. 

To prove theorem 4, we first need to determine the location of all equilibria with 

small y. The theorem can then be proved by evaluating eigenvalues of A(Z;E) for these 

equilibria. The cases in which the largest eigenvalue is 0 require some additional 

analysis. These components of the proof are provided by the following lemmas. 

Lemma 4a: Location of equilibria. Given E > 0 sufficiently small, critical points 

{(%(E),%'(E),y(E)): lim y(e) = 0} occur if and only if the following conditions are satisfied. 
E->0+ 

1. When E[X\X] > E[Y\X], there is a critical point at 

x = 0,x' = l-y,y = E[xm ! £ [ Y i r ] + Ofe2) [11.1] 

2. When£[XIX] = E[YIX] and E[X IY] > JS[YI Y], there is a critical point at 

x = 0, x' = 1-y, y = yE[X'\Y]E-E\y\Y] [H2] 

3. When E[X\X] > E[Y\X], there is a critical point at 

x = 1-y, x = 0, y = E[X\X]IE\Y\X] + 0(E%) W-3] 

4. When E[X\X] = E[Y\X] andE[XI Y] > E[Y\ Y], there is a critical point at 

x = 1-y, x' = 0,y = ̂ E[xm
Z-E[Y\Y\ t n - 4 ] 

5. When E[X IY] = E[X' IY], every point of the conic section 

flxy) <=ay2 + (P-Y*)y + £ = 0 [11.5] 

(where a<= E[X\X] -E[X\Y]-JB[YIXT + E[YI Y], p <= -E[X\X] + E[YIX1, andy 
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<=-E[YIX]+ E[YIX]) intersecting the domain of A(Z;e), ID «f= {(xy):xe [0,l-y],ye[0,l]}, 

is a critical point. Critical points such that lim y(e) = 0 occur on this "conic 
e->0+ 

segment" only if at least one of conditions 1 through 4 occurs. Let C(E) be the 

maximal connected segment of critical points containing this point. Then 

lim sup y = 0 if and only if both (a) condition 1 or 2 holds and (b) condition 3 
E->0+ Ocx' j)e C(e) 
or 4 holds. 

Proof. See Appendix. # 

Lemma 4b: Eigenvalues at equilibria. The equilibria listed in lemma 4a have, 

respectively, the following eigenvalues. 

1. When E[X\X] > E[Y\X\ the critical point given in equation 11.1 has 

eigenvalues: 

&1 = (E[X\ Y] - E[X IY]) y [12.1.1] 

X2 = - (E[X\X] - E[YIX3) + 0(E) < 0 [12.1.2] 

2. When E[X\X] = £[YIX'] and E[X' IY] > E[Y\ Y], the critical point given in 

equation 11.2 has eigenvalues 

Xi = (E[X\Y]-E[X'\Y])y [12.2.1] 

%.2 = - 2 (E[X'\ Y] -E[Y\ Y\)y + 0(E) < 0 [12.2.2] 

3. WhenE[XIX] > E[Y\X], the critical point given in equation 11.3 has 

eigenvalues: 

Xi = (E[X'\Y]-E[X\Y])y [12.3.1] 

X2 = - (E[X IX] - E[Y IX]) + 0(E) < 0 [12.3.2] 

4. When E[XIX] = E[Y\X] and E[XI Y] > E[Y\ Y], the critical point given in 

equation 11.4 has eigenvalues 
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11 = (E[X' IY] - E[X\ Y]) y [12.4.1] 

12 = - 2 (2[XI Y]-E[YIY])y + 0(E) < 0 [12.4.2] 

Proof. See Appendix. # 

Lemma 4c: Stability of the conic segment of critical points. Let 

E[X' IY] = E[X\ Y]. Let C(E) be as defined in item 5 of lemma 4a. Then (1) any proper 

subset of C(E) is not asymptotically stable, and (2) C(e) is asymptotically stable with 

lim sup y = 0 if and only if both (a) condition 1 or 2 of lemma 4a holds and (b) 
e->0+ (%,%\y)EC(er 

condition 3 or 4 of lemma 4a holds. 

Proof. See Appendix. # 

Proof of theorem 4 (characterization of ESB). We first show that to satisfy 

condition 2 of ESB (in definition 6), one of the three following conditions must hold: 

(1)E[X\ Y] >E[X' IY] andX repels invasion by Y, (2)E[X\Y] < E[X' IY] and X' repels 

invasion by Y, or (3) E[X IY] = E[X IY] and both X and X' repel invasion by Y. 

If E[X\ Y] > E[X IY], lemma 4b shows that asymptotic stability occurs if and 

only if either condition 1 or 2 of lemma 4a holds, i.e., if X repels invasion by Y. 

Similarly, if E[X\ Y] < E[X' IY], lemma 4b shows that asymptotic stability occurs if 

and only if either condition 3 or 4 of lemma 4a holds, i.e., if X' repels invasion by Y. 

Finally if E[X\ Y] < E[X IY], lemma 4c shows that asymptotic stability occurs if and 

only if both (a) condition 1 or 2 of lemma 4a holds and (b) condition 3 or 4 of lemma 4a 

holds, i.e., if both X and X' repel invasion by Y. 

The proof is concluded by applying condition 1 of ESB: Xhas PS, hence repels 

invasion by Y. IfE[XI Y]>E[X' IY], then X produces ESB. Otherwise, X produces 

ESB if and only if X' repels invasion by Y. # 

No IPD Strategy Produces ESB 

Theorem 5. For w sufficiently large, no IPD strategy produces ESB. In 
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particular, for any strategy X that has PS there exists a pair-equivalent strategy X' 

and a discriminator Y such that Yinvades X' and E[X\ Y] <E[X' IY]. 

Sketch of proof. Theorem 3 showed how X' and Y can reveal to each other that 

neither is X. After these revelations, X' always cooperates with Y; Y defects against 

X' often enough to invade X', and always defects against X. 

Proof. Define the relationship M c L if, given L = {(ai,bi)}i=1, M = {(a/.&j)}^ for 

some m < I. As in the proof of theorem 3, select a sequences of n moves following 

which X makes a deterministic choice, i.e., M° such that Pr[Mn(X,X)=M0] > 0 and 

Pr[X(M°)=C] e {0,1}. Let M<> <= {M e M : M° c M or M° r c M); this is the set of 

sequences of moves starting with M°. Let 

EQ <= (1-w) V i0*-l £ Pr[Mi(A3)=Mj] V(an,6„) [13.1] 
(=1 MjeMljXMlO 

This is the payoff to X from sequences other than those starting with M°. 

Again, as in the proof of theorem 3, choose X' and Y so that they are 

pair-equivalent to X, except that Y(M°) # X(M°). Since X, X' and Y make the same 

choices for Me MMVO0, 

E[A\B] = EQ + (1-w) V wi-1 %Pr[Mi(A3)=Mj] V(an,bn) [13.2] 
i=l M.eMl0 

for anyAJSeZ. Since we only need to make relative comparisons between expected 

payoffs, we can assume without loss of generality that M° = 0 (i.e., that the first 

choice by X is deterministic), whence Ml0 = M and EQ = 0. 

Because Xs first choice is deterministic and Y(0) #X(0), Ys first choice 

informs the other player that it is not X or X'. Let X'(Mi(X,Y)) <= D if 

Pr[X(Mi(X,Y)) = D] < 1/2; otherwise, let XWi(X,Y)) <= C. Choose y > 0 so that 

Ei <= yR + (1-y) S > P. Let X'(M) <= C and Pr[Y(M )̂ = C] <= y for all M e Ml such that 

Mi(X,Y) c M. Then, for constants a,a',b,c,c'e[S,T], and w sufficiently large (i.e., 
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sufficiently close to 1) 

E[X\X]=E[X'\X']<R [13.3a] 

E[XIY] < (a + bw) (l-w) + \ {Ei + P) w2 [13.3b] 

E[X' IY] = (a + cw) (1-w) +Exw2> E[X\ Y] [13.3c] 

E[Y \X'] = (a' + c'w) (1-w) + (yR + (1-y) T) w2 > R > E[X' IX'] [13.3d] 

Equation 13.3c holds because E\ > TJ, (EI + P); equation 13.3d holds because 

y R + (1-y) T > R for y > 0. Thus Y can invade X' (equation 13.3d), while X' receives a 

higher payoff from Y than X does (equation 13.3c). This eliminates the potential for 

any stable equilibria with a small proportion of discriminators. # 

To illustrate theorem 5, consider the invasion ecology 

Z4 = \XX',Y] <= {TFT-C,ALL-C,CFD2C }, where CFD2C is the strategy of starting with 

defection, then cooperating forever after if the other player starts by defecting once or 

cooperating twice and defecting forever otherwise. In this system 

E[X] = R (x+x') + (S (1-w) + Pw)y [14.1] 

E[X'] = R (x+x') + (S (1-w2) + Rw2)y [14.2] 

E[Y] = (T(l-w) + Pw)x + 

(T (1-W2) + R w2) x' + (P (1-w) + Rw)y [14.3] 

Figure 1.7 displays a phase portrait of A(Ẑ ;E) for the same parameter values used 

previously. For this invasion ecology, the equilibrium point Sc (representing near 

saturation of the ecology by TFT-C) is an unstable saddle point. Y (saturation of the 

ecology by CFD2C) is the only stable equilibrium point for this ecology. 

Persistence of Strategies and Their Behavior 

The previous section shows that any IPD ecology cannot remain saturated by 

one strategy or even one mode of behavior forever. The lemmas used to characterize 
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the ESB solution concept can be used to determine how long a saturated ecology can 

persist, relative to the rate of discriminative perturbation. 

Definition 7: Persistence of strategic behavior. Given a strategy X and an 

invasion ecology of X, Z = {XX',Y], if S, one of the critical points listed in lemma 4a, 

exists, then let US) be the largest eigenvalue of A(Z;e) at S. Let ?i(Z;e) <= min(A,(S)), 

and let r(Z) <= lim c
, e . r(Z) represents the rate of departure from the "most 

e->0+ fc 

persistent" equilibrium saturated with the behavior produced by X, relative to the rate 

of discriminative perturbation. Define the persistence ofX: 

Per(X) <= inf ^ [15] 

Per(X) varies directly with the shortest possible "doubling" time of discriminators in 

an invasion ecology of X, relative to the rate of discriminative perturbation. The 

larger Per(X), the longer we can expect the behavior produced by X to persist. 

From the equilibria and eigenvalue calculations in lemmas 4a and 4b, we find 

that 

PrtP.MJg'gljgg [16] 

where S includes only those invasion ecologies in which Y invades X' and 

E[X'\Y]>E[X\Y]. 

Because E[X\X] varies directly with the amount of cooperation when players 

using X play each other, the more a strategy cooperates with itself, the greater its 

persistence. Theorem 6 makes this relationship explicit. 

Theorem 6. Let X be a strategy with PS. Then 

Per(X) < E[XR®fP + 0(1 - w) [17.1] 



25 

Proof. Using the invasion ecology of theorem 5, we find that 

Per(X) < E[™-P + 0 ( 1 _ w) [17.2] 
l(R-P) 

The factor of | appears in equation 17.2 because Pr[X(Mi(X,Y))=XWi(X,Y))] < |. 

Thus X has at most one chance in two of imitating X', avoiding permanent 

retaliation from Y. If Y observes its partner's choices for n turns, it can distinguish 

X from X' with correspondingly greater certainty: the probability that X avoids 

permanent retaliation by Y is then at most 2~n. Thus 

Per(X) < a
E^UR-P) + # 1 - w ) [17.3] 

Since we can vary n independently of w, the theorem is proved. # 

For a particular strategy, Per(X) can be explicitly computed. For example, for 

w sufficiently large 

where yo satisfies 

(R - S) w2 y + (S(l-w) + T(w-w2) + Sw2) = P [18.2] 

As guaranteed by theorem 6, Per(ALL-D) tends to 0 as w increases to 1. The infimum 

is approached by using the following set of pairs of strategies X'(y) and Yfor ye(yo,l]. 

Y cooperates on the first move and reciprocates the other player's first choice on the 

second move. Y then reciprocates the other player's second choice forever after. X'(y) 

defects on the first move (in order to be pair-equivalent to ALL-D), then reciprocates 

the other player's first choice on the second move. If the other player defects on the 

first move, thenX'(y) defects forever after (again, in order to be pair-equivalent to 

ALL-D). Otherwise, starting with the third move, X'(y) cooperates with probability y. 
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The infimum is not achieved because Y cannot invade X'(yo), although Y can invade 

X'(y)foranyy>yo. 

As another example, for w sufficiently large 

which tends to 1 as w increases to 1. This shows that the upper bound guaranteed by 

theorem 6 can be achieved when E[X\X] = R. The infimum is achieved using 

{X',Y} = {ALL-C.CFD2C}. 

Summary 

There are no asymptotically stable IPD strategies. All ecologically stable 

strategies allow unstable strategies to coexist with them. Thus, under discriminative 

perturbation, all strategies, and even the behavior they produce, are unstable. 

However, the rate of invasion under discriminative perturbation varies. Mutual 

cooperation can reduce this rate of invasion. Thus the persistence of an IPD ecology 

is constrained by the level of mutual cooperation. 
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Player Xs 
Choice 

Player Ys Choice 

V(X,Y) 

Cooperate (C) 

Defect (D) 

Cooperate (C) 

R 

T 

Defect (D) 

S 

P 

S<P<R<T R+R>T+S 

Figure 1.1a 

Prisoners' Dilemma Payoff Matrix 
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ALWAYS DEFECT 
ALL-D(M) <= D for all Me Ml [Fl.l] 

TIT FOR TAT 
TFT(0) <= X [F1.2a] 
TFT(M) <= yn for all Me M„ with re = 1,2,... [F1.2b] 

where X is a random variable with sample space [CJD]. If Pr[X=C] = 1, this is the traditional 
TIT FOR TAT strategy denoted by TFT-C; if Pr[X=C] = 0, this is TIT FOR TAT starting with 
defection denoted by TFT-D. 

ALWAYS COOPERATE 
ALL-C(M) <= C for all Me M [F1.3] 

BULLY 
BULLY(M) <= C for all Me M such that at least one yi = D. [F1.4a] 

<= D else [F1.4b] 

PERMANENT RETALIATION 
PR(M) <= D for all Me M such that at least one yi = D. [F1.5a] 

<= C else [F1.5b] 

DEFECT ONCE 
1D(0) <=D [F1.6a] 
1D(M) <= C for all Me MJn with n = 1,2,... [F1.6b] 

COOPERATE FOR DEFECTION OR TWO COOPERATIONS 
CFD2C(M) <= C for all Me MJ such that y\ = D 

or both yi = Candy2 = C [F1.7a] 
«= D else [F1.7b] 

TIT FOR SECOND TAT 
TF2ndT(0) <=C [F1.8a] 
TF2ndT(M) <= yi for all Me MJ x [F1.8b] 

<= y2 for all Me MJ% with /i = 2,3,... [F1.8c] 

X'(Y) 
X'(Y)(0) <=D [F1.9a] 
Z'(y)(M) <=yi forallMeMJi [F1.9W 

<= D for all Me M)n with re = 2,3,... such thatyi = D [F1.9c] 
<= Q for all Me MU with re = 2,3,... such that y\ = C [F1.9d] 

where Q is a random variable with sample space [CJD] and Pr[Q=C] <= y. 

Figure 1.1b 

Cast of Characters 
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When a player using TF2ndT or X'(y) meets a player using the same strategy, the sequence of 
moves proceeds deterministically, 

M„(TF2ndT,TF2ndT) = CCn [F1.10] 
where CCn is a sequence of re mutual cooperations, l(C,C),(C,C),...,(C,C)l. 

MniXWli)) = DDn [Fill] 
where DDn is a sequence of re mutual defections, {(D,D),(D,D),...,(DJ))). When a player using 
TF2ndT meets a player using X'(y), the sequence of moves becomes random. 

Ml(Tp2ndT(X'(Y)) = ((C,D)] [F1.12a] 

M2(TF2"dT^"(Y)) = [(C,D),(DtC)) [F1.12b] 

Pr[M„(TF2ndT^'(Y)) = [(C,D),(D,C),(CM),UC,bn))] 
n 

= IIP* forn = 3,4,... [F1.12c] 
where p; «= y if bi = C, and pi <= 1-y if 6; = D. The expected payoffs for this set of strategies is 

£[TF2ndT I TF2ndT] = R [F1.13a] 

SfTP2ndT |x'(Y)] = (1-w) (S+wT) + w2 (yR+(l-y)S) [F1.13b] 

E[X'(y) I TF2ndT] = (1-w) (T+wS) + w2 (yR+(l-y)T) [F1.13c] 

E[X'(y)\X'(y)) = P [F1.13d] 

E[TF2ndT] = R x + ((1-w) (S+wT) + w2 (yR+(l-y)S))y [F1.13e] 

E[X'(y)} = {(1-w) (T+wS) + w2 (yR+(l-y)T)) x + Py [F1.13f] 

E=Rx2 + a.xy+Py2 [F1.13g] 

where x <= ITF2ndTl, y <= IX'(y)l, and a <= (1-W2Y) (S+T) + 2w2yR. The system of differential 
equations 

^ = (E[TF2ndT] - E) x [F1.14a] 

g = (E[r(Y)]-E)y [F1.14b] 

can be reduced to 

^ = (g[TF2"dT I X'(y)] -P)% + (R+2P-0.) x2 + (a-iJ-P) x3 [F1.14c] 

Figure 1.1c 

Sequence Probabilities, Expected Payoffs, and Differential Equations 

for I w = (TF2"dT,X'(y)) 
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Y = TFT-C 

X= ALL-D X'=TFT-D 

Figure 1.2 

Phase portrait of A(Si) 

T = 5, R = 3, P = 1, S = 0, w = 4/5. Solid circles denote critical points of A(Si). Sc 

= (% = 55/64, x = 9/64, y = 0); Se = (x = 6/7, x' = 0, y = 1/7). All of the points on the line 
XX' are critical points of A(Zi). 

For a given ecology of three strategies I = {XX',Y], let A'(Z) represent the 
system of differential equations formed by substituting each Ae 1 into the following 
equation. 

d\A 
-^~ = (E[A]-E) \A\ IIYI; IAI e [0,1] [F2.1] 

The points X, X' and Sc are critical points of A'(Zi). 
Note: In this and all of the following phase portraits, all critical points lie on 

the domain's boundary. Thus there are no periodic orbits in any of these phase 
portraits (see, for example, Coddington and Levinson, 1955:400). 
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Y= BULLY 

X= TFT-C s X' = ALL-C 

Figure 1.3 

Phase portrait of A%) 
T = 5, R = 3, P = 1, S = 0, w = 4/5. Solid circles denote critical points ofA%). 

Sc = (x = 125/144, %' = 19/144, y = 0); Se = (a = 33/71, %' = 0,y = 38/71). All of the points on 
the line XX' are critical points of A%). The points X,X' and Sc are critical points of 
A'(Z2) (see figure 1.2). 
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Y = TFT-C 

X= ALL-D X'=TFT-D 

Figure 1.4 

Phase portrait of A(Zi;e) 
T = 5, R = 3, P = 1, S = 0, w = 4/5, e = .001. Solid circles denote critical points of 

A(Ii;e). The eigenvalues and eigenvectors of Sc (x = .9948, x' = 0, y = .0052)1 are 
Xi = .0051, vi = (l,-.963,-.037) and kg = -.18, V2 = (1,0,-1). The eigenvalues and 
eigenvectors of Se (x = .86, x' = 0,y = .14) are A,i = .16, vi = (1,0,-1) and X2 = 13, 
v2 = (-.83,-17,1). 

1In order to show details in the graph, Sc has been displayed at an exaggerated distance from the 
point X. 
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Y = BULLY 

X= TFT-C X'=ALL-C 

Figure 1.5 

Phase portrait of A(Z2;e) 
T = 5, R = 3, P = 1, S = 0, w = 4/5, e = .001. Solid circles denote critical points of 

A@2;e). The eigenvalues and eigenvectors of Sc (x = .9967, x' = 0,y = .0033)2 a r e 

A.1 = -.0077, vi = (l,-.975,-.025> and X2 = -.30, \2 = (1,0,-1). The eigenvalues and 
eigenvectors of Se (x = .47, x' = 0,y = .53) are Xi = .14, vi = (1,0,-1) and X2 = -1.24, 
v2 = (.12,-1.12,1). 

2In order to show details in the graph, Sc has been displayed at an exaggerated distance from the 
point X. 
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X= TFT-C X'=PR 

Figure 1.6 

Phase portrait of A(Z3;e) 
T = 5, R = 3, P = 1, S = 0, w = 4/5, e = .001. Solid circles denote critical points of 

A(Zg;e). The eigenvalues and eigenvectors of Sc (x = .988, x' = 0, y = .012)3 are X\ = .016, 
vi = (1,-1.33,.33) and X2 = -.080, v2 = (1,0,-1). The eigenvalues and eigenvectors of Sc 
(x = 0,z' = .99950, y = .00050) are Xi = -.00064, vi = (1.-1.00048..00048) and X2 = -2.00, 
v2 = (0,-1,1). 

3In order to show details in the graph, Sc and Sc have been displayed at exaggerated distances 
from the points X and X', respectively. Their relative positions have been preserved. 
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Y=CFD2C 

X=TFT-C X'=ALL-C 

Figure 1.7 

Phase portrait of A(%4;e) 
T = 5, R = 3, P = 1, S = 0, w = 4/5, e = .001. Solid circles denote critical points of 

A(%4;e). The eigenvalues and eigenvectors of Sc (x = .99916, x' = 0, y = .00084)4 are 
Xi = .00094, vi = (l,-.9987,-.0013) and X2 = -1.19, V2 = (1,0,-1). The eigenvalues and 
eigenvectors of Se (x = .60, x' = 0,y = .40) are Xi = .45, vi = (-.039,-.961,l) and X2 = .72, 
v2 = (1,0,-1). 

4In order to show details in the graph, Sc has been displayed at an exaggerated distance from the 
point X. 
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CHAPTER 3 

MODELS FOR LONG CYCLES IN WAR AND PRODUCTION 

Long Cycles: Observation and Theory 

In his 1987 article "Long Waves in War, Production, Prices, and Wages", 

Joshua Goldstein claims to have developed a "theoretical model consistent with [his 

empirical findings of long cycles in various historical time series]" (p. 573). I 

examine this claim by developing and analyzing some mathematical models based 

on hypotheses from his theory of the long wave. Specifically, I investigate whether or 

not some simple mathematical representations of his theory are capable of 

replicating three key features (enumerated below) of his empirical findings. 

Goldstein establishes a "base dating scheme" for 10 observed long waves 

determined by successive peaks and troughs in prices (p. 576-7). Goldstein 

summarizes the sequence and timing of the long waves identified in his research in 

his figure 9 (p. 592). In particular,"... war severity leads the nominal long wave 

dates, by something like 1-5 years on the average" (p. 582; emphasis in original), while 

production waves lead "prices by 10 to 15 years and hence war severity by about a 

decade" (p. 589). 

The cycles Goldstein identifies are not periodic in calendar time. Instead he 

defines "social cycles in terms of'cycle time'" (p. 575) so that he defines "the long 

wave as a pattern of alternating historical phase periods - upswings and 

downswings - that are only roughly equal in length" (p. 576). This definition is 

somewhat problematic: any non-monotonic time series is going to have ups followed 

by downs. As an example, in examining his figure 2 (p. 581), the reader may wonder 

if Goldstein has skipped over some peaks in order to synchronize war peaks with his 

base dating scheme. The duration of cycles from Goldstein's base dating scheme 
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varies from as short 30 years (1529 to 1559) to as long as 70 years (1650 to 1720). The 

mean duration over all cycles (measured from one peak to the next) is 48.5 years with 

a standard deviation of 12.6 years. 

In order to explain these long cycle features he has identified, Goldstein 

proposes 

a new theory of the long wave, based on a two-way causal relationship between 
economic and political variables. Sustained economic growth both promotes (enables) 
war and is disrupted by war. Figure 10 illustrates the cyclical sequence of production 
and war in this theory. Faster growth gives rise to increased great power war severity. 
Higher war severity in turn dampens long-term economic growth. Lower growth leads 
to less severe war, which in turn allows faster economic growth. This sequence takes 
roughly 50 years - one long wave - to complete. While war and economic growth are the 
driving variables, prices react to war, and real wages react to war and prices, (p. 590) 

These arguments are illustrated in Goldstein's figure 10 (p. 593). 

Is Goldstein's theoretical account capable of replicating his empirical 

observations? In particular: 

1. Does the two-way causal relationship hypothesized by Goldstein generate a 

cyclical sequence of production and war? 

2. If Goldstein's theory is capable of generating a cyclical sequence of 

production and war, does it generate the lag structure he observes? 

3. Can Goldstein's theory account for the rhythmic, but non-periodic pattern of 

the long waves he observes? 

In raising these three questions, I have attempted to identify the most 

important qualitative aspects of Goldstein's empirical findings. In order to evaluate 

Goldstein's theory relative to the criteria represented by these questions, I develop two 

differential equation models that are consistent with his hypotheses. I then 

determine whether or not these models satisfy the three empirical criteria I have 

extracted from his empirical findings. 

Before developing and analyzing these models, here are some nuances to 

consider when interpreting the results of this exercise. Because Goldstein's theory is 

expressed verbally, there is some ambiguity in representing his argument 
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mathematically, i.e., there are many mathematical models consistent with 

Goldstein's theory. Ideally, all of these models would replicate his empirical 

findings, including the three criteria I have selected. Unfortunately, the first model 

developed below cannot account for the third criterion (the rhythmic, but non-periodic 

pattern of long waves). This demonstrates that Goldstein's theory is deficient, 

requiring additional hypotheses to eliminate such inadequate models from models 

capable of accounting for his empirical findings. However, the existence of a 

deficient model for Goldstein's theory does not refute it because there may be another 

mathematical representation of his argument that can account for his findings. 

And indeed, the second model I develop does satisfy all of the empirical criteria 

identified above. 

A "Growth" Model for Goldstein's Theory 

As specified by Goldstein's theory, this model has two "driving" variables: 

(1) W, war severity, presumably takes on non-negative values; and (2) G, production 

growth, takes on real values (positive values indicate actual growth in production, 

and negative values indicate decline in production). Goldstein's theory posits the 

following relationships among these variables: 

1. War severity reduces production growth. In the absence of war (W = 0), 

production growth rises. The greater W, the less G rises, and for sufficiently large 

W, G will decrease. 

2. Production growth augments war severity. When G is low (or negative), war 

severity is reduced. The greater G, the less W decreases, and for sufficiently large G, 

W will increase. 

The following "growth" model, an autonomous system of two differential 

equations, is consistent with the above relationships: 

dW 
i f = «0+P [2.1a] 



39 

dG 
dt = -yW + 8 [2.1b] 

a, p\ y, and 8 are constants, with a, y, and 8 positive. This linear system of differential 

equations can be solved explicitly: 

G = n s i n W + 8 ) - - [2.2a] 
a 

-no 8 
W =-L~ cosW+8) + - [2.2b] 

Y Y 

where a) <t= ~\jay, while n and 8 are determined from the initial conditions. 

This growth model for Goldstein's theory displays pure harmonic oscillation of 

both production growth and war severity, satisfying question 1. In these harmonic 

cycles, production growth leads war severity by exactly 1/4 cycle, which is close to, but 

does not exactly match Goldstein's estimate of a 10 year lead within the 48.5 year 

cycle (of course, Goldstein's estimate of the lead time is quite rough). Thus the 

growth model provides a satisfactory account of the second criterion. 

However, the periodicity of the oscillation in the growth model is fixed: 

perturbing the model's variables (G and W) does not change to. The only way the 

periodicity can change is if the structure changes, i.e., through the parameters a and 

8. Allowing these parameters to vary over time represents an additional level of long 

cycle dynamics that Goldstein does not discuss. Because the model cannot account 

for the non-periodic pattern of long waves in war and production, both the model and 

(consequently) Goldstein's theory are deficient. Yet this does not refute his theory 

because, even though it is consistent with his theory, the growth model cannot be 

deduced from it. By interpreting Goldstein's theory in a different way, we may still be 

able to demonstrate that it has the potential to be adequate empirically. 

A Resource Model for Goldstein's Elaborated Theory 

In this section I develop an alternate model motivated by Goldstein's 
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discussion of his long wave theory. In elaborating on his figure 9, Goldstein provides 

much additional information relevant to the relationship between war and 

production. In particular, it becomes apparent that "economic growth" has two 

separate components. We find that 

"When treasuries are full, countries will be able to wage big wars; when they are 
empty, countries will not wage such wars. Thus, when the growth of production 
accelerates, the war-supporting capacity of the system increases, and bigger wars ensue" 
[page 591]. 

"Resources allocated to war are not available for productive economic purposes 
(including both consumption and investment), and economic assets destroyed by war 
(houses, factories, farms, etc.) are no longer available for productive purposes either" 
[page 593]. 

Thus it seems that economic growth can be partitioned into resources (treasuries or 

assets) and production (productive economic purposes). It appears that war severity 

is directly driven (or enabled) by resources, and is indirectly driven by production 

(which replenishes the resources spent on or destroyed by war). 

This leads me to propose the following model for Goldstein's elaborated theory. 

This model has three "driving" variables: (1) W, war severity, takes on non-negative 

values; (2) P, production, also takes on non-negative values; and (3) R, resources, 

which takes on real values (positive values indicate surplus or abundance, and 

negative values indicate deficit or shortage). A fourth variable, production growth (G) 

is now determined by observing the change in P. This model will be referred to as the 

"resource" model. Here are four hypotheses about the relationships among these 

variables: 

1. War depletes resources, both by consumption and destruction. The greater 

W, the greater the reduction of R. 

2. Production augments resources. The greater P, the greater the 

augmentation of R. 

3. A surplus of resources (R > 0) augments both war severity and production. 

The greater R, the greater the augmentation of both W and P. Similarly, a shortage 
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of resources (R < 0) reduces both war severity and production. The greater -R, the 

greater the reduction of both W and P. 

4. All other things held constant, changes in war severity and production are 

proportional to their current levels. 

The first three hypotheses are suggested by Goldstein's elaborated theory. I 

appended the fourth hypothesis in order to dynamically maintain the non-negativity 

constraints on W and P. These relationships can be captured in the following 

autonomous system of three differential equations: 

dW 
9jjL = aWR [2.3a] 

^ = PP« [2.3b] 

™ = yP-SW [2.3c] 

a, (3, y, and 8 are (non-negative) constants of proportionality. By choosing appropriate 

units of measurement for P, W, R, and t (algebraically, replacing P by yP, W by 8 W, 

R with $1/2R and t with p1/2f), we obtain 

dW 
qjj- = pWR [2.4a] 
IP 
dt 
dR 

^ = PR [2.4b] 

dt = P-W [2.4c] 

a 
where p <= —. p can be thought of as the "war vs. production allocation ratio" of the 

international system.. For example, if p > 1, then war severity will respond more 

strongly than production to surpluses or shortages of resources. 

Analysis of the Resource Model 

Initial conditions: <jt,WJ>Jl) = (0,Wo^o^o). 

First look at how the system behaves in the absence of war (Wn=0). Without 

war, resources will always increase; but they may or may not increase without limit. 
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The system can be solved explicitly: 

R2 - R2
Q = 2 (P - P0) (for P > 0) [2.5] 

See figure 1. Note that the system cannot proceed to the left of the P=0 axis. So either 

resources and production will increase without bound, or if there is a sufficiently 

severe shortage of resources, producution will tend to 0, and the shortage of resources 

will persist indefinitely. 

To help analyze the system when there is war, we can solve explicitly for W in 

terms of P. We obtain (for p > 0): 

W 
fP\P 

= Wo ̂  j [2.6] 

Thus W and P display a direct, monotonia relationship. This reduces the analysis to 

the following system of two autonomous differential equations. 

f = ™ I"a] 

We can now explicitly solve the relationship between P and R. We obtain R2 = f(P) 

where 

f(P) = 2 (P - Wo log P)+(R2
0-2PQ+ 2 WQ log P01 (for p = 0) [2.8a] 

f(P) = 2 p.Edff.^ W + (R\ - 2P0 + 2 ^ 1 (for p > 0) [2.8b] 

It is now relatively easy to produce phase portraits for the (PJR) system. (For 

convenience, 111 just display phase portraits of this system. It's easy to "read in" the 

missing variable W because it varies monotonically with P.) Figure 2 shows the 

phase portrait when p < 1. Figures 3a and 3b show the phase portrait when p = 1. 
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Figure 4 shows the phase portrait when p > 1. It's important to note that changing 

the initial value of W or P does not simply produce a different trajectory on the same 

two variable (PJl) phase portrait; it also results in a different phase portrait for P and 

R. This is because the (PJl) phase portrait is actually just one "slice" from the 

complete (WJ>Jl) phase portrait. Changing either Wo or PQ moves us to a different 

slice. However, if Wo and Po are held fixed, changing RQ leaves the phase portrait 

unchanged. More on this in the following section on perturbations. 

When p > 1, we finally obtain phase portraits with cyclical orbits, satisfying the 

first criterion. So for long waves to occur, the waging of war must be more sensitive 

than production to the level of resources. What we observe is a "boom and bust" cycle. 

But if the level of resources is too large (either positive or negative), the cycle 

eventually "busts": production goes to zero, and although war severity does also, a 

shortage of resources persists indefinitely. 
dP 

The lead time between phases of production growth Hr) and war severity 

varies depending on p, the initial values of W, P, and R, and even on the position 

within the phase (production peaks may lead war peaks by a different length of time 

than production troughs lead war troughs). This model not only may account for the 

observed lead time, it also promotes a more careful evaluation of the concept and 

measurement of lead time in long waves. 

But can this model account for non-periodicity in long waves without 

introducing any additional dynamics? Without perturbation (displacement of the 

values of W, P, and R), the model produces strictly periodic oscillation. The effects of 

perturbation are described in the next section. 

Perturbation of the Resource Model 

The effect of perturbations on the orbits can be determined by evaluating 

partial derivatives of f(P) with respect to the initial values of W, P, and R (for the rest 

of this paper assume p > 1). Here are the results: 
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Bumping RQ, as noted above, just changes trajectories on the (PJt) phase 

portrait. These changes either produce larger or smaller cycles (i.e., higher peaks 

and lower troughs, or lower peaks and higher troughs, respectively, in both war and 

production). 

Bumping Wo up raises f(P) for P < Po, and reduces f(P) for P > Po. This in turn 

reduces both the peak and the trough in levels of production. Reducing Wo raises 

both the production peak and trough. 

Compared with perturbation of Wo, perturbations of Po have exactly the 

opposite effect on production cycles. Raising Pg raises both the production peak and 

trough. Reducing Po reduces both the production peak and trough. If we continually 

boost production, this will produce a spiral in which each trough is higher than the 

past. Figure 5 displays a numerical simulation of the following dynamic 

modification of the resource model: 

dW - — [%W 

[2.9b] 

[2.9c] 

To estimate the effect of perturbations on cycle times, I linearized the reduced 

system of differential equations and determined the cycle time at the critical point 

(WfJZ) = (Weq,Peq»0) for which production is positive (see figure 4). I then 

determined the cycle time T for this linearized system: 

where 

feq = ( # ] F [2.11] 

dt 
dP 
dt 
dR 
dt 

= PR + 1 

= P-W 
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This shows that the cycle time may vary from one orbit to another, and does not just 

depend on the parameter p. The cycle time is thus sensitive to perturbations of both 

W and P. The cycle time is particularly sensitive to such perturbations when P is low 

or W is high. 

The cycle time can be explicitly solved when p <= 2: 

r = 2Wp2-(P-^¥F [2-12] 

Since the cycle time is the same for all points of a given orbit, equation 2.12 is valid for 

any point in the resource model's phase space, provided that the denominator in the 

radical is positive, i.e., provided the trajectory produces a complete cycle. Conversely, 

if the denominator is not positive, then we know that the trajectory does not cycle. For 

example, cycling occurs if and only if W < 2P when R = 0. Even though the allocation 

ratio is fixed, equation 2.12 shows that the cycle time can take on any (non-negative) 

value. This variation in cycle time does not require the introduction of any additional 

dynamic hypotheses. 

These estimates of the cycle time1 show that the resource model can produce 

cyclic behavior with the potential for highly variable cycle times, satisfying the third 

criterion for evaluating long wave models. This also makes it possible that, despite 

the apparent variation in cycle time, a constant allocation ratio may provide a good 

empirical fit across the entire historical time span. 

Implications for Research 

Statistical inference. The resource model motivates more precise detection 

schemes for long wave researchers to employ. First of all, long wave researchers 

have primarily relied on linear statistics. But the resource model suggests that W 

and P display a power relationship, not a linear one. Also, researchers have 

1For any parameter value, equation 2.10 is a local estimate of the cycle time in the phase space; 
conversely, equation 2.12 provides the cycle time for the entire phase space for a single point in the 
parameter space. 
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attempted to discover whether one variable leads or lags another. But if lead times 

vary depending on the position within the cycle, such tests will be confounded. Many 

of the tests which have been employed are also weakened if the cycles are not uniform 

in duration. The tests should be adapted for relative positions within cycles rather 

than measurements based on years. 

Indicators. Goldstein has selected battle deaths in great power wars as his 

indicator for war severity, and tracked the production of several different 

commodities in order to get production figures for as long a time span as possible. 

But now that I have selected certain portions of his theoretical argument in order to 

develop a model which appears to capture many of the characteristic of long cycles, 

we should focus on these specific arguments in order to refine the indicators. These 

indicators can then be used, for example, (1) to test the hypothesized power 

relationship between war severity and production; and (2) to detect perturbations; we 

can see if the perturbations have the predicted effect on cycle times and peak levels of 

production and war severity. 

Scaling. The resource model, being a mathematical abstraction, need not 

apply only to the major sequence of long waves. By fitting the model to indices from 

various nations over different time periods, we can more accurately segregate the 

core countries from the periphery. We may then be able to detect similar war and 

production cycles outside of the core. We may also be able to detect sub-cycles within 

the core. The interplay between war (and other destructive human enterprises) and 

production may exist at many geographic and temporal scales. 

War vs. production allocation ratio. As noted above, a constant allocation ratio 

may provide a good empirical fit across the entire historical time series. If, on the 

other hand, the allocation ratio is observed to change over time, it will be very useful 

to provide dynamic and historical explanations of this change. In particular, what 

conditions tend to reduce the allocation ratio? 
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0 P (Production) 

Figure 1 

Resource Model with No War 

All of the points on the line P = 0 are critical points. 

IV 

I 

0 P (Production) 

Figure 2 

Resource Model with p < 1 

All of the points on the line P = 0 are critical points. The solid circle is an i 

critical point. 
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I 
I 

0 P (Production) 

Figure 3a 

Resource Model with p = 1, W < P 

All of the points on the line P = 0 are critical points. 

0 P (Production) 

Figure 3b 

Resource Model with p = 1, W > P 

All of the points on the line P = 0 are critical points. 
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0 P (Production) 

Figure 4 

Resource Model with p > 1 

All of the points on the line P = 0 are critical points. The solid circle is an isolated 

critical point. 
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CHAPTER 4 

MEASURING THE RATE OF WAR OUTBREAK 

Introduction 
N We observe N outbreaks of war at a sequence of times T = %};=i occurring 

during an interval [*o»*iv+l)- For example, Small and Singer (1982) list 224 outbreaks 

of wars during the interval to = Jan. 1,1816 to *225 = Jan. 1,1981; fg25 - 4) = 60266 days. 

We want to measure X(t), the rate at which war outbreaks occur in the observed 

interval [to,tN+i\ as a function of time. In order to produce this measurement, I first 

discuss a general event process model. I then select and analyze one of the simplest 

cases of this general model, the random hazard doubly stochastic Poisson process. I 

estimate the parameters of the random hazard model in order to produce both 

predictive and descriptive estimates of X(t). I show that the predictive estimates are 

statistically precise: not only are the expected values accurate, the amount of error is 

also accurately predicted. In particular, we can reject two alternative hypotheses: 

that war outbreaks are generated by a simple Poisson process, or some more general 

time-invariant event process. The descriptive estimates provide strong, 

unanticipated corroboration of Goldstein's long cycle dating scheme (1987: 576-7), and 

for my "resource model" interpretation of his long cycle theory. 

The General Intensity-Transition Model of War Outbreak 

The following model of war outbreak will be used to produce a daily estimate of 

the rate of war outbreak, together with the statistical precision of the estimate. This 

will enable statistically thorough evaluations of theories explaining variations in the 

rate of war outbreak. For example, by estimating the stochastic component of 

variation, R2, the coefficient of determination, can be more accurately interpreted. 
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Assumption 1. War outbreak events follow a Poisson process with intensity 

(the expected rate at which events occur) X(t). 

Assumption 2. X(t) is constant except at events called intensity transitions, or 

just "transitions" for short. 

Assumption 3. Intensity transition events follow a Poisson process with 

intensity \i(t). 

To distinguish between these two types of intensity, X(t) will be referred to as 

the war intensity, and \L(t) will be referred to as the transition intensity. 

Assumption 4. The war intensity following a transition is given by the 

transition p.d.f. f(xj,t), where x andy are, respectively, the war intensity before and 

after the transition. 

Even though X(t) is assumed to be constant except at intensity transitions, this 

general form of the model can approximate any given continuously variable war 

intensity to any desired level of precision. For example, given Xv(t), a continuous 

function of time, let f(xy,t) <= b"(Xv(t)), i.e., whenever an intensity transition occurs, the 

war intensity jumps to the desired value Xv(t). As \i(t) grows arbitrarily large, the 

expected value of X(t) converges pointwise to Xvtt).1 

1If ]L(t) is large, then X(t) does not remain constant for very long periods of time. Thus the 
applicability of %(t), our estimated intensity, as a predictor of X(f) (t' > t) varies inversely with \i(t): 
the larger u(f) is, the shorter the duration through which we can expect X(t) to remain valid as an 
estimate. In addition, we will see that \i(t), our estimate of \i(t), governs, roughly speaking, the total 
weight we can apply to our observations of the sequence of war outbreaks preceding t. The larger 
&(f), the faster we must discount our observations further back in time. Thus X(t) will display 
larger variance than it would have if \i(t) were smaller. For these reasons, we hope to observe 
"small" u(f). 

Despite this apparent motivation to underestimate u(f), it is still best to estimate u(f) as 
accurately as possible. u(f) is a measure of the volatility of the information gained through the 
estimation process, indicating how fast our uncertainty grows as we attempt to predict further into 
the future. If we underestimate u(i), then we will give too much weight to observations further back 
in time, biasing X(t) towards X(t') (t' < t) and away from X(t). Biasing the estimate does more 
damage than raising the estimate's variance because we can estimate the variance, but we cannot 
estimate the bias. Underestimating u(t) will also cause us to overestimate the accuracy of the 
model's predictions. 
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The Random Hazard Model of War Outbreak 

The following simplifying assumptions are used to make estimation and 

application of the general model tractable. 

Simplifying assumption 1. The transition intensity is constant, i.e., \i(t) s u*. 

Simplifying assumption 2. The war intensity following a transition is 

independent of the war intensity before the transition, and its probability distribution 

does not change over time, i.e., f(xj,t)=f(y). 

Simplifying assumption 3. f(y) is a member of B" <= \f(X,a2\y)}ita2>Q, a set of 

discrete p.d.f.'s for which f(X,o2y) has a sample space {XL,XH) such that 

f(X,o2;XL) <=l [1.4a] 

fXX,G2;XH) * = ! [1.4b] 

XL <=X-a [1.4c] 

XH <=X+O [1.4d] 

for positive mean value and standard deviation, A, > o > 0. If the standard deviation is 

0, then the sample space of f(X,0y) is {X), and/(X.,0;X.) = 1. 

These assumptions form the random hazard doubly stochastic Poisson 

process model (Lawrance, 1972: 228), or "random hazard model" for short. This 

model is one of the simplest realizations of the general model that still incorporates 

time variation of intensity. Gaver (1963: 223-5) introduced a somewhat more general 

version of this model and derived expected values and survival probabilities. 

Grandell discusses inference for doubly stochastic Poisson processes but concludes 

that "In many cases it is not natural, or at least not practical to [compute the 

likelihood of the observed sequence of war outbreaks] in order to derive estimates of 

[the model's parameters]" (1972: 91). He suggests three alternatives: (1) linear 

estimation, (2) a regression model, and (3) estimates of the covariance sequence. 

Another approach is to define an estimator and assess its statistical efficiency; see, 
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for example, Jacobsen's presentation of the Aalen estimator (1982: 129). Basawa and 

Rao (1980:109-111) show that the expectation of the intensity conditioned by the 

observed event sequence produces a minimum mean-square estimate of the intensity. 

However, because this expectation "is, in general, difficult to evaluate" (p. 110) they 

develop a linear approximation of this estimate. Much behavioral research uses the 

regression model approach; see, for example, Allison (1984) and King (1989). I 

complete the procedure described by Basawa and Rao by producing a computationally 

feasible method of computing the likelihood of an arbitrary sequence of war outbreaks 

assuming the random hazard model. 

If the rate of war outbreak does change over time, the random hazard model 

might appear to be an over-simplified model for this process because it posits only two 

distinct rates of war outbreak. However, the rest of this chapter demonstrates that 

despite its simplicity, the random hazard model is nonetheless capable of producing 

statistically precise estimates of the rate of war outbreak over the time period 

observed by Small and Singer. 

Distribution of War Outbreaks 

Using the random hazard model, what is the distribution of the total number of 

war outbreaks during the time interval [0,T\, given the initial war intensity, 

X(0) e {XLXHY! Let.%%(() be the event that exactly n wars occur during the time 

interval [0,t]. Let Pn(t) <= T?r[Xn(t)], the probability of observing n wars during an 

interval of duration t. Let Yn(t) and Zn(t) be, respectively, the events that exactly n 

wars occur during [0,t] and X(t) is XL or XH, respectively. Let Qn(t) <= ~Pr[Yn(t)] and 

Rn(t) «= Pr[Zn(t)]. Then 

P0(0) = 1 [1.5a] 

Po(0 = Qo(t)+R0(t) [1.5b] 

Qo'(t) = -(XL + \i)Qo(t) + iiRo(t) [1.5c] 
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Ro(t) = liQo(t)-(XH + \i)Ro(t) [1.5d] 

u* 
where u «= % > and Qo(0) is the probability that the initial intensity is XL; by equation 

1.5b, RQ(0) = 1 - Qo(0). Equation 1.5c governs the probability of Yo(t), that X(t) = XL and 

no war occurs during [0,f]. In this equation, the first term is an "exit" term, 

representing (1) the probability of exit from Yo(t) into Yi(t) produced by the occurrence 

of war and (2) the probability of transition out ofYo(t) into Zo(t); the second term is an 

"entry" term, representing the probability of transition into Yo(t) from Zo(t). Equation 

1.6d governs the probability of Zo(t), that X(t) = XH and no war has occurs during [0,f]. 

In this equation, the first term is produced by the entry transition from X(t) = XL to XH; 

the second term combines the exit transition from X(t) = XJJU>XL and the probability 

of exit fromZoW produced by the occurrence of war. 

For n = 1,2,... 

P%(0) = 0 [1.5e] 

Pnit) = Qn(t)+Rn(t) [1.5fj 

Qn(0) = 0 [1.5g] 

Rn(0) = 0 [1.5h] 

Quit) = -(XL + )i)Qn(t) + \LRn(t) + XLQn.i(t) [1.5i] 

Rn'(t) = \iQn(t)-(XH + \l)Rn(t) + XHRn-l(t) [l-5j] 

In equations 1.5i and 1.5j, the third term represents the entry into Yn(t) and Zn(t) from 

Yn.\(t) and Zn.\(t), respectively, produced by the occurrence of war. 

This system of differential equations can be solved using generating functions. 

Let 
00 

Q(t^)<^YdQn(t)(x+m [1.6a] 
%=0 

# ( W <= %#%(()(%+!)* [1.6b] 
ra=0 
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P(tx)^^Pn(t)(x+l)n 
%=0 

[1.6c] 

Obviously, P(tx) = Q(tx) + R(tx). Because 0 £ Pn(t) < 1 for all n, these power series are 

all uniformly convergent for (at least) -2 < x < 0. Differentiating with respect to t: 

[Qft*Y\ ^ 3 J = (A + k+l)B) 0W1 [1.7a] 

where 

A 

B 

-(XL+VO U 

u AXH+\I). 

XL o" 
. 0 XH. 

[1.7b] 

[1.7c] 

Holding x fixed, equation 1.7a becomes a pair of ordinary differential equations. Thus 

Q(tx) = a(x) e*iW * + b(x) e W t 

R(tjc) = c(x) «*iW«+ d(%) e*2W* 

[1.8a] 

[1.8b] 

where 

I" a(x) c(x) 1 T 1 1 1 _ 1 I" Qo(0) (XL x-\i) QQ(0) + u RQ(0) 1T 

I b(x) d(x) J *= L Hx) k2(x) J [ Bo(0) u Q0(0) + (XHx - u) R0(0). 

A2(%)*=A.Z-U-AW 

A(%) <= Vo2x2 + u2 

Thus, in particular, 

P ( W = ^ 4 ^ ^ e A i W ( + ^ % ^ g & 2 M f 

[1.8c] 

[1.8d] 

[1.8e] 

[1.8f] 

[1.9] 

where K<=(2 Qo(0) -1 ) . Equation 1.9 shows that for any t the Maclaurin series of 

P(tx) in x converges for all x, and converges uniformly on any bounded set of*. 
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Because Qn(t) and Rn(t) are positive and bounded by Pn(t), the same must hold true for 

Q(tx) and R(tx). The following results can now be obtained by setting x = -1 in 

equations 1.6a, 1.6b and 1.6c. 

Qo(t) = o(-l) e&i(-l) * + 6(-l) g&2(-D t 

Ro(t) = 6(-l) e*i("D * + d(-l) ek*(-l) t 

Po(t) = (o(-l) + c(-l)) e*i("D' + (6(-l) + d(-l)) eh(-l) t 

[1.10a] 

[1.10b] 

[1.10c] 

Solutions for n > 0 can be determined in a similar fashion: 

Qn(t)^^Q(t^) 

Rn(t)*=^§;R(t*) 

PnU)^§;P(t*) 

x = -l 

x = -l 

x = -l 

[1.10d] 

[1.10e] 

[l.lOfJ 

Setting x = 0 also produces useful information. 

P(f,0)=%Pn(f) = l 
n=0 

[1.11a] 

Equation 1.11a verifies that the total probability that a non-negative number of wars 

has occurred during an interval of duration t is 1. Setting, in addition, Qo(0) = ^: 

Px(t,0)=^nPn(t) = Xt 
%=0 

Pxx(t,0) = X n (n-1) Pn(t) = X2 t2+f!(o,\i,t) 
71=0 

Pxxx(t,0) = % 7 & ? Pn(t) = X3(3 + 3 fi(c,\l,t) X t 
R=0 

Pxxxx(t,0) = X oftl P»W = ̂  * + 6 A(G,m) A.2 (2 + /2(G,kl,() 

[1.11b] 

[1.11c] 

[l.lld] 

[Llle] 
n=Q 

where 
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A(<W) <= ̂  (e*2# - (1 - 2u*)) [Lllfj 

/2(o,ja) <= | j ((3 - 4uf + 2u%2) - (3 + 2uf) e-%4 [l.llg] 

Let JV"(M) be the number of war outbreaks during an interval of duration At 

when the initial intensity has equal probability of being either XL or XH. Then 

E[N(At)]=XAt- [1.12a] 

Var[N(At)] = XAt+ fi(c,\i,At) [1.12b] 

Estimating the Parameters 

Based on equation 1.12a, X was estimated as the mean rate of war outbreak over 

all observations, X = 1.36 wars/year. To estimate a2 and u, consider the statistic 

where the summations are taken over n observed intervals of duration At. Q(At) is an 

estimate of the difference between the variance in the number of war outbreaks from 

the simple Poisson process to the random hazard model. By equations 1.12a and 

1.12b: 

E[Q(At)]=fi(o,\i,At) [1.13b] 

Consequently, a2 and \i were estimated by minimizing the following weighted sum of 

squared errors between observed and predicted values of Q(At): 

S(o2,u) <= Xp(At) (E[Q(At)] - B(At))2 [1.13c] 

8(AO was observed for intervals of duration At e {Fiz, [VPi3 F14], Fu, [VF14F15],..., 

F2Q} (in days);2 here Fn is the nth Fibonacci number {Fi=l, P^=l, Fs=2 Fn = Fn.\ + 

2This set of durations was chosen in an attempt to obtain as many potentially statistically 
independent observations of 8(Af) as possible. Three heuristics were considered in selecting this set 
of durations. 1. Choose durations that are relatively prime (no common divisors) or nearly so, so 
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Fn.2,...}. For durations that were not exact divisors of (225 - *0 (60266 days), intervals 

of equal duration a t each end of the time series were excluded from the sample. For 

example, if At <= 21 days, there would be 2869 intervals starting with 

[1816-1-10,1816-1-31) and ending with [1980-12-2,1980-12-23). The weights were chosen 

to standardize the squared errors: 

x*0-™^ [113d] 

where 

Var[8(Af)] - 2fl-A'+ft(q,H,Afl)2
 + 2 /i(o,u,Af) - 3 ft2(o,n,Af) + /2(c,u,Af) 

The best fit was obtained using o = .406 wars/year, and u = .089 transitions/year. 

Table 1 lists the interval durations selected, together with observed and 

predicted values of 8(Af), and the standard error of the observations from the 

expectations. Figure 3.1 displays the same information graphically. H\ is the 

hypothesis that the war outbreaks were generated by a simple Poisson process (o2 = 0, 

u = 0). 

that sets of consecutive intervals using a given duration do not systematically coincide with 
intervals when using a longer duration. From the set of durations chosen, 84 of 105 pairs of 
durations are relatively prime. Only two of the pairs have common divisors larger than 10: 
(296 = 37 * 8,4181 = 37* 113) and (775 = 31* 25,3286 = 31* 106); neither of these pairs produced 
similar standard errors from the model to the observations of 8(Af) (which would be indicative of 
covariation). 2. Avoid durations for which the majority of the intervals contain no war outbreaks. 
If N(td) = 0 for an interval starting on a given day, then JV(Af') = 0 for all intervals starting on 
that day with At' < At, i.e., iV(AO is completely determined by iV(Af). Conversely, the larger N(&t), 
the greater the freedom of N(&t"), i.e., the greater the number of values N(M 1 might take. Thus I 
eliminated all but one observation for which Af < 267 days (the average duration between wars). 
This heuristic was empirically validated in that the standard error fromthejnodel to the 
observations of 8(Af) was positive for each of the seven durations (Fg, Nfg F&l, ...,Fll). For these 
short durations, we thus conclude that this was not a statistically independent set of observations of 
8(Af). 3. Avoid durations that are so long that 8(Af) is computed from too small a sample of N(M). 
This is pretty much a computational convenience because Var[8(Af)] is correspondingly large for 
such durations, hence the parameter estimates would be relatively unaffected by these observations 
of 8(Af) anyway. I arbitrarily eliminated durations longer than M <= ?20 days because a sample 
size of 8 seemed quite small to me. 

The selection of the set of durations used was successful in that the standard errors from 
fitting the model display negligible serial correlation. However, I did not attempt to determine 
whether this set was the largest possible. Using hindsight, if I were going to select another set, I 
would choose a set of the form (pnm}, where pnm is the prime number closest to en/m and start 
exploring how large m could be without producing noticeable serial correlation. 
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Predicting War Outbreaks 

Given the current level of intensity, we can use P(tx) (see equation 1.9) to 

predict the distribution of the total number war outbreak at any time in the future. To 

make this dependence explicit, let P(q,tx), Pn(q,t), Qn(q,t) and Rn(q,t) be P(tx), Pn(t), 

Qn(t) and #%((), respectively, where q *= Pr[X,(0)=X,jr,] = Qo(0). Thus, to make 

predictions of future war outbreaks, we need to estimate q based on the past 

observations of war outbreaks. 

In order to apply any statistical method to compute q (our estimate of q), we 

will need to evaluate the probability of a sequence of war outbreaks as a function of q. 

The sequence of war outbreaks in the data provided by Small and Singer is recorded 

in units of days. Note that because the random hazard model is time-symmetric 

(neither the transition intensity nor the transition p.d.f. change over time), the 

probability of past sequences can be computed by reversing the direction of time in the 

model, particularly in the system of differential equations (1.5a-j) and its solution(s). 

Thus it suffices to demonstrate how to compute the probability of sequences of the 

form Wm,% <= Wi)^, given qm <= Pr[X,(day m)=Xi], where W; is the number of war 

outbreaks on day i, i.e., during the interval [day z,day i+1); note that Mday m) is the 

intensity at the beginning of day m. Pr[Wm,n I qm\ can be broken down iteratively 

using the following identities. First, by partitioning the event Vftj into independent 

observations of qi (viz., qi = 1 and % = 0). 

Pr[Wy I qi\ = qi PrWij 11] + (1 - qi) PrWij 10] [1.14c] 

Second, for any i <j < k: 

Pr[W;,61 qt] = Pr[Wy.i I q{\ Pr[W/,& I g(gifWy-i)] [1.14a] 

where 
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q(qiWij-i) <= MX(dayj)=XL 19,,W^.i] [1.14b] 

because the events Wij-i and W/^ are independent aside from q(qi,Vfij-i). Finally, by 

definition 

Pr[Wy I q{\ = Pwki,l day) [1.14d] 

and 

Applying these identities: 

PrfWy I gd = Qw&i,l day) PrWi+lj 11] + Aw/%,1 day) Pr[Wi+li/10] [1.14f] 

Pr[Wy I <ft] can now be efficiently calculated for all i <j by first iteratively computing 

PrWij 11] and Pr[W;j 10] using equations 1.14f with qi <= 0 and qt <= 1. 

In the random hazard model, the probability of the intensity at a given time is 

generated by a regular Markov process for which the equilibrium state has p.d.f. 

f(X,o2y). This motivates the use of Bayes' rule with g(q), the discrete uniform 

distribution on the sample space {0,1} (i.e., g(0) <=g(l) <= g), as the prior distribution to 
A 

compute q. It should be noted that other statistical methods, such as maximum 

likelihood estimation, could be used to estimate q now that Pr[Wfj I q{\ can be 

computed. Also, Bayes' estimation could be used with other prior distributions, such 

as the continuous uniform distribution on the sample space [0,1]. A second 

motivation for Bayes' estimation with g(q) as prior is that, as shown below, this 

produces a summary estimate of PrtWjj], encapsulating all of the information 

contained in Wy that is required to produce estimates and test hypotheses (by any 

statistical method) under the random hazard model (see King, 1989:12). Beyond this, 

I will not compare statistical methods in this paper. Instead, I will show that Bayes' 
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estimation is sufficient for the empirical task at hand. 

Usingg(q) as a prior, the Bayes' estimate of Pr[A.(day I)=XL IW^] is given by 

qiWij) = P r twJ^ iSyy io] [1-15a^ 

A 

Note that this relationship is invertible in the sense that, given qiWij), we can 

determine the likelihood ratio between PrfW^I 1] and PrTWjjl0]: 

Pr[W,,,ll]_ £(Wty) 

Thus qiCVfiJ) is a summary estimate of Pr[A.(day I)=XL I Wjj]. In particular, any other 

statistical estimate can be expressed as a function of qi. For example, let gMLi(Wji/) 

be the maximum likelihood estimate of Pr[A.(day I)=XL I Wjj]. Then 

JMLi(Wll7) <= 1 if qWij) > \ [1.15c] 

<=|ifSi(Wy) = | [L15d] 

<=0ifJ,<Wy)<| [1.15e] 

Note, however, that qiWij) cannot be recovered from qM^flNij). 

Applying equations 1.14c, 1.14f and 1.15b to equation 1.15a yields an iterative 

method for computing these estimates: 

QiWij) = Wi,qi+im+ij)) for i <j [1.16a] 

qj+lWj+lj) = l [1.16b] 

where 

«Wn\ ^ Qw(l,l day) q + flwQ.l day) (1-g) f 1R , 
A w . ^ <= 2 Q^i/2,1 day) g + 2 Aw(l/2,1 day) (W) U ' l t )CJ 

Wy+ij<=0 [1.16d] 
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Applying the time symmetry of the random hazard model, the Bayes' estimate 

ofPr[X(day;+l)=^IWy], 

Qj+lWij) = f(Wj>qWiJ-l» toj > i [1.17a] 

<7i(Wi,i_i) = f [1.17b] 

A 

Note that X(day^+1) is the intensity just after the end of day j . Just as qi(V?ij) is a 
A 

summary estimate ofPr[k(day I)=XL I Vtij], qj+iWij) is also a summary estimate of 

Pr[X(dayj+l)=XL I Wy]. Figure 3.2a displays qiWioj-i), where day 0 <= Jan 1,1904, 

day i*o = fo (whence in = -32141) and i ranges from i"o to I'I, where day ii <= (225 (whence 

ii = 28124). The minimum mean-square estimate of the expected rate of war outbreak 

is thus given by (Basawa and Rao, 1980:110) 

E[X\q]=qXL + (l-q)XH [1.17c] 

Figure 3.2b displays the expected rate of war outbreak over historical time. 
A 

Because <7;(W;o,i-i) is a summary estimate ofPr[X(day i)=XL I W;o,i-i], any 

prediction about the sequence of war outbreaks from day i onwards can be derived 

from it. One of the most basic predictions is the distribution of future daily 

cumulations of war outbreaks. Let ptWy) be the estimate of PrtWyl W,0)i-i]. Then 

pCWy) = PrfWy I W w - l W [118a] 

As another example, let Ni(At) be the number of war outbreaks during the 

interval [day i,day i + At). Let Nt(At) <= E[Ni(At) I q =<?;(Wj0j;_i)] be the predicted 

number of war outbreaks during this interval. Then 

Ni(At) =Pz(&W,-o,i_i),Af,0) [1.18b] 

= X At +~ (1 - 2 %(W,'o,i-l)) (1 - g-2&W) [1.18c] 
2u 
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Figure 3.3 shows Ni(At) vs. Ni(At) sampled at yearly intervals (more precisely, 

At <= 365 days). Even though the stochastic component of the variance is far larger 

than the systematic component, the linear regression estimate of the slope (m = .81) is 

tolerably close to the expected value (m = 1). The likelihood of observing this 

relationship between Ni(At) and Ni(At) is three times greater assuming the random 

hazard model than assuming that Ni(At) and Ni(At) are independent.3 

A third example. Let wt be the waiting time to the next war outbreak from the 
A 

beginning of day i. Let <5>i(w) be the predicted c.d.f. of Wi. Then 

$>i(w) = Prlwi < w I J/CWjo.i-i)] = 1 -PoMWW-lW) [L18d] 

For a set of observations W ^ ' let 

m^rt^^T0^ [1.18e] 

Figure 3.4a compares HQOj} ,̂*) with 5({0^^^), where @&W is the c.d.f. of w 

assuming the events were generated by a simple Poisson process, i.e., 
A A

 n 

®x(w) <= 1 - e'"", and i is sampled at intervals of duration At = 365 days. If {&i}i=i is a 

set of accurate c.d.f.'s of the corresponding W ^ i , then ElE^A^x)] =x and 

Var[S( (0(}^i^)] -X n* • If2({0i)^i^)> x> tn*s indicates a tendency to underestimate 

<&i(wi). This in turn indicates a tendency to overestimate the probability of waiting 

times longer than Oj-1(x). Figure 3.4b shows the standard errors produced by using 
A % A JJ 

{®i}i=1 and {$Ji}j=i as estimates of the c.d.f. of waiting times. Quadratic regression 
A „ 

curves are used to emphasize the overall trends. Figure 3.4b shows that {<">;}j=1 has a 

slight (statistically tolerable) tendency to underestimate the proportion of waiting 

times longer than <%-%) for most x. {$}Jj_i displays the same tendency to 

underestimate the proportion of longer waiting times; however, as x increases, the 

3For m = 1, the t statistic 11 = -.372; for m = 0, the t statistic to = 1.575. Using the p.d.f. of the t 
distribution with r degrees of freedom, p{r;t) = c(r) (1 + t2/rfr+1^/2, we find that the ratio of 
likelihoods between the two hypotheses, p(163̂ i)/p(163;«o) = 3.22. 
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underestimation becomes more pronounced. Compared to the hypothesis that war 

outbreaks are generated by a simple Poisson process, the random hazard model 

produces a more accurate estimate of 0* by attributing greater likelihood to the 

hypothesis that the war outbreak intensity is low as we observe longer periods 

without war. 

Testing the Random Hazard Model 

In this section, I test the random hazard model in two ways. First, I show that 

the random hazard model is stronger than two competing hypotheses. One 

competing hypothesis, first proposed by Lewis Fry Richardson (1945:242-250), is that 

war outbreaks are generated by a simple Poisson process. A second competing 

hypothesis, the null hypothesis, is that war outbreaks are generated by an event 

process that does not change over time. The random hazard model motivates 

statistical tests which force us to reject these competing hypotheses. 

The second test is to see how well the random hazard model accounts for the 

systematic and stochastic components of the observed sequence of war outbreaks.4 

These tests show that the random hazard model accurately predicts both the expected 

value (the systematic component) and the variance (a key feature of the stochastic 
A 

component) ofNi(At), wi, and (%(Wy). Thus, from a statistical perspective, the 

random hazard model produces a rather complete account of a wide variety of 

features of the observed sequence of war outbreaks. 

Test 1: Rejecting Alternative Hypotheses 

In "The distribution of wars in time" Richardson (1945: 242-250) proposed and 

was not able to reject the hypothesis that the war outbreaks are generated by a simple 

Poisson process. Richardson contrasted this hypothesis with "the popular belief that 

a war can usually be blamed on one or two named persons." This contrast was not in 

principle irreconcilable, as "... there are similar contrasts in other social affairs; the 
4King (1989: 7-12) provides a more thorough description of this inferential scheme. 
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statistics of marriage for example are in contrast with any biographer's account of 

the incidents that led two named persons to marry each other." Richardson used the 

statistical regularity of war outbreaks as evidence for the role of chance in history, 

proposing 

as a working hypothesis, that every finite set of historical events is only a sample of what 
might have happened. Any quantitative theory of history is therefore not required to agree 
precisely with actual historical events but to agree only within the range of uncertainty 
ascribable to sampling. (1960: 132; original emphasis) 

This hypothesis was not merely intended to replace a deterministically causal 

framework with a statistical perspective permitting both systematic and stochastic 

components in scientific inference. Richardson argued that if the dependent 

variable's variation can be accounted for stochastically, then weiieed not seek 

systematic explanations. 

Various explanations of the increase from 143 [the number of wars between AD. 
1580 to 1715] to 156 [the number of wars between AD. 1716 to 1931] are conceivable such as 
the growth of the world-population, or fuller information about the more recent years, or 
increase of capitalism. But it is idle to discuss any of them if the difference between 143 
and 156 can be explained by chance. (1960:137) 

Houweling and Kline" (1984) state that "uncritical acceptance of Richardson's 

model of the war generating process has discouraged researchers from focusing on 

the number of outbreaks and their causes" because of "the impression ... that the 

Richardson model rules out meaningful causal questions for research on war 

outbreaks" (1984: 53-54). This assertion appears to be true: it is hard to find research 

in which the dependent variable is the number of war outbreaks in a given time 

period. Instead, researchers typically substitute other indicators in place of war 

outbreaks when war is their dependent variable. For example, in a section entitled 

'The dependent variable - international war', Wallace (1971: 25) writes 

Since the frequency of the outbreak of war is hardly a sensitive indicator either of 
conflict or the amount of war occurring in the international system, two more 
sophisticated indices compiled by Singer and Small were employed here. One is ... the 
number of nation-months of war experienced by each nation. The second is ... the 
number of battle deaths suffered ... . (original emphasis) 

Houweling and Kune argue that even if war outbreaks "occur randomly in 
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time" (1984: 54), causal questions for research on war outbreaks can still be 

meaningful if we find systematic variation in war outbreaks among certain 

subintervals of time or among different actors. But they reach a conclusion much 

like Richardson's: if these efforts were unsuccessful, then "meaningful causal 

research ... would come to a standstill because of the lack of variation in substantive 

variables" (1984:55). 

In a more general setting, King argues against these conclusions: 

The stochastic component is not a technical annoyance, as it is sometimes treated, 
but is instead a critical part of the theoretical model: The fundamental intellectual 
breakthrough that has accompanied the development of the modern science of statistical 
inference is the recognition that the random component has its own tenuous regularities 
that may be regarded as part of the underlying structure of the phenomenon" (Pollock, 
1979:1). (1989:9). 

Both systematic and stochastic regularities deserve scientific attention. If exactly one 

war occurred each year, would this lack of variation render causal research on the 

pattern of war outbreaks futile? On the contrary, wouldn't such precise regularity 

demand causal explanation? A simple Poisson process, despite its additional 

stochastic component, is just as precisely regular because both its systematic 

component, the intensity of the process, and its stochastic component are constant. 

Furthermore, the stochastic component of a simple Poisson process is completely 

determined by its systematic component. If we could account for the distribution of 

war outbreaks over the past several hundred years using a simple Poisson process, 

this would be a fascinating result. What mechanisms could guarantee the same rate 

of war outbreak, despite the vast changes in population, mobility, weapons, 

governments, etc., that have taken place throughout this time period? Unfortunately, 

we cannot investigate any of these causal hypotheses because we are forced to reject 

the simple Poisson process hypothesis! 

If we hypothesize that the rate of war outbreak varies over time, then a more 

appropriate and more general null hypothesis is that war outbreaks follow some 

time-invariant event process. The simple Poisson process and a process that 
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generates events at constant intervals are two examples of time-invariant event 

processes. The distribution of dependent variables, such as wt and Ni(At), of the 

particular time-invariant event process that might generate observed war outbreaks 

can be inferred by aggregating observations of these variables independent of their 

location in time. Thus I will compare three competing hypotheses: H\, the 

hypothesis that war outbreaks are generated by a simple Poisson process, Ho, the 

hypothesis that war outbreaks are generated by a time-invariant event process, and 

#u, the hypothesis that war outbreaks are generated according to the random hazard 

model. 

Researchers employing a %2 test have found that the Poisson distribution fits 

the observed distribution of war outbreaks fairly well. Houweling and Rune" argue 

that this test is inappropriate because "it is impossible to make inferences on the 

sequence of war outbreaks in time from the distribution of outbreaks across years" 

(1984: 56). But the %2 test on the distribution of events is not logically inappropriate for 

assessing whether the events were generated by a simple Poisson process. If the 

"true" event process did not produce a Poisson distribution of events across years, 

then, given a large enough sample, the %2 test would allow us to reject Hx. In 

particular, the random hazard model's parameters were estimated from 

information derived only from the distribution of outbreaks across years (viz., the 

mean and the variance), yet, as the examples at the end of the previous section and 

the statistical tests below demonstrate, the random hazard model can produce 

accurate inferences on the sequence of war outbreaks in time. 

The correct reason that the %2 test does not allow us to reject Hi is because it is 

a statistically weak test: P, the power of the test (i.e., the probability of rejecting the 

null hypothesis if the alternate hypothesis is true), is not much larger than the 

significance level a (the probability of false rejection, i.e., rejecting the null hypothesis 

if the null hypothesis is true). I ran a Monte Carlo experiment to estimate P 
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assuming that H^ was actually true. Out of 1000 experimental trials, only 69 of the 

trials produced distributions of war outbreak for which the %2 test allowed us to reject 

Hx when a = .05. The probability of false retention of H\ using the %2 test is about 93%. 

The predictions of the random hazard model can be used to design stronger 

statistical tests than the y2 test. The Neyman-Pearson Theorem shows how to 

construct the most powerful test of the null hypothesis for a given sample (the test for 

which P is maximized), assuming a specific alternative hypothesis (see, for example, 

Hogg and Craig, 1978:244). Unfortunately, it can be quite difficult to compute the n-

dimensional rejection region for the test (n is the sample size). However, we can 

approximate this rejection region by computing the best rejection region among those 

that can be mapped linearly to a connected subset of 91 (the real numbers). This 

procedure yields the following linear test statistic for testing one hypothesis H 

against another hypothesis H': let 

S(jffJT& *= %%(*',#) zt(H) [3.1a] 

where X = {Xi},=1 is the sample, zt(H) is the standard error of the expectation ofX; 

assuming hypothesis H, 

and pi(H'JI) is the "weight" applied by H' to observation i, 

E{ZJ(H)\H-] %<*'#*= / ^ ' ^ = _ [3.1c] 

(see footnote5 for simplifying assumptions and derivation). Defined as above, 

5Assume that the [zj] are independent random variables. Assume that Var[zj(#) IH'] = o2 for all i. 
Without loss of generality, assume that £ p ; 2 = 1, where p£ t= pi(H'JI). For brevity, let 

uf <= E[Zi(H) I HI. Then E[S{H,H'JL) IH] = %p; U; and Var[S(ff ,#',X) IH] = £ p ; 2 o2 = a2. Thus for 

any s we can maximize PT[S(H,H'£)>S Iff] by maximizing £pi u;, subject to ]Tp;2 = 1. Using the 
method of Lagrange multipliers, we find that pj = X u;. Solving for X yields equation 3.1c. 
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E[S(Hfi'JL) \H] = 0 and Var[S(HJI'X) I H\ = 1; thus S(Hfl'£) is approximately a 

standard normal random variable assuming H.6 For a given significance level a, the 

power of the test p = Pr[S(HJl'X) > Sal#'] , where Sa <= F-Hl - a) and F(x) is the 

cumulative distribution of a standard normal random variable. Thus P = 1 - F(Ca)> 

where 

* S(H,H\X) - E[S(HJH',X) IH'] f ^ 

^ VVar[S(tf,ff',X)lff'] 

a.-rowwin 
W VVar[S(H r̂',X)LffJ 
E[S(H#'X) \H1 = V5>2[2i(JEOIff'] [3.1f] 

because £ is approximately a standard normal random variable under hypothesis if'. 

Table 2 shows the results of several tests of i?u vs. #o and Hi, using Xi <= 7V;(A() 

with durations At e {pn>5}n=14 (in days) where pn)Tn is the prime number closest to 

enlm. Figure 3.5a displays the results of the tests of ifu vs. HQ. Because 

Var[S(Hoflu>X) I #%] = 1 over the entire range of sample durations At, the power of 

these tests pretty much varies directly with 2?[S(i?o»#u>X) I-Hjj. In particular, when 

E[S(#0,#u,X) 1-ffpJ > Ca> the power of the test, P > .5 at significance level a, indicating 

that the test is more likely than not to succeed. Figure 3.5a shows how P(Af,a) (the 

power of this test using duration At at significance level a) decreases as At increases; 

this is due primarily to the smaller sample size for longer durations. Figure 3.5a 

includes three reference lines: £ = £.05 (= 1.64, the critical value for significance level 

a = .05), C, = C.oi (= 2.33, the critical value for significance level a = .01), and £ = 0 

(= ElStfoJInJL) I Ho], the expected value if HQ were true). 

For small At (the left side of the figure), the S(HofluX) are all very close to 

E[S(#0,#u,X) I #u l This is because, as discussed in heuristic 2 of footnote 2 above, the 

6To be precise, under the assumptions in the previous footnote, the distribution approaches a 
standard normal distribution as the sample size increases. 
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S(i?0>#u>X) will covary strongly for At < 267. Indeed, the mean square standard error 

of SWoflpX) from E[S(H0fiiiX)\Hll] for Af <p27,5 = 223 days, z2 = .04. Even though 

this low error value shows that the random hazard model is quite accurate, E[z2] = 1 

for statistically independent observations of S(HQJI\LPQ. To reduce this source of bias 

in interpreting the test results, consider the tests only for the set of durations 

Me (p%,5)%_27 (in days;p28,5 = 271). For this set of durations, the mean square 

standard error increases to z2 = .16. Unfortunately, this value still indicates 

covariation among the S(#o,#u,X), so that there is no simple way to combine the 

results of tests of#u vs. Ho orHx to obtain greater confidence in the rejection of#o or 

Hi, respectively. 

Figures 3.5b and 3.5c display the results of tests of i?u vs. HQ and Hi, 
46 respectively, for the reduced set of durations {pn,5)n=27 (in days). These tests show 

that we can confidently reject both Ho and Hi in favor of ifu. At a = .05, we reject Ho 

in 8 of 20 tests, and Hx in 12 of 20 tests; at a = .01, we reject HQ and Hi once each out of 

20 tests. These rates of rejection agree fairly well with the estimated powers of the 

tests. 

Test 2: Predictive Precision of the Random Hazard Model 

The previous series of tests lead to rejecting the hypothesis that war outbreaks 

are generated by any process in which the rate of war outbreak does not change over 

time. These tests, as well as the examples at the end of the previous section, also 

showed that the random hazard model accurately predicted the expected value of 

diverse features of the sequence of war outbreaks. In this section, I present a similar 

series of tests of the random hazard model's systematic and stochastic predictions. 

Table 3 shows the results of several tests of Ho and Hi vs. # u , using Xi *= Ni(At) 

with durations At e \Pn,b)n=.2i (in days). In these tests, the test statistic S(#u,#,X) 

gives greater weight to the more "extreme" predictions of the random hazard model 

when compared to the predictions of the other two models. Figures 3.6a and 3.6b 
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display the results of tests of £TU vs. Ho and Hx, respectively, for the reduced set of 

durations (p%,s)%=27 (in days). These tests show that we cannot reject iZu in favor of 

either HQ or Hi.1 

Perhaps the most direct test of the random hazard model is to see how well the 
A 

predictive and postdictive summary estimates agree. We test whether qi(yfto,i-i), the 

probability that the war intensity is low at day i estimated from preceding 

observations of the sequence of war outbreaks, is consistent with, i.e., accurately 
A 

predicts, qiQWij&s), the estimated probability for day i given succeeding observations 

of war outbreaks. To conduct this test, we need to determine the distribution of 
A 

<?i(Wi,*225) as a function of#. 
Let Fi(qx) be the c.d.f. of qi(Wi,t225) given that <?; = q, i.e., 

Fi(qx) «= Pr[^(Wi)f225) * *| PrfWday i) = XL] = q\ [3.2a] 

Note that Ffajc) = q Fi(lx) + (1-q) Fi(0x). Then applying equation 1.16a 

-Kx> 

F£q*) = ̂ (Qwiq,lday)Fi+i(l,hw(x))+Rw(q,lda.y)Fi+i(0,hw(x))) [3.2b] 

where f( W,h\y(x)) = x (with f(W,q) as defined by equation 1.16c). The first term in the 

summation represents the contribution to (%(Wi,f22s)'s c.d.f when (1) W wars occur, 

(2) qi = q, and (3) qi+i = 1; similarly, the second term represents the contribution when 

W wars occur, (2) qi = q, and (3) %+i = 0. 7%,%) can now be computed for each day by 

first iteratively computing Fi(lx) and F;(0,%). Fj(l^) and Fi(0x) converge slowly to the 

limiting distributions F(ljc) and F(0x); p.d.f.'s corresponding to these distributions 

appear in figure 3.7. The mean values and standard deviations of these limiting 

distributions are, respectively, qi = .612, oi = .201,̂ o = .388, and OQ = 216. Thus 

7 Just as occurred in the tests of ify. vs. Ho and Hi (table 2), the observed values of the test statistic 
actually lie somewhat closer to 0 than might be expected for statistically independent standardized 
normal random variables. 
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lim {E[qi(WUt225) I £(W,0,M) = <?]) 
(i-f 225) -> -°° 

= 919+90(1-9) 

= .388 + .224 g [3.2c] 

lim (var[^(Wi^225)' 9i(W*0,i-l) = 9] J 
(i-<225)->-°° 2 2 o 

= g o 1 + ( l -g ) a 0 + 9d-9)(9i -^o) 2 

•=-. 0466 + .0437g-. 0499 q2 [3.2d] 

Thus the standard deviation has a range of [.201..237] (the maximum is achieved at 

q = .438). The rate of convergence of the expected value to its limiting value is about .6 

per year. Thus the distance from the limit shrinks by a factor of 10 in less than five 

years. Since the observations take place over a much longer time span than five 

years, and the limiting variance is larger than the initial error, the limiting estimate 

should be tolerably accurate for all observations. 

Figure 3.8 shows 9;(Wj,*225) plotted against 9i(W*o,j-i)> sampled at intervals of 

271 days. The figure also displays the linear regression estimate of this relationship, 
A A 

9i(Wj,f225) = 343 + .324 9;(Wf0,i-i). This estimate is consistent with the predicted 

limiting relationship (equation 3.2c) The likelihood of observing this relationship 
A A 

between 9i(Wi,%25) and 9;(W*0,i-i) is 200,000 times greater assuming the random 

hazard model than assuming that the two estimates are independent.8 The 

estimated slope is actually slightly larger (not statistically significant), indicating 

that the predictions are more accurate than expected! This in turn suggests that the 

intensity transition rate may actually be lower than estimated. Additional evidence 

for this hypothesis appears below. 

Measuring the Rate of War Outbreak 

To obtain our best possible estimate of the rate of war outbreak at each point in 

8For equation 3.2c, the t statistic fy. = 1.605; assuming independence, the t statistic *o = 5.191. The 
ratio of likelihoods between the two hypotheses, p(221;fy)/p(22l2o) = 2.31xl05. 
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time, we can combine both predictive and "postdictive" estimates to form a descriptive 

esimate of the rate of war outbreak. In order to combine these estimates, define the 

odds of an event whose probability is p, 

p(p)*=^ [3.3a] 

The odds that the intensity is low at a particular time given the entire observed 

sequence of war outbreaks is a product of the odds that the intensity is low given the 

sequence of war outbreaks preceding and succeeding that time: 

p(9i(Ww,%25)) = P(9;(W*O,M)) PWWU225)) &3b] 

A 

To compute 9i(Wf0)*225)> note that 

qMLi(VIij) can be computed from equations l.lScde; ^(Wfo^s) and ^MLj(W*0)*225) can 

be computed using equation 1.17c. 

Figure 3.9a displays A*(Wf0,*225) and ?iMLj(Wi0j<225)» respectively, the expected 

value and maximum likelihood descriptive estimates of the rate of war outbreak. 

There are three prominent "cycles" in the figure: (1) a period of low intensity, 

starting in 1816 and ending around 1846, followed by a period of high intensity until 

1870; (2) a second period of low intensity lasting until 1893, followed by a period of 

moderately high intensity lasting until 1914; (3) a third period of low intensity lasting 

until 1944, followed by high intensity until 1981, the end of the observations. 

There is an unanticipated and surprisingly close correspondence between 

these dates and Joshua Goldstein's base dating scheme of long cycles in prices: 1814, 

1872,1917, and 1980 are peak years for prices; while 1848,1893 and 1940 are trough 

years for prices (1987:577). The probability that two sets of five numbers out of 165 

being as close as {1846,1870,1893,1914,1944} and {1848,1872,1893,1917,1940} is less than 
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1.7x10-6.9 

Goldstein used war severity (specifically, battle fatalities from great power war; 

1988: 248) as an indicator of the war variable because he could not detect variation in 

the rate of war outbreak between the long cycle phases. Because the random hazard 

model allows us to estimate the rate of war outbreak, we can easily observe the 

relationship between prices and war. Figure 3.9b displays the observed mean rate of 

war outbreak for Goldstein's rising and falling price long cycle phases superimposed 

on the estimates of figure 3.9a. Table 4 shows the actual number of war outbreaks 

during each long cycle phase. 

Thus we observe that when the rate of war outbreak is high, prices rise; when 

the rate of war outbreak is low, prices fall (or do not rise as fast; see Goldstein 1988: 

185-9). By inferring resource levels from prices, this observation provides empirical 

motivation for the effect of war on resources in my "resource model" interpretation 

for Goldstein's long cycle theory (see chapter 2). Resource levels can be inferred from 

prices because prices are low when resources are abundant, and high when 

resources are scarce. In both the resource model and during the time period 1816 to 

1980, resources are depleted when the rate of war outbreak is high, and resource 

levels increase when the rate of war outbreak is low. 

Figure 3.9b also suggests that the rate of change in the rate of war outbreak 

varies inversely with major power price levels. When prices are at their lowest, the 

rate at which wars are initiated rises the fastest; when prices are at their highest, the 

rate at which wars are initiated falls the fastest. In my interpretation of Goldstein's 

verbal theory, the war derivative varies directly with the relative level of resources. 

This provides empirical motivation for the war derivative equation of the resource 

9There are ( 5 J = 958683033 different sets of five distinct integers that can be drawn from 

{1816,...,1980). To be as close as these two sets, one number must hit exactly, two other numbers 
must differ by no more than 2, the 4th number must differ at most 3, and the 5th number must differ 

, _ 1x5x5x7x9 . „ c 

by at most 4. Thus p = 95g683033 = 1 6 4 x 1 0 • 
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model.10 

On another note, it appears highly likely that only five or seven transitions took 

place during the observed time span; thus it appears that 

u < 7/165 = .042 transitions/year (compared to the least squares estimate, 

u = .089 transitions/year, whence we would expect 14 or 15 transitions between 1816 

and 1981). As noted above, this may account for the stronger than predicted 

correspondence between intensity estimates based on the preceding and succeeding 

sequences of war outbreaks. 

Conclusion 

The random hazard model produces accurate predictive estimates of several 

features of the observed sequence of war outbreaks, including (1) the number of war 

outbreaks in a given duration, (2) the waiting time to the next war outbreak, and (3) 

the "postdictive" estimate of the rate of war outbreak. It is important to note that the 

model's parameters were not estimated by fitting the predicted values of any of these 

features to observed values. Instead, the parameters were fit only to cross-sectional 

summaries of the data11 that individually eliminated information about the time 

sequence of the events. The accuracy of the model's estimates allow us to produce 

statistical tests powerful enough to reject the hypothesis that the rate of war outbreak 

does not vary over time. 

Once variation in the rate of war outbreak has been established, we can more 

easily pursue empirical analysis into the determinants of war initiation. In order to 

use all available information to estimate the rate of war outbreak, I combined 

predictive and postdictive estimates to produce a descriptive estimate of the rate of 

war oubreak. The accuracy of these descriptive estimates cannot be assessed directly; 

10However, the theoretical account of why the rate of war outbreak should rise or fall when price 
levels are low or high, respectively, remains incomplete. In particular, Goldstein argues only that 
war severity rises and falls because of the availability of resources (1987: 591). 
11Viz., the "excess variance" beyond that expected from a simple Poisson process. 
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however, the accuracy of the predictive estimates gives us confidence in forming the 

descriptive estimates. The descriptive estimates produce unanticipated corroboration 

of Goldstein's base long cycle dating scheme, and of my interpretive "resource model" 

for his long cycle theory. 

Descriptive estimates produced using the simplified transition model, or 

refinements of this model, should be useful in testing other theories that hypothesize 

variation in the rate of war outbreak or other event processes. Because the simplified 

transition model produces estimates of precision as well as expectation, tests of these 

theories can be conducted with greater statistical thoroughness: for example, we can 

compute the power of statistical tests used. 
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Figure 3.1 

Observed and Fitted Values of Q(At) ("Excess Variance") 

Error bars extend one standard error in each direction from fitted values. 
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Figure 3.2a 

Estimated Probability of Low Intensity 

(observed war outbreaks precede date of estimate) 
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Predicted Rate of War Outbreak 
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Actual vs. Predicted Number of War Outbreaks 

(sampled at yearly intervals) 
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Figure 3.4b 

Standard Errors of Waiting Time Predictions 

(sampled at yearly intervals) 

Positive (negative) standard error indicates under- (over-) estimated x, which in turn 
indicates over- (under-) estimated probability of longer waiting times. Quadratic 
regression curves are used to emphasize the overall trends: for S({<PjJi=1,:r.), 
y = -.92 +1.74 x - 2.98 x2 (R2 = .422); for 2(A}A,%), y = -.94 +1.74 x -1.54 x2 (R2 = .036). 
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Figure 3.5a 

Test of ifu vs. HQ Using X = {Ni(At)} 
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Test of F u vs. HQ Using X = {Ni(At)} 
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Figure 3.5c 

Test of tfu vs. Hi Using X = {Ni(At)} 
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Test of ifo vs. # u Using X = {Ni(At)} 
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Test of Hi vs. # u Using X = {Ni(At)} 
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Figure 3.7 

Density of Estimated Probability of Low Intensity 
fljqjc) is the limiting probability density function of x, the probability that the 

intensity is low, given q, the actual probability of low intensity. 
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Postdicted vs. Predicted Estimates of Probability of Low Intensity 
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Figure 3.9a 

Expected Value and Maximum Likelihood Estimates of the Rate of War Outbreak 
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Figure 3.9b 

Estimated and Observed Rate of War Outbreak 
The phase mean is the observed mean rate of war outbreak during a long cycle 

phase (during which prices are rising or falling). 



Table 1 

Observed and Predicted Values of "Excess Variance" 

Duration 

(in days) 
Af 
233 
296 
377 
479 
610 
775 
987 

1255 
1597 
2031 
2584 
3286 
4181 
5318 
6765 

Intervals 

n 

258 
203 
159 
125 
98 
77 
61 
48 
37 
29 
23 
18 
14 
11 
8 

Observed 

6.38e-2 
2.94e-2 
1.56e-l 
4.67e-l 
2.15e-l 
2.77e-l 
1.62e+0 
1.05e+0 
2.55e+0 
6.35e+0 
5.58e+0 
8.41e+0 
1.18e+l 
1.70e+l 
1.61e+l 

8(At) 
Predicted by 

Best fit 

6.45e-2 
1.03e-l 
1.65e-l 
2.62e-l 
4.17e-l 
6.56e-l 
1.03e+0 
1.60e+0 
2.47e+0 
3.76e+0 
5.65e+0 
8.35e+0 
1.22e+l 
1.73e+l 
2.43e+l 

Hi 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Stan dare 
Bestfit 

-.01 
-.60 
-.05 
.77 

-.52 
-.65 
.68 

-.43 
.04 
.89 

-.01 
.01 

-.04 
-.02 
-.33 

error 
Hi 

.83 

.27 

.99 
2.07 
.66 
.59 

2.42 
1.09 
1.83 
3.15 
1.93 
2.01 
1.93 
1.93 
1.20 
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Table 2 

Test of Hu vs. H0 and Hi using Xt <= Ni(At) 

Duration Intervals 

(in days) 

At n 
17 3545 
19 3171 
23 2620 
29 2078 
37 1628 
43 1401 
53 1137 
67 899 
83 726 
97 621 

127 474 
149 404 
181 332 
223 270 
271 222 
331 182 
401 150 
491 122 
601 100 
733 82 

907 66 
1097 54 
1327 45 
1637 36 
1999 30 
2441 24 
2971 20 
3643 16 
4447 13 
5431 11 
6637 9 
8101 7 
9901 6 

S <= S(#oAi»X) 

S E[S] Var[SG B(.05) G(.Ol) 
2.233* 2.109 .990 .679 .413 
2.227* . 2.105 .988 .678 .412 
2.071* 2.074 .961 .669 .398 
2.164* 2.095 .983 .675 .408 
2.307* 2.119 1013 .681 .418 
2.209* 2.090 .992 .673 .406 
2.286* 2.105 1.013 .676 .413 
2.057* 2.043 .961 .658 .386 
2.125* 2.056 .989 .660 .393 
2.030* 2.039 .972 .655 .385 
2.293* 2.064 1027 .660 .398 
1.913* 1991 .951 .639 .365 
1.901* 1.956 .949 .625 .352 
2.788f 2.103 1149 .665 .417 
2.132* 1.955 1.013 .621 .356 

2.226* 1.928 1.012 .611 .346 
1.439 1.767 .872 .552 275 
1.832* 1.786 .951 .558 290 
2.076* 1.770 .999 .550 289 
1.706* 1634 .917 .496 235 

1.452 1464 .892 .424 .181 
1.710* 1.453 .919 .420 .181 
.430 1210 .701 .302 .091 

1.207 1.167 .911 .308 .112 
1.575 1154 .973 .309 .117 
1.309 1056 .894 .267 .089 
1.253 .827 .885 .192 .056 
1.824* .866 1268 .245 .097 
.963 .570 .885 .127 .031 
.969 .563 .763 .108 .022 
.319 .350 .629 .051 .006 
.309 .404 .779 .080 .015 
.131 .213 .541 .026 .002 

S <= S(Hx.ffu.X) 

S E[S\ Var[S] B(.05) B(.01) 
2.263* 2.136 1016 .687 .425 
2.258* 2.134 1.016 .686 .424 
2.130* 2.133 1.017 .686 .424 
2.202* 2.132 1.018 .685 .424 
2.314* 2.125 1.019 .683 .421 
2.240* 2.120 1.021 .681 .419 
2.296* 2.115 1.023 .679 .417 
2.123* 2.108 1.024 .677 .415 
2.169* 2.098 1.029 .672 .411 
2.091* 2.100 1.031 .673 .412 
2.297* 2068 1.031 .661 .399 
1.998* 2.081 1.038 .666 .405 
1.991* 2.051 1.044 .655 .394 
2.667t 2.012 1.052 .640 .380 
2.184* 2.004 1.065 .636 .378 

2.293* 1986 1.074 .629 .371 
1.600 1.968 1.082 .622 .365 
1.977* 1929 1.108 .606 .353 
2.197* 1875 1.122 .586 .335 
1.906* 1.828 1.147 .568 .321 

1.664* 1683 1.179 .514 277 
1.933* 1.657 1.196 .505 .270 
.568 1618 1253 .490 263 

1430 1405 1.318 .417 211 
1.880* 1.378 1.388 .411 211 
1.671* 1345 1452 .402 .208 
1.643* 1092 1.542 .328 .160 
2.068* .980 1.623 .301 .145 
1325 .786 1.683 254 .118 
1477 .865 1.801 280 .138 
.512 .598 1.840 220 .101 
.347 .636 1.932 234 .112 
.228 .411 2.022 .193 .089 

*Reject HQ or Hi with significance a = .05. 

fReject HQ or Hi with a = .01. 
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Table 3 

Test of HQ and Hi vs. ifu using Xt <= Nt(At) 

Duration 
(in days) 

Af 
223 
271 
331 
401 
491 
601 
733 
907 

1097 
1327 
1637 
1999 
2441 
2971 
3643 
4447 
5431 
6637 
8101 
9901 

Intervals 

n 
270 
222 
182 
150 
122 
100 
82 
66 
54 
45 
36 
30 
24 
20 
16 
13 
11 
9 
7 
6 

S 
-.584 
-.158 
-.235 
.395 

-.086 
-214 
.084 
.163 

-.181 
1.158 
.007 

-.309 
-.146 
-.442 
-.813 
-.388 
-.431 
.078 
.076 
.140 

S <= S(H„,HQ$) 

EIS] 
1.990 

.1.968 
1.942 
1.916 
1.852 

1.790 
1723 
1560 
1.526 
1.456 
1228 
1175 
1.120 
.882 
.771 
.607 
.644 
.441 
.458 
.289 

VarKl 
.921 

1.040 
1.041 
1205 
1.100 
1.044 
1132 
1.150 
1120 
1467 
1.116 
1046 
1134 
1.141 
.794 

1.136 
1311 
1.593 
1284 
1851 

BC05) 
.640 
.624 
.615 
.598 
.578 
.556 
.529 
.469 
.455 
.438 
.347 
.323 
.311 
.237 
.163 
.165 
.191 
.170 
.147 
.160 

B(.01) 
.363 
.363 
.353 
.354 
.326 
.300 
285 
238 
225 
236 
.149 
.130 
.129 
.088 
.040 
.053 
.071 
.068 
.050 
.067 

S 
-.585 
-.160 
-.236 
.393 

-.087 
-218 
.081 
.159 

-200 
1.152 
-.013 
-.310 
-.141 
-.453 
-.802 
-.392 
-.446 
.056 

-.016 
.126 

S <= S(HM,HX,X) 

EIS] 
1987 
1.964 
1.941 
1.911 
1.849 
1.783 
1.716 
1554 
1505 
1446 
1.207 
1.174 
1125 
.873 
.782 
.604 
.637 
.417 
.377 
276 

VarEl 
1.004 
.987 
.980 
.968 
.941 
.926 
.901 
.868 
.850 
.816 
.762 
.733 
.701 
.651 
.626 
.597 
.555 
.543 
.515 
.492 

B(.05) 
.634 
.626 
.618 
.606 
.583 
.557 
.530 
.461 
.440 
.413 
.308 
291 
267 
.169 
.138 
.089 
.088 
.048 
.039 
.026 

B(.01) 
.368 
.358 
.349 
.336 
.311 
286 
260 
203 
.187 
.165 
.100 
.089 
.076 
.036 
.025 
.013 
.012 
.005 
.003 
.002 

*Reject ifu with significance a = .05. 

tRejectif„witha = .01. 
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Table 4 

War Outbreaks During Long Cycle Phases 

Price 
Phase 
Falling 
Rising 
Falling 
Rising 
Falling 
Rising 
Total over 
Total over 

Year 
Started 

1816 
1848 
1872 
1893 
1917 
1940 

falling price 
rising price 

Year 
Ended 
1848 
1872 
1893 
1917 
1940 
1980 

: phases 
phases 

Duration 
(in Years) 

32.5. 
24.0 
21.0 
24.0 
23.0 
40.5 
76.5 
88.5 

War 
Outbreaks 

30 
40 
18 
34 
27 
75 
75 

149 

War Outbreaks 
per Year 

.92 
1.67 
.86 

1.42 
1.17 
1.85 
.98 

1.68 

Let Ho be the hypothesis that the rate of war outbreak is the same during both 

falling and rising price phases. Then the chi-square statistic, %2(1 d.f.) = 14.95. Since 

Pr[%%(! d.f.) > 14.951H0] < .0002, we can reject Hn. 
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APPENDIX 

PROOFS OF LEMMAS IN CHAPTER 2, 

"STABILITY IN THE ITERATED PRISONERS' DILEMMA" 

Proof of Lemma 4a 

Factoring equation 7.1 shows that a critical point must satisfy either x = 0 or: 

(-EiXm+ElXm-ElYm + Emxyxy*: 

(E[X\X] - E[X IY] -E[Y IXT + E\Y\ Y])y2 

- (E[X\X] + E[X\ Y] - E[X' IY] - E[Y\Xr\) y + e [Al.l] 

Equation 7.2 can be factored in the same way. Thus a critical point must 

satisfy either x' = 0 or: 

(-E[X'\Y] + E[X\Y]-E[Y\X'}+E[Y\X])x'y = 

(E[X\X\ -E[X\ Y] -E[Y\X] + E[Y\ Y])y2 

~(E[X\X] +E[X'\ Y] -E[X\ Y] -E[Y\X])y + e [Al.l] 

Because finding zeros of any two of equations 7.1, 7.2, and 7.3 determines a critical 

point of A(2;e), all critical points of A(X;e) can be found by (I) setting x = 0 and x = 0, 

(II) substituting* = 0 into equation 7.3, (III) substituting%' = 0 into equation 7.3, or 

(IV) solving equations Al.l and Al.l' simultaneously. 

Part I: x = 0 and x = 0. This yields y - 1, which does not tend to 0 with e. 

Part II: x = 0. Equation 7.3 can be factored after settingx = 0: 

dy_ 
dt = (1-y) ((E[X\X] -E[X\Y\-E[Y\Xr\ + E[Y\Y])y2-

2 = 0 

(£[XIX|-.E[YIX'])y + e) [A1.2] 
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The critical point y = 1 was handled in part I. Let a «= E[X\X] - E[X' IY] - E[Y\X] + 

E[Y\ Y] and 6 <= E[X\X] -E[Y\X^. Then we seek "small" positive values of y 

satisfying the equation: 

ay 2 -oy + e = 0 [A1.3] 

Part HA: b < 0. For e sufficiently small, there is no "small" critical point with 

x = 0. Part IIA1: If a > 0, then "V b2 - 4 a e < -6, whence the two roots of equation A1.3 

are both negative. Part IIA2: If a - 0, then equation A1.3 has one negative root. Part 

IIA3. If a < 0, then the positive root of equation A1.3, y = — + 0(e), which does not tend 

to 0 with e. 

Part HB: 6 = 0. Then a = - E[X' IY] + E[Y\ Y]. For e sufficiently small (e < -o to 

be precise), we obtain a critical point if and only if a < 0. This critical point occurs at 

% = 0,a' = l-y,y = ̂  [11.1] 

Part IIC: b > 0. For e sufficiently small, we obtain a critical point with 

* = 0,*' = l-y,y=f + O(e2) [11.2] 

Equation A1.3 has another root only if a * 0. This root occurs aty = — + O(e) which 

does not tend to 0 with e. 

Part III. x = 0. Because of the symmetry between X and X', any results for 

x = 0 can be converted into results for JC'=0 by exchangingX with X' and x with x'. Let 

a' <=E[X\X]-E[X\Y]-E[Y\X]+E[Y\Y]aiidb' 4=E[X\X]-E[Y\X\. Then we 

obtain the desired critical points if and only if either one of the two following 

conditions is satisfied. 

Part IIIA: 6 = 0 . Thena'= -E[X\ Y] +E[Y\Y]. For e sufficiently small, we 

obtain a critical point if and only if a' < 0. This critical point occurs at 

= l-y,^ = O,y = ^ 4 [11.3] 
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Part IIIB: 6' > 0. For e sufficiently small, we obtain a critical point with 

x = 1-y, x' = 0, y = p + 0(e2) [11.4] 

Part IV: Simultaneous solution of equations Al.l and Al.l'. Equation Al.l can 

be expressed as 

yzy = ay 2 + py + e [A1.4] 

where a «= E[X\X] -E[X'IY] -E[Y\X'] + E[Y\ Y], p <f= -E[X\X] -E[X\ Y] + E[X'\ Y] 

+ E[YIZ], and y <= - E[X\ Y] + E[X' IY] -E[Y\X] + E[Y\X']. Substituting equation 

A1.4 into equation Al.l' produces 

6y = 0 [A1.5] 

where d<=E[X\Y]-E[X'\Y]. We can assume that y*0. This is because 

= e, hence no point for which y = 0 can be a critical point E\ =E[X], hence # 
'y = o "* y = Q 

of A(Z;e) (for e > 0). Thus critical points are produced only if 8 = 0. Substituting 

E[X' IY] <= £[XI Y] into equation Al.l shows that critical points appear on the conic 

section: 

ay2 + (p-Y*)y + e = 0 [A1.6] 

with p = -E[X\X] + E[YIJT] and y= -E[Y\X] + E[Y\X']. 

Part IVA: y = 0. The analysis of equation A1.3 can be adapted by substituting a 

for a and -P for 6. We obtain a line of critical points if and only if either one of the two 

following conditions is satisfied. 

Part IVA1: p = 0. Then a = - E[X IY] + E[Y IY]. For e sufficiently small, we 

obtain a critical point if and only if a < 0. Critical points occur on the line 

xe[0,l-ylx'=l-x-y,y = ̂ [^~ [Al.7] 
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Part IVA2: p < 0. For e sufficiently small, critical points occur on the line 

xe[0,l-y],x'=l-x-y,y=-^ + O(e2) [Al.8] 

Part IVB: y # 0. In this case, we can solve for x explicitly as a function of y: 

yy 

Critical points occur where the graph of(%*y) satisfying equation A1.9 intersects 

ID = {(xy): x e [0,1 -y],ye [0,1]}, the domain of A(E;e). Thus all critical points can be 

determined by solving 

0</(y)<l-y [ALIO] 

Because lim f(y) = ±°°e [0,1], if there are any critical points with "small" positive y, 
y->0+ 

then there must be one such critical point satisfying either f(y) = 0 or f(y) = 1-y. This 

occurs if and only if (at least) one of the following four conditions holds: 

Part IVB1: p = 0. Then a = -E[X\ Y] + E\Y\ Y]. For e sufficiently small, we 

obtain a critical point if and only if a < 0. This critical point occurs at 

JC = 0, x = 1-y, y = *sf^~ [Al.ll] 

provided that e < E[X' IY] - E[Y\ Y]. 

Part IVB2: p < 0. For e sufficiently small, we obtain a critical point at 

% = 0,%' = l-y,y = ̂  + O(e2) [A1.12] 

PartIVB3: p = y. ThenE[Y\X]=E[X\X\. For e sufficiently small, we obtain a 

critical point if and only if a + y = - E[X IY] + E[Y IY] < 0. This critical point occurs at 

* = l-y,*' = 0,y = ^ f — ) [A1.13] 

Part IVB4: P < y. For e sufficiently small, we obtain a critical point with 

http://Al.ll
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x = 1-y, x = 0, y = ̂ 7 | + 0(e2) [A1.14] 

Part IVB (continued). If any of the above cases are satisfied, then the critical 

point obtained lies on a connected segment of the hyperbola given by equation A1.9. 

Let C(e) be the maximal connected segment of critical points containing this point. 

Because x is a continuous function of y for ally > 0, C(e) must intersect 3D, the 

boundary of the domain of the system, at least twice. Thus lim sup y = 0 only 
e->0+ (x$'j)eC(t)J 

if two of the above cases are satisfied (specifically, one of cases RTBl or IVB2 and one 

of cases IVB3 or IVB4). On the other hand, if two of the above cases are satisfied, then 

lim sup y > 0 can only occur if f(y) intersects 3D tangentially in one of these 
e->0+ (xjc'y)eC(z) _ 
cases. For /fy) = 0 and f(y) = 0 to hold, we must have a > 0 and e = f^, which cannot occur for e sufficiently small, but positive. For f(y) = 1-y and f(y) = -1 to hold, we must 

havect + y> 

positive. # 

have a + y > 0 and e = 4 ^ y which also cannot occur for e sufficiently small, but 

Proof of Lemma 4b 

In cases 1 and 2, x = 0. The first partial derivatives of A(2;e) at these points can 

be computed by first evaluating at x = 0: 

dx 
dx 

dx 
dy 

d_i 

dx 

= (E[X\Y]-E[X'\Y])y [A2.1] 
x = 0 

= 0 [A2.2] 
x = 0 

= (E[Y\X]-E[Y\Xr\)y-
x = 0 

(E[X\Y]-E[X'\Y] +E[Y\X}-E[Y\X-])y2 [A2.3] 

dy 
dy 

= -(E[X\X}-E[Y\X']) + 
x = 0 

(3 E[X\X] - 3 E[YIJT] + 2 E[Y\ Y] - 2 E[X' \Y])y-

2 (E[X\X] -E[X IY] - EIYIXI + E[Y\ Y])y2 [A2.4] 
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3* 
Because — 

9y 
= 0, the eigenvalues are Xi = — 

x=0 °* 
and X2= — 

(*j)-((W W (*o0 = (0^0) 
where yo satisfies equation A1.3. Eigenvalues for case 2 are obtained by setting 

E[X\X] = 25[YIX'], also. Eigenvalues for cases 3 and 4 can be obtained by exchanging 

X withX' and x with x' in cases 1 and 2, respectively. # 

Proof of Lemma 4c 

Part 1. Let S be a proper subset ofC(e), (S ± 0 and Sc <= C(e) - S * 0). Then 

because C(e) is connected, either S or Sc has an accumulation point belonging to the 

other set. Thus for any 8 > 0, there exist si e S and s2 e Sc such that the distance 

between these two points, d(si,S2) < 8. Thus there are arbitrarily small perturbations 

from S that do not return to S. 

Part 2. Lemma 4a showed that lim sup y = 0 if and only if the 
e^0+W'j)eC(e) 

conditions required hold. The proof is completed by showing that these conditions 

also guarantee asymptotic stability. Let 

v&cy)*=/%j) [A3.1] 

where f(xy) is given in equation 11.5. Then 

VWl(,/j)EC(:) = () [A3-% 

Because C(e) is maximal, there exists 8 > 0 such that 

yk4:y,y)eP(o)>0 ^3.3] 

where P(8) <=(s:s eZ)-C(e); d(s,C(e)) < 8} and D is the domain of A(I;e). The proof is 

completed by showing that there exists 8 > 0 such that for all (%(0)^'(0)j(0))ef(8), 

lim V(x(t)y(t)) = 0. We have 

V(xy) = 2V(xy)g(xy) [ASA] 



102 

where 

g(xy) = -x fx(xy) + (l-y) fy(xj) [A3.5] 

^ > U > S C f e , - - ' - " T ^ - T " ^ [A3.6] 

Thus ifg(xy) < 0, then lim V(x(t)y(t)) = 0. Applying either condition 1 or 3 of lemma 
f->°°. 

4a also produces g(xj) < 0 because 

g W = - ^ f ^ < 0 [A3.7] 

Applying either condition 2 or 4 of lemma 4a: 

g ( ^ ) = - ^ < 0 [A3.8] 

Thus C(e) is asymptotically stable with lim sup y = 0 if and only if the 
e->0+ U^ ' j ) eC(e ) 

required conditions hold. # 



103 

REFERENCES 

Allison, Paul D. (1984) Event History Analysis: Regression for Longitudinal Event 

Data. Beverly Hills: Sage. 

Axelrod, Robert (1981) "The Emergence of Cooperation Among Egoists," American 

Political Science Review 75: 306-18. 

(1984) The Evolution of Cooperation. New York: Basic Books. 

Basawa, Ishwar V. and B.L.S. Prakasa Rao (1980) Statistical Inference for Stochastic 

Processes. New York: Academic Press. 

Boyd, R. and J. P. Lorberbaum (1987) "No Pure Strategy is Evolutionarily Stable in the 

Repeated Prisoner's Dilemma Game," Nature (327): 58-9. 

Carley, Michael (1981) Social Measurement and Social Indicators. George Allen & 

Unwin, London. 

Coddington, Earl A. and Norman Levinson (1955) Theory of Ordinary Differential 

Equations. New York: McGraw-Hill. 

Gaver, D. P., Jr. (1963) "Random Hazard in Reliability Problems," Technometrics 5(2): 

211-226. 

Goldstein, Joshua S. (1987) "Long Waves in War, Production, Prices, and Wages," J. of 

Conflict Resolution 31(4): 573-600. 

(1988) Long Cycles: Prosperity and War in the Modern Age. New Haven: 

Yale University Press. 



104 

Grandell, Jan (1972) "Statistical Inference for Doubly Stochastic Poisson Processes," in 

Peter A. Lewis (ed.), Stochastic Point Processes: Statistical Analysis, Theory, 

and Applications, pp. 90-121. New York: Wiley-Interscience. 

Hogg, Robert V. and Allen T. Craig (1978) Introduction To Mathematical Statistics. 

New York: MacMillan. 

Houweling, H. W. and J. B. Rune" (1984) "Do Outbreaks of War Follow a Poisson-

Process," J. of Conflict Resolution 28(1): 51-61. 

Jacobsen, Martin (1982) Statistical Analysis of Counting Processes. New York: 

Springer-Verlag. 

Kaplan, Abraham (1963) The Conduct of Inquiry: Methodology for Behavioral 

Science. New York: Harper & Row. 

King, Gary (1989) Unifying Political Methodology: The Likelihood Theory of Statistical 

Inference. Cambridge: Cambridge University Press. 

Lawrance, A. J. (1972) "Some Models for Stationary Series of Univariate Events," in 

Peter A. Lewis (ed.), Stochastic Point Processes: Statistical Analysis, Theory, 

and Applications, pp. 199-256. New York: Wiley-Interscience. 

Maynard Smith, John (1982) Evolution and the Theory of Games. Cambridge: 

Cambridge University Press. 

Pollock, D. S. G. (1979) The Algebra of Econometrics. New York: Wiley. 

Pudaite, Paul R. (1985) "On the Initial Viability of Cooperation," paper presented at 

ISA/Midwest, Loyola University, Chicago, November 15-16. 



105 

Richardson, L. F. (1945) "The Distribution of Wars In Time." J. of the Royal 

Statistical Society CVII (New Series), III-IV: 242-250. 

(1960) Statistics of Deadly Quarrels. Chicago: Boxwood Press. 

Seitz, Steven T. (1983) Modeling cross-national inquiry: Applications to sub-saharan 

Africa. Unpublished manuscript, University of Illinois at Urbana-Champaign. 

Small, M. and J. D. Singer (1982) Resort To Arms: International and Civil War, 

1816-1980. Beverly Hills, CA: Sage. 

Snyder, D. L. (1975) Random Point Processes. New York: Wiley-Interscience. 

Taylor, Peter D. and Leo B. Jonker (1978) "Evolutionarily Stable Strategies and Game 

Dynamics," Mathematical Biosciences 40: 145-156. 

Wallace, Michael D. (1971) "Power, Status, and International War," J. of Peace 

Research 1: 23-35. 

Zeeman, E. C. (1980) "Population Dynamics from Game Theory," in Z. Nitecki and C. 

Robinson (eds.), Global Theory of Dynamical Systems, pp. 471-497. New York: 

Springer-Verlag. 

(1981) "Dynamics of the Evolution of Animal Conflicts," J. theor. Biol. 

89:249-270. 



106 

VITA 

Paul Rozarlien Pudaite 

Departmental addresses 

Merriam Laboratory for 
Analytic Political Research 
512 E. Chalmers 
Champaign, IL 61820 
(217)244-0739 

Home address 

532 Division St. 
East Lansing, MI 
(517)332-5564 

48823 

Dept. of Mathematics 
University of Illinois 
273 Altgeld Hall 
1409 W.Green 
Urbana, IL 61801 
(217)333-3350 

Personal 

Born: November 1,1959. St. Charles, IL. 
Social Security Number: 333-60-6194 

Education 

B.S., May 1980. Physics and Mathematics (double major). Wheaton College, 
Wheaton, IL. 

Dissertation topic: "Explicit Mathematical Models for Behavioral Science 
Theories." 

Employment 

Fall 1988 to Research Assistant, MLAPR. Mathematical derivation 
Present and computer implementation of partial differential equation, 

data compression and statistical analysis for the InterAgency 
Working Group on AIDS modeling. 

Fall 1985 to Research Assistant, Merriam Laboratory for Analytic 
Summer, 1986 Political Research (MLAPR). Mathematical derivation and 

computer implementation of differential equation and statistical 
analysis for the faculty associated with MLAPR. 

Fall 1981 to Teaching Assistant, Mathematics Dept., University of 
Spring 1985 Illinois at Urbana-Champaign (UIUC). Courses taught included 

1st through 3rd semesters of basic Calculus sequence and 1st 
semester of Linear Algebra. 



107 

Honors and Awards 
UIUC Sigma Xi (graduate student) Paper Award for "National capabilities and 
conflict outcome: an application of indicator-building in the social sciences".(co-
authored with Gretchen M. Hower). Third place, 1989. 
Social Science Research Council-MacArthur Foundation Dissertation Fellowship 
in International Peace and Security. August 1986 to August 1988. 
UIUC Summer Fellowship. Summer 1985. 
UIUC Fellowship. Fall 1984 to Spring 1985. 
UIUC Summer Fellowship. Summer 1984. 
UIUC Fellowship. Fall 1981 to Spring 1982. 

Finalist (top 10), Mathematics Department teaching award (for teaching 
assistants). 1982,1983,1984,1985. 
Ranked outstanding (top 5%) among UIUC instructors (based on student ratings). 
Spring 1982, Fall 1983, Spring 1984. 
Ranked excellent (top 15%) among UIUC instructors (based on student ratings). 
Fall 1981, Fall 1982, Spring 1983, Fall 1984. 

Phi Kappa Phi (Academic Honor Society). 1982. 
Sigma Pi Sigma (Physics Honor Society). 1980. 
Most Valuable Player, Wheaton Christian High School baseball team. 1975. 

Publications 

1990. "More on the Hot Hand." Letter to the Editor, Chance, 3(3): 7. 

1989. With Gretchen Hower (UIUC), "National Capability and Conflict Outcome: 
an application of indicator-building in the social sciences." In Power and World 
Politics, Richard Stoll and Michael Ward, eds. Boulder, CO: Lynne Rienner 
Publishers, Inc. 

1988. "Player Win Averages: an extended book review." Baseball Analyst, 37:2-7. 

1987. "The Asymptotic Behavior of a Family of Sequences." With P. Erdos (Hung. 
Acad, of Sc), A. Odlyzko (AT&T Bell Labs), A. Hildebrand and B. Reznick (UIUC). 
Pacific Journal of Mathematics, 126(2):227-241. 

1985. "A Very Slowly Converging Sequence." With Erdos, Hildebrand, Odlyzko 
and Reznick. Mathematics Magazine, 58(1): 51-2. 
1984. "Rock Bottom." With C. Rees (U. New Orleans, LA), editor's composite. The 
College Mathematics Journal, 15(4): 347-8. 

Conference Papers 

1990. with Gretchen Hower. "Using arms race models to enrich diverse theories 
of war." Presented at the annual meeting of the ISA, Washington D.C., April. 

1988. "Modeling Long Cycles in War and Production." Presented at the Third 
World Peace Science Conference, College Park, MD, June. 

1987. "Prospect Theory in National Decision Making: games and rational choice." 



With Gretchen Hower and Charles S. Taber (UIUC). Presented at the Annual 
meeting of the ISA, Washington, DC, April. 
1987. "National Capabilities and Conflict Outcome: an application of indicator-
building in the social sciences." With Gretchen Hower. Presented at the Annual 
meeting of the ISA, Washington, DC, April. 

1986. "Indicator Building in the Social Sciences with an Application to National 
Capabilities." With Gretchen Hower. Presented at the ISA/Midwest, IUPUI, 
Indianapolis, November. 
1986. "Policy Robustness in the Prisoners' Dilemma." Presented at the North 
American Peace Science Conference, Peace Science Society (International), 
Detroit, MI, November. 

1986. "Stability in the Iterated Prisoners' Dilemma." Presented at the Annual 
meeting of the Midwest Political Science Association, November. 

1986. "The Outbreak of War as a Poisson Process: an empirical Bayes approach." 
Presented at the Annual meeting of the ISA, Anaheim, CA, March. 

1985. "On the Initial Viability of Cooperation." Presented at the International 
Studies Association (ISA)/Midwest, Loyola University, Chicago, November. 

References 

Robert G. Muncaster Steven T. Seitz 
Dept. of Mathematics Dept. of Political Science 
University of Illinois University of Illinois 
250 Altgeld Hall 361 Lincoln Hall 
1409 W. Green 702 S. Wright St. 
Urbana, IL 61801 Urbana, IL 61801 
tel: (217) 244-0740 tel: (217) 244-0742 

Kenneth Appel Dina A. Zinnes 
Dept. of Mathematics Merriam Laboratory for Analytic 
University of Illinois Political Research 
221 Altgeld Hall 512 E. Chalmers 
1409W.Green Champaign,IL 61820 
Urbana, IL 61801 tel: (217) 244-0740 


