
Single-machine Scheduling with Tool Changes: A Constraint-based
Approach

András Kovács
Computer and Automation Research Institute

Hungarian Academy of Sciences
akovacs@sztaki.hu

J. Christopher Beck
Dept. of Mechanical & Industrial Engineering

University of Toronto
jcb@mie.utoronto.ca

Abstract

The paper addresses the scheduling of a single machine
with tool changes in order to minimize total comple-
tion time. A constraint-based model is proposed that
makes use of global constraints and also incorporates
various dominance rules. With these techniques, our
constraint-based approach outperforms previous exact
solution methods.

Introduction
This paper addresses the problem of scheduling a sin-
gle machine with tool changes, in order to minimize the
total completion time of the activities. The regular re-
placement of the tool is necessary due to wear, which
results in a limited, deterministic tool life. We note that
this problem is mathematically equivalent to schedul-
ing with periodic preventive maintenance, where there
is an upper bound on the continuous running time of
the machine. After that, a fixed-duration maintenance
activity has to be performed.

Our main intention is to demonstrate the applica-
bility of constraint programming (CP) to an optimiza-
tion problem that requires complex reasoning with con-
straints on sum-type expressions, a field were CP is
generally thought to be in handicap. We show that in-
deed, when appropriate global constraints are available
to deal with such expressions, CP outperforms other
exact optimization techniques. In particular, we would
like to illustrate the efficiency of the global COMPLE-
TION constraint (Kovács & Beck 2007), which has been
proposed recently for propagating the total weighted
completion time of activities on a single unary resource.

For this purpose, we define a constraint model of the
scheduling problem. The model makes use of global
constraints, and also incorporates various dominance
properties described as constraints. A simple branch
and bound search is used for solving the problem. We
show in computational experiments that the proposed
approach can outperform all previous exact optimiza-
tion methods known for this problem.

The paper is organized as follows. After reviewing
the related literature, we give a formal definition of
the problem and outline some of its basic character-
istics. Then, we propose a constraint-based model of

the problem. The algorithms used for propagating the
global constraints that are crucial for the performance
of our solver are presented. Afterwards, the branch and
bound search procedure used is introduced. Finally,
experimental results are presented and conclusions are
drawn.

Related Work
The problem studied in this paper has been introduced
independently in the periodic maintenance context by
Qi, Chen, & Tu (1999) and in the tool changes con-
text by Akturk, Ghosh, & Gunes (2003). Its practical
relevance is underlined in (Gray, Seidmann, & Stecke
1993), where it is pointed out that in many industries
tool change induced by wear is ten times more frequent
than change due to the different requirements of subse-
quent activities. Also, in some industries, e.g. in metal
working, tool change times can dominate actual pro-
cessing times (Tang & Denardo 1988).

Akturk, Ghosh, & Gunes (2003) proposed a mixed-
integer programming (MIP) approach and compared
the performance of various heuristics on this problem.
The basic properties of the scheduling problem have
been analyzed and the performance of the Shortest Pro-
cessing Time (SPT) schedules evaluated in (Akturk,
Ghosh, & Gunes 2004). Three different heuristics have
been analyzed and a branch and bound algorithm pro-
posed by Qi, Chen, & Tu (1999). The performance of
four different MIP models have been compared in (Chen
2006a).

The same problem has been considered with differ-
ent objective criteria, including makespan (Chen 2007b;
Ji, He, & Cheng 2007), maximum tardiness (Liao &
Chen 2003), and total tardiness (Chen 2007a). In (Ak-
turk, Ghosh, & Kayan 2007), the model is extended to
controllable activity durations, where there are several
execution modes available for each activity to balance
between manufacturing speed and tool wear. The ba-
sic model with several tool types has been investigated
by Karakayalı & Azizoğlu (2006). A slightly different
problem, in which maintenance periods are strict, i.e.
the machine has to wait idle if activities complete ear-
lier than the end of the period, has been investigated
in (Chen 2006b).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48289554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A brief introduction to constraint-based scheduling is
given in (Barták 2003), while an in-depth presentation
of the modeling and solution techniques can be found
in (Baptiste, Le Pape, & Nuijten 2001).

Problem Definition and Notation

There are n non-preemptive activities Ai to be sched-
uled on a single machine. Activities are characterized
by their durations pi, and are available from time 0.
Processing the activities requires a type of tool that is
available in an unlimited number, but has a limited tool
life, TL. Worn tools can be replaced with a new one,
but only without interrupting activities. This change
requires TC time. It is assumed that ∀i pi ≤ TL, be-
cause otherwise the problem would have no solution.
The objective is to determine the start times Si of the
activities and start times tj of tool changes such that
the total completion time of the activities is minimal.

Constraint programming uses inference during search
on the current domains of the variables. The minimum
and maximum values in the current domain of a variable
X will be denoted by X̌ and X̂, respectively. Hence, Ši

will stand for the earliest start time of activity Ai, and
Ĉi for its latest finish time.

The above parameters and the additional notation
used in the paper is summarized in Fig. 1. We assume
that all data are integral. A sample schedule is pre-
sented in Fig. 2.

n - Number of activities
pi - Duration of activity Ai

pmax- Maximum duration of activities Ai

TL - Tool life
TC - Tool change time
Si - Start time of activity Ai

Ci - End (completion) time of activity Ai

tj - (Start) time of the jth tool change
aj - Number of activities processed after the

jth tool change
bj - Number of activities processed before the

jth tool change
X̌ - Minimum value in the domain of variable X

X̂ - Maximum value in the domain of variable X

Figure 1: Notation

Basic Properties

The single-machine scheduling problem with tool
changes, denoted as 1|tool − changes|

∑
i Ci, has been

proven to be NP-hard in the strong sense in (Akturk,
Ghosh, & Gunes 2004). The same paper and (Qi, Chen,
& Tu 1999) investigated properties of optimal solutions.
Below we outline these properties, in conjunction with
a symmetry breaking rule that can also be exploited to
increase the efficiency of solution algorithms.

Property 1 (No-wait schedule) Activities must be
scheduled without any waiting time between them,
apart from the tool change times.

Property 2 (SPT within tool) Activities executed
with the same tool must be sequenced in the SPT order.

Property 3 (Tool utilization) The total duration of
activities processed with the jth tool is at least TL −
pminafter

j + 1, where pminafter
j is the minimal duration

of activities processed with tools j′ > j.

Consequence Every tool, except for the last one, is
utilized during at least Umin = TL − pmax + 1 time,
where pmax is the largest activity duration. Hence, the
number of tools required is at most d

∑n
i=1 pi/Umine.

Property 4 (Activities per tool) The number of ac-
tivities processed using the jth tool is a non-increasing
function of j.

Property 5 (Symmetry breaking) There exists an op-
timal schedule in which for any two activities Ai and
Aj such that pi = pj and i < j, Ai precedes Aj .

Modeling the Problem
In our constraint model we apply a so-called machine
time representation, which considers only the active pe-
riods of the machine. It exploits that the optimal so-
lution is a no-wait schedule (see Property 1), and con-
tracts each tool change into a single point in time, as
shown in Fig. 3. Then, a solution corresponds to a se-
quencing of the activities, with the last activity ending
at
∑

i pi, and instantaneous tool changes between them.
The objective value of a schedule in the machine time

representation takes the form
n∑

i=1

Ci + TC

m∑
j=1

aj .

Technically it will be easier to work with bj than with
aj , hence, we rewrite the objective function to the
equivalent form

n∑
i=1

Ci + TC

m∑
j=1

(n− bj).

We decompose this function to K1 =
∑n

i=1 Ci and
K2 = TC

∑m
j=1(n − bj). Note that K1 corresponds to

the total completion time without tool changes, while
K2 represents the effect of introducing tool changes.

The variables in the model are the start times Si

of the activities, the times tj of the tool changes, and
the number of activities processed before the jth tool
change, bj . The two cost components K1 and K2 are
also handled as model variables. For the sake of brevity,

 A5 A4 A3 A1 A2

TL

TC TC

TL

Figure 2: A sample schedule. Wall clock time representation.

A5 A4 A3 A1 A2

TC TC

TL
TL

Figure 3: Machine time representation of the sample schedule.

we also use Ci = Si + pi to denote the end time of
activity Ai.

Then, the problem consists of minimizing K1 + K2

subject to

(c1) Time window constraints, stating ∀i : Si ≥ 0 and
Ci ≤

∑
i pi;

(c2) Resource capacity constraint: at most one activity
can be processed at any point in time;

(c3) Activities are not interrupted by tool changes: ∀i, j :
Ci ≤ tj ∨ Si ≥ tj ;

(c4) Limited tool life: ∀j : tj+1 − tj ≤ TL;

(c5) Property 3 holds: ∀j : tj+1 − tj ≥ TL− pmax + 1;

(c6) Property 4 holds: ∀j : bj − bj−1 ≥ bj+1 − bj ;

(c7) Property 5 holds: ∀ii, i2 such that i1 < i2 and pi1 =
pi2: Ci1 ≤ Si2;

(c8) The total completion time of activities Ai is K1;

(c9) The number of activities that end before tj is bj ;

(c10) K2 = TC
∑m

j=1(n− bj).

Note that while constraints c1-c4 and c8-c10 are
fundamental elements of our model, c5-c7 incorporate
dominance rules to facilitate stronger pruning of the
search space. All the ten constraint can be expressed
by languages of common constraint solvers. However,
significant improvement in performance can be achieved
by applying dedicated global constraints for propagat-
ing c8 and c9. We discuss those global constraints in
detail in the next section.

Propagation Algorithms for Global
Constraints

Below, both for c8 and c9, we first present how the con-
straint can be expressed in typical constraint languages.
Then, we introduce a dedicated global constraint and a
corresponding propagation algorithm for either of them,
in order to strengthen pruning.

Total Completion Time
The typical way of expressing the total completion time
of a set of activities in constraint-based scheduling is
posting a sum constraint on their end times: K =

∑
Ci.

However, the sum constraint, ignoring the fact that the
activities require the same unary resource, assumes that
all of them can start at their earliest start times. This
leads to very loose initial lower bounds on K; in the
present application Ǩ =

∑
i pi.1

In order to achieve tight lower bounds on K and
strong back propagation to the start time variables
Si, the COMPLETION constraint has been introduced
in (Kovács & Beck 2007) for the total weighted com-
pletion time of activities on a unary capacity resource.
Formally, it is defined as

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], K)

and enforces K =
∑

i wi(Si +pi). Checking generalized
bounds consistency on the constraint requires solving
1|ri, di|

∑
wiCi, a single machine scheduling problem

with release times and deadlines and upper bound on
the total weighted completion time. This problem is
NP-hard, hence, cannot be solved efficiently each time
the COMPLETION constraint has to be propagated.
Instead, our propagation algorithm filters domains with
respect to the following relaxation of the above problem.

The preemptive mean busy time relaxation (Goemans
et al. 2002), denoted by 1|ri, pmtn|

∑
wiMi, involves

scheduling preemptive activities on a single machine
with release times respected, but deadlines disregarded.
It minimizes the total weighted mean busy times Mi of
the activities, where Mi is the average point in time at
which the machine is busy processing Ai. This is eas-
ily calculated by finding the mean of each time point
at which activity Ai is executed. This relaxed problem
can be solved to optimality in O(n log n) time.

1The lower bound is a little tighter if symmetry breaking
constraints (c7) are present to increase the earliest start
times of some activities.

The COMPLETION constraint filters the domains of
the start time variables by computing the cost of the
optimal preemptive mean-busy time relaxation for each
activity Ai and each possible start time t of activity Ai,
with the added constraint that activity Ai must start
at time t. If the cost of the relaxed solution is greater
than the current upper bound, then t is removed from
the domain of Si. The naive computation of all these
relaxed schedules is likely to be too expensive, compu-
tationally. The main contribution of (Kovács & Beck
2007) is showing that for each activity it is sufficient
to compute relaxed solutions for a limited number of
different values of t, and that subsequent relaxed so-
lutions can be computed iteratively by a permutation
of the activity fragments in previous solutions. For a
detailed presentation of this algorithm and the COM-
PLETION constraint, in general, readers are referred
to the above paper.

Number of Activities before a Tool Change
Constraint c8 describes a complex global property of
the schedule. Standard CP languages make it possible
to express this property with the help of binary logical
variables indicating whether a given activity ends before
a point in time, i.e.

yi,j =
{

1 if Ci ≤ tj
0 otherwise.

Then, bj can be computed as bj =
∑

i yi,j . This repre-
sentation would be rather inefficient, but implementing
a global constraint for this purpose is rather straight-
forward.

The NBEFORE global constraint states that given
activities Ai that have to be executed on the same unary
resource, the number of activities that can be completed
before time tj is exactly bj :

NBEFORE([S1, ..., Sn], tj , bj)
The propagation algorithm for this global constraint

is presented in Fig. 4. It first determines the set of
activities M that must be executed before tj , and the
set of activities P that are possibly executed before tj .
Computing the minimal (maximal) number of activi-
ties scheduled before tj is performed by sorting P by
non-decreasing duration, and then selecting the activi-
ties that have the highest (lowest) durations. The algo-
rithm completes by updating b̌j , b̂j , and ťj . The time
complexity of the propagator is O(n log n), which is the
time needed for sorting P .

We note that it is straightforward to extend this al-
gorithm with propagation from mj and tj to Si, and
also to t̂j . This extension has been implemented, but
did not achieve additional pruning, and therefore it has
been later omitted.

A Branch and Bound Search
We apply a branch and bound search that exploits the
dominance properties identified for the problem. It con-

structs a schedule chronologically, by fixing the start
times of activities and the times of tool changes. In
each node it selects, according to the SPT rule, the
minimal duration unscheduled activity A∗ that can be
scheduled next. The algorithm first checks if one of the
following dominance rules can be applied at this phase
of the search.
• If the remaining activities can all be scheduled with-

out any tool changes, then A∗ must be scheduled
immediately, because all the unscheduled activities
must be scheduled according to the SPT rule. See
Property 2 and lines 4-5 of the algorithm.

• If A∗ cannot be performed before the next tool
change, then no unscheduled activities can be per-
formed before the next tool change, since none of
them have shorter durations than A∗. Therefore the
next tool change must be performed immediately.
See Property 1 and lines 6-7 of the algorithm.
If one of the dominance rules can be applied, then

the algorithm adds the inferred constraint, which may
trigger further propagation, and then reselects A∗

w.r.t. the new variable domains. Otherwise, it cre-
ates two children of the current search node, according
to whether
• A∗ is scheduled immediately and the next tool change

is performed after (but not necessarily immediately
after) A∗; or

• A∗ is scheduled after the next tool change.
In the latter case, it also adds the constraint that

another activity must be scheduled before the next tool
change. Hence, the next tool change must be performed
after Cmin, which is the lowest among the end times
of unscheduled activities (see line 9). Note that Cmin

exists because if there is an unscheduled activity (A∗),
then there are at least two unscheduled activities.

Also observe that the initial solution found by this
branch and bound algorithm is the SPT schedule.

Experimental Result
We ran computational experiments to evaluate the per-
formance of the proposed CP approach from several
aspects. We addressed understanding how the COM-
PLETION and NBEFORE global constraints improve
the performance of our model compared to models using
only tools of standard CP solvers. We also measured
how problem characteristics influence the performance
of our approach, and finally, we compared it to previous
exact solution methods.

All models and algorithms have been implemented in
Ilog Solver and Scheduler version 6.1. The experiments
were run on a 2.53 GHz Pentium IV computer with 760
MB of RAM.

Two different problem sets were used for the experi-
ments. The first set was generated as instances in (Qi,
Chen, & Tu 1999), the second as in (Akturk, Ghosh,
& Gunes 2003). Qi, Chen, & Tu (1999) took activity
durations randomly from the interval [1, 30] and fixed

1 PROCEDURE Propagate()
2 M = {Ai | Ŝi < ťj}
3 P = {Ai | Či ≤ t̂j} \M
4 Sort P by non-decreasing duration
4 kmin = min number of activities in P with total duration ≥ ťj −

∑
Ai∈M pi

5 kmax = max number of activities in P with total duration ≤ t̂j −
∑

Ai∈M pi

6 b̌j = |M |+ kmin

7 b̂j = |M |+ kmax

8 ťj =
∑

Ai∈M pi + total duration of the kmin shortest activities in |P |

Figure 4: Algorithm for propagating the NBEFORE constraint.

1 WHILE there are unscheduled activities
2 A∗ = Unscheduled activity with min ŠA∗, min pA∗

3 T = Earliest tool change time with T̂ > ŠA∗

4 IF there is no such T
5 ADD SA∗ = ŠA∗ (Property 2)
6 ELSE IF T̂ < ČA∗

7 ADD T = ŠA∗ (Property 1)
8 ELSE
9 Cmin = min Či of unscheduled activities Ai 6= A∗

10 BRANCH: - SA = ŠA and CA ≤ T
11 - SA ≥ T and T ≥ Cmin

Figure 5: Pseudo-code of the search algorithm.

the value of TC to 10. The number of activities n
has been varied between 15 and 40 in increments of
5, while values of the tool life TL have been taken from
{50, 60, 70, 80}. We generated ten instances with each
combination of n and TL, which resulted in 240 prob-
lem instances. The time limit for these problems was
set to one hour.

In (Akturk, Ghosh, & Gunes 2003), in order to obtain
instances with different characteristics, four parameters
of the generator were varied, each having a low (L) and
a high (H) value. These parameters were the mean
and the range of the durations (MD and RD), the tool
life (TL), and the tool change time (TC). Generating
ten 20-activity instances with each combination of the
parameters resulted in 24 · 10 = 160 instances. Since
this set contains harder instances, we set the time limit
to two hours.

We did not perform comparisons with the MIP mod-
els proposed in (Chen 2006a), because that paper
presents experimental results only on very easy in-
stances containing few (in most cases only one) tool
changes over the scheduling horizon.

Results on Qi’s Instances and Comparison
to Naive Models
We compared the performance of four different CP
models of the problem that represent the two cost com-
ponents K1 and K2 in different ways. K1 was expressed

either by a sum constraint (Sum)or by the COMPLE-
TION constraint (COMPL), while K2 was described us-
ing binary variables (Bin) or the NBEFORE constraint
(NBEF). Note that the COMPL/NBEF is the model
proposed in this paper.

The achieved results are displayed in Table 1. Each
row contains cumulative results for ten instances with
a given value of n and TL. For each of the models,
column Opt shows the number of instances for which
the optimal solution has been found and optimality has
been proven, column Nodes contains the average num-
ber of search nodes, and Time the average search time
in seconds. Nodes and Time also contain the effort
needed for proving optimality.

The results show that the proposed approach,
COMPL/NBEF solves instances with up to 30-35 activ-
ities to optimality. It outperforms the alternative CP
representations that do not benefit from the pruning
strength of the COMPLETION and NBEFORE con-
straints. Instances with a short tool life and hence,
many tool changes are more challenging. This is due to
the poorer performance of the SPT heuristic, and higher
importance of the bin packing aspect of the problem.
In contrast, Qi, Chen, & Tu (1999) report that the av-
erage solution time of 20-activity instances with their
branch and bound approach was in the range of [55.94,
3.57] seconds, depending on the value of TL, and their
algorithm could not cope with larger problems.

n TL Sum/Bin COMPL/Bin Sum/NBEF COMPL/NBEF
Opt Nodes Time Opt Nodes Time Opt Nodes Time Opt Nodes Time

15 50 10 36278 10.8 10 877 0.0 10 31134 5.4 10 49 0.0
60 10 55477 13.6 10 1018 0.2 10 49975 7.7 10 76 0.0
70 10 18275 3.1 10 358 0.0 10 14357 1.5 10 17 0.0
80 10 19748 2.9 10 303 0.0 10 15502 1.4 10 19 0.0

20 50 6 5365305 2605.5 10 42853 35.1 8 6579567 1685.3 10 7183 3.7
60 7 5365603 1778.5 10 19092 16.2 7 7511826 1436.0 10 133 0.0
70 9 2544734 735.1 10 8051 7.1 9 3119249 558.0 10 84 0.0
80 10 910496 241.8 10 1957 1.4 10 762404 127.8 10 46 0.0

25 50 0 6282502 3600.0 10 639147 727.3 0 11727713 3600.0 10 99239 78.0
60 0 9132083 3600.0 10 91385 126.4 0 15404729 3600.0 10 1126 0.4
70 1 10815570 3587.7 10 83095 104.2 2 16222223 3327.3 10 979 0.2
80 1 11484097 3358.2 10 91029 122.1 1 16808958 3287.7 10 1082 0.6

30 50 - - - 3 2581475 3229.5 - - - 9 230088 452.5
60 - - - 4 2093233 2804.0 - - - 10 55374 46.9
70 - - - 8 961460 1640.2 - - - 10 7877 6.6
80 - - - 10 318435 560.9 - - - 10 1721 1.1

35 50 - - - 0 3108739 3600.0 - - - 7 1724651 2002.6
60 - - - 0 3193284 3600.0 - - - 9 355709 449.5
70 - - - 0 2858550 3600.0 - - - 10 160239 166.9
80 - - - 2 2000949 3162.0 - - - 10 8121 8.9

40 50 - - - - - - - - - 1 2371440 3297.7
60 - - - - - - - - - 6 1088871 1597.6
70 - - - - - - - - - 10 279844 393.5
80 - - - - - - - - - 10 85854 143.3

Table 1: Experimental results on instances from (Qi, Chen, & Tu 1999): number of instances where optimality
has been proven (Opt), average number of search nodes (Nodes), and average solution time in seconds (Time), for
four different CP models. The models use binary variables (Bin) or the NBEFORE constraint, and a Sum or a
COMPLETION constraint to express the objective function. Dash ’-’ means that none of the instances with the
given n could be solved to optimality.

Results on Akturk’s Instances and Effect of
Problem Characteristics

Experimental results on the instances from (Akturk,
Ghosh, & Gunes 2003) are presented in Table 2. The re-
sults on the l.h.s. have been achieved by a naive model
with sum back propagation instead of the COMPLE-
TION constraint, the results on the r.h.s. by the com-
plete CP model.

Each row displays data belonging to a given choice
of parameters MD, RD, TL, and TC, as shown in the
leftmost columns. While the COMPLETION model
managed to solve all instances to optimality and also
proved optimality, the sum model missed finding the
optimum for 2 instances and proving optimality in 5
cases. The COMPLETION model was 10 times faster
on average than the sum model.

These results confirm that short tool life implies
many tool changes and renders problems more compli-
cated for our model. Low mean duration makes things
easier, which is probably due to the higher number of
symmetric activities, since these activities can be or-
dered a priori. Although a low range of durations has a
similar effect, it also has a negative impact on the per-
formance of the SPT heuristic, among which the latter
seems to be the stronger.

Compared to the MIP approach presented in (Ak-

turk, Ghosh, & Gunes 2003) our CP model solves more
instances, and does this more quickly: the MIP model
achieved an average solution time of 1904 seconds, it
was not able to solve all instances, and for the 15% of
the instances it found worse solutions than one of the
heuristics.

Conclusion
A constraint-based approach has been presented to sin-
gle machine scheduling with tool changes. The pro-
posed model outperforms previous exact optimization
methods known for this problem. This result is signif-
icant especially because the problem requires complex
reasoning with sum-type formulas, which does not be-
long to the traditional strengths of constraint program-
ming. This was made possible by two algorithmic tech-
niques: global constraints and dominance rules. Specif-
ically, we applied the recently introduced COMPLE-
TION constraint to propagate total completion time,
and defined a new global constraint, NBEFORE, to
compute the number of activities that complete before
a given point in time. Furthermore, we could formulate
the known dominance properties as constraints in the
model.

The introduced model can be easily extended with
constraints on the number of tools and with weighted
activities. The machine-time representation is appli-

MD RD TL TC NBEF/Sum NBEF/COMPL
Opt MRE Nodes Time Opt MRE Nodes Time

L L L L 10 0 1891018 529.9 10 0 38128 23.3
L L L H 10 0 968087 205.9 10 0 102237 52.1
L L H L 10 0 79344 11.9 10 0 237 0.1
L L H H 10 0 12269 1.6 10 0 73 0.0
L H L L 10 0 667659 171.8 10 0 3692 2.3
L H L H 10 0 127866 23.7 10 0 78955 25.7
L H H L 10 0 78775 13.2 10 0 27 0.0
L H H H 10 0 6664 0.7 10 0 29 0.0
H L L L 7 1.71 16430139 3548.8 10 0 1614494 596.4
H L L H 10 0 5606737 1018.0 10 0 47902 25.1
H L H L 10 0 2170750 357.9 10 0 895 0.3
H L H H 10 0 222435 40.6 10 0 9023 3.6
H H L L 8 0 6020041 2102.8 10 0 81249 43.9
H H L H 10 0 186735 35.7 10 0 23214 11.3
H H H L 10 0 86856 12.5 10 0 20 0.0
H H H H 10 0 154639 19.2 10 0 1648 0.8

Table 2: Experimental results on instances from (Akturk, Ghosh, & Gunes 2003), for models using sum and COM-
PLETION back propagation: number of instances where optimality has been proven (Opt), mean relative error in
percents (MRE), average number of search nodes (Nodes), and average solution time in seconds (Time).

cable to solving the same problem with other regular
optimization criteria, such as minimizing makespan, or
maximum or total tardiness. However, it seems to be
impractical to apply this model to multiple-machine
problems, because the time scales would differ machine
by machine.

Acknowledgments The authors are grateful to the
anonymous reviewers for their helpful comments. A.
Kovács was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and
by the NKFP grant 2/010/2004.

References

Akturk, M. S.; Ghosh, J. B.; and Gunes, E. D. 2003.
Scheduling with tool changes to minimize total com-
pletion time: A study of heuristics and their perfor-
mance. Naval Research Logistics 50:15–30.
Akturk, M. S.; Ghosh, J. B.; and Gunes, E. D. 2004.
Scheduling with tool changes to minimize total com-
pletion time: Basic results and SPT performance. Eu-
ropean Journal of Operational Research 157:784–790.
Akturk, M. S.; Ghosh, J. B.; and Kayan, R. K. 2007.
Scheduling with tool changes to minimize total com-
pletion time under controllable machining conditions.
Computers and Operations Research 34:2130–2146.
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001.
Constraint-based Scheduling. Kluwer Academic Pub-
lishers.
Barták, R. 2003. Constraint-based scheduling: An
introduction for newcomers. In Intelligent Manufac-
turing Systems 2003, 69–74.

Chen, J.-S. 2006a. Single-machine scheduling with
flexible and periodic maintenance. Journal of the Op-
erational Research Society 57:703–710.
Chen, W. J. 2006b. Minimizing total flow time in
the single-machine scheduling problem with periodic
maintenance. Journal of the Operational Research So-
ciety 57:410–415.
Chen, J.-S. 2007a. Optimization models for the tool
change scheduling problem. Omega (to appear).
Chen, J.-S. 2007b. Scheduling of nonresumable jobs
and flexible maintenance activities on a single machine
to minimize makespan. European Journal of Opera-
tional Research (to appear).
Goemans, M. X.; Queyranne, M.; Schulz, A. S.;
Skutella, M.; and Wang., Y. 2002. Single machine
scheduling with release dates. SIAM Journal on Dis-
crete Mathematics 15(2):165–192.
Gray, E.; Seidmann, A.; and Stecke, K. E. 1993. A syn-
thesis of decision models for tool management in au-
tomated manufacturing. Management Science 39:549–
567.
Ji, M.; He, Y.; and Cheng, T. C. E. 2007. Single-
machine scheduling with periodic maintenance to min-
imize makespan. Computers & Operations Research
34:1764–1770.
Karakayalı, I., and Azizoğlu, M. 2006. Minimizing to-
tal flow time on a single flexible machine. International
Journal of Flexible Manufacturing Systems 18:55–73.
Kovács, A., and Beck, J. C. 2007. A global constraint
for total weighted completion time. In Proceedings of
CPAIOR’07, 4th Int. Conf. on Integration of AI and
OR Techniques in Constraint Programming for Com-

binatorial Optimization Problems (LNCS 4510), 112–
126.
Liao, C. J., and Chen, W. J. 2003. Single-machine
scheduling with periodic maintenance and nonresum-
able jobs. Computers & Operations Research 30:1335–
1347.
Qi, X.; Chen, T.; and Tu, F. 1999. Scheduling the
maintenance on a single machine. Journal of the Op-
erational Research Society 50:1071–1078.
Tang, C. S., and Denardo, E. V. 1988. Models arising
from a flexible manufacturing machine, Part I: Mini-
mization of the number of tool switches. Operations
Research 36:767–777.

