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Abstract: Constraint programming (CP) offers flexible and effective tools for
modeling combinatorial optimization problems. At the same time, scheduling with
sum type optimization criteria, such as total completion time is challenging for CP.
In this paper we show how extending a standard CP solver by a global constraint
on total completion time can boost the performance of CP on various, seemingly
very different optimization problems, including job shop scheduling, scheduling
with tool changes, or even container loading. Copyright c©2007 IFAC
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1. INTRODUCTION

Constraint programming (CP) offers flexible and
effective tools for modeling combinatorial op-
timization problems. The modeling capabilities
of this declarative programming approach derive
from the fact that constraints can be combined
arbitrarily, therefore it makes possible expressing
a broad scale of requirements in a compact way.
CP has been successful in practical applications
especially in the domain of scheduling.

Solution methods in CP combine search and infer-
ence: inference methods restrict the search space
to regions where there is a chance of finding high
quality solutions. The most important inference
method in CP is constraint propagation. There is
an algorithm, a so-called propagator attached to
each constraint, which removes those values from
the variable domains that cannot take part in any
feasible solution. A brief introduction to solution

methods in constraint-based scheduling is given in
(Barták, 2003), while an in-depth presentation of
the field can be found in (Baptiste et al., 2001).

A major challenge to constraint-based schedul-
ing is that its computational efficiency depends
strongly on the choice of optimization criterion.
While it is highly efficient with maximum type
objective functions such as makespan, sum type
objective functions such as total weighted com-
pletion time are more challenging. The reason is
that classical CP-based approaches are unable to
achieve strong back propagation from these ob-
jective functions, i.e., remove the values from the
variable domains that are inconsistent with the
actual bound on the criterion. Without back prop-
agation, the full search space will need to be ex-
plored, suggesting that CP will not result in bet-
ter performance than any other search technique.
One way of tackling this challenge is designing
efficient optimization-oriented global constraints



to achieve a high degree of back propagation, see,
e.g. (Focacci et al., 2002). The COMPLETION
constraint is a recently proposed global constraint
to propagate the total weighted completion time
of activities on a single unary capacity resource
(Kovács and Beck, 2007b).

In this paper we present how the extension of
a standard CP solver with the COMPLETION
constraint can boost its computational efficiency
in various, seemingly very different application
domains. The problems discussed in this paper are
job shop scheduling, scheduling with tool changes,
and container loading. In the next section, we
briefly present the COMPLETION constraint and
the associated propagation algorithm. Then, we
consider each of the application domains in sepa-
rate sections. Finally, conclusions are drawn.

2. A CONSTRAINT FOR TOTAL
WEIGHTED COMPLETION TIME

The classical way of representing sum type ob-
jective functions in constraint-based scheduling is
posting a sum constraint on the end times of the
activities. In the case of total weighted completion
time, it takes the form K =

∑
i wiCi, where wi

stands for the weight of activity Ai, and Ci for its
end (completion) time. In addition, we use Si and
pi to denote the start time and duration of Ai.

However, the sum constraint, ignoring the fact
that subsets of the activities require the same
resource, assumes that all of them can start at
their earliest start times. This often leads to very
loose lower bounds on K, and weak back prop-
agation. In order to achieve tight lower bounds
on K and strong back propagation to the start
time variables Si, the COMPLETION constraint
has been introduced in (Kovács and Beck, 2007b)
to propagate the total weighted completion time
of a set of activities that require the same unary
capacity resource. Formally, it is defined as

COMPLETION(
[S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], K)

and enforces K =
∑

i wi(Si + pi). The com-
plete propagation of the relation described by
this constraint – technically speaking, achieving
generalized bounds consistency – involves solving
several single machine scheduling problems with
release times and deadlines and an upper bound
on the total weighted completion time, formally
denoted as 1|ri, di|

∑
wiCi. This problem is NP-

hard, hence, cannot be solved efficiently each time
the COMPLETION constraint has to be propa-
gated. Instead, our propagation algorithm filters
domains with respect to the following relaxation
of the above problem.

The preemptive mean busy time relaxation (Goe-
mans et al., 2002), denoted by 1|ri, pmtn|

∑
wiMi,

involves scheduling preemptive activities on a sin-
gle machine with release times respected, but
deadlines disregarded. It minimizes the total
weighted mean busy times Mi of the activities,
where Mi is the average point in time at which
the machine is busy processing Ai. This is easily
calculated by finding the mean of each time point
at which activity Ai is executed. This relaxed
problem can be solved to optimality in O(n log n)
time.

The COMPLETION constraint filters the do-
mains of the start time variables by computing the
cost of the optimal preemptive mean-busy time
relaxation for each activity Ai and each possi-
ble start time t of activity Ai, with the added
constraint that activity Ai must start at time
t. If the cost of the relaxation is greater than
the current upper bound, then t is removed from
the domain of Si. Clearly, the naive computation
of all these relaxed solutions would be compu-
tationally intractable. The main contribution of
(Kovács and Beck, 2007b) is showing that for
each activity it is sufficient to compute relaxed
solutions for a limited number of different values
of t, and that subsequent relaxed solutions can
be computed iteratively by a permutation of the
activity fragments in previous solutions. For a
detailed presentation of this algorithm and the
COMPLETION constraint, in general, readers are
referred to the above paper.

3. JOB SHOP SCHEDULING

In an n × m job shop scheduling problem (JSP)
there are n jobs to be scheduled on a set of unary
capacity resources. Each job is composed of m
completely ordered activities, and each activity
requires exclusive use of one resource during its
execution. Then, a schedule is looked for such that

• no resource executes more than one activity
at a time; and

• each activity starts after the end of its pre-
ceding activity in the job-order.

The standard JSP decision problem asks if, for a
given makespan, D, all activities can finish by D.
This is a well-known NP-complete problem. How-
ever, it is not uncommon to solve the optimization
version of the JSP with the goal of minimizing
some metric, such as makespan or, in the present
case, the total weighted completion time of the
jobs. More formally, given a set of jobs J with
weights wj , j ∈ J and job-last activities Ej , our
goal is to find a feasible schedule that minimizes∑

j∈J wjCEj .



3.1 Modeling the Problem

Applying the COMPLETION constraint to the
JSP is straightforward: the only complication is
that CP reasons with activities, while in a JSP,
weights and performance measures are related to
jobs. Therefore, we need to define a mapping
from job weight to activity weight. The obvious
approach, which we refer to as last, is to assign
the job weight to the last activity in each job,
and to assign zero weight to all other activities.
We then place a COMPLETION constraint on
each resource, and the solution cost is computed
as the sum of total weighted completion times on
individual resources.

The drawback of the last approach is that COM-
PLETION constraint reasons over the interaction
among activities on the same resource. This in-
teraction is not captured when the weighted ac-
tivities are on different resources. Since in JSP
benchmarks there can be only one job-last activity
on each resource, the COMPLETION constraint
with the last weight mapping is not able to achieve
stronger pruning than the simple weighted sum
constraint.

Therefore, we propose a different weight map-
ping, called busy. Before solving, we identify the
most loaded resource, i.e., the “busy” resource, by
summing the durations of the activities on each
resource and selecting the resource with highest
sum. The weight of each job is assigned to the
last activity of the job that is processed on the
busy resource. All other activities have a weight of
zero. A single COMPLETION constraint can then
be posted on the busy resource. To calculate the
total weighted completion time, we need to cor-
rect for the fact that the weighted activity is not
necessarily the last activity in the job. Formally,
as above, let Ej be the last activity in job j and
let Bj be the single weighted activity in job j. Our
optimization function is then: K+

∑
j∈J wj(CEj−

CBj ) where K is the cost variable associated with
the COMPLETION constraint.

3.2 Computational Experiments

To test the effectiveness of the proposed model,
we compared it against the standard CP models
of the job shop problem: using the weighted sum
(WS) form of the optimization function, and/or
the last weight allocation. We experimented with
two styles of search, chronological backtracking
and randomized restart. The models and the al-
gorithms have been implemented in ILOG Solver
and Scheduler versions 6.1.

The models were tested on 10× 10 JSP problems
that have been generated using the problem gen-
erator of Watson et al. (1999). Since this generator

originally considers the problem of minimizing
makespan, we transformed them to total weighted
completion time problems by assigning a random
weight to each job.

A summary of the experimental results is shown
in Fig. 1, where the evolution of the mean relative
error (MRE) is plotted over solution time for each
of the investigated models. The MRE is calculated
with respect to the best known solutions, found ei-
ther by the algorithms tested here or by variations
used in preliminary experiments.

The results illustrate that the model using COM-
PLETION back propagation and the busy weight
allocation (COMP-BUSY) significantly outper-
forms the other three variants, independently of
the search strategy applied. A detailed presenta-
tion of the results can be found in (Kovács and
Beck, 2007a).
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Fig. 1. The mean relative error for differ-
ent propagation and search techniques.
Chron/RR: chronological backtracking or
randomized restart search; COMP/WS:
COMPLETION or weighted sum back prop-
agation; BUSY/LAST: busy or last weight
allocation.

4. SCHEDULING WITH TOOL CHANGES

In this section we address the problem of single
machine scheduling with tool changes, in order
to minimize the total completion time of the ac-
tivities. The regular replacement of the tool is
necessary due to wear, which results in a limited,
deterministic tool life. We note that this problem
is mathematically equivalent to scheduling with
periodic preventive maintenance, where there is
an upper bound on the continuous running time
of the machine. After that, a fixed-duration main-
tenance activity has to be performed.

This problem has been introduced independently
in the periodic maintenance context by Qi et al.
(1999) and in the tool changes context by Akturk
et al. (2003). The above papers and (Chen, 2006)



present various exact optimization approaches to
this problem, including different mixed-integer
programming (MIP) models and a branch-and-
bound search. The performance of several heuris-
tics are also evaluated in the same papers.

4.1 Modeling the Problem

There are various possible ways of modeling the
tool changes with constraints. In a recent pa-
per (Kovács and Beck, 2007c) we proposed a so-
called machine-time representation, which consid-
ers only the active periods of the machine. It
exploits that the optimal solution is a no-wait
schedule, and contracts each tool change into a
single point in time, as shown in Fig. 2. Then,
a solution corresponds to a sequencing of the ac-
tivities, and instantaneous tool changes between
them. The machine-time representation implies a
natural decomposition of the objective function
to the total completion time assuming zero tool
change times, and a component representing the
effect of positive tool change times.

The model introduced in (Kovács and Beck,
2007c) also contains constraints describing the
various dominance rules known for the problem.
The joint application of efficient global constraints
and dominance rules in the model leads to a com-
pact model and efficient solution process at the
same time. This model can be easily adapted to
other regular optimization criteria, such as mini-
mizing makespan, or maximum or total tardiness.
However, it seems to be somewhat more compli-
cated to extend it to multiple-machine problems
with precedence constraints between machines,
because the time scales would differ machine by
machine.

4.2 Computational Experiments

We ran computational experiments on problem
instances taken from (Qi et al., 1999) and (Akturk
et al., 2003). Instances with different sizes and
characteristics, such as tool lives and tool change
times were used. Below we compare the perfor-
mance of the proposed model with the COM-
PLETION global constraint to the same model
with SUM back propagation. Each row of Table 1
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Fig. 2. Wall clock time and machine time represen-
tation of the same schedule with tool changes.

displays cumulated results for 40 instances with a
given number of activities, n. Columns Solved and
Time contain the percentage of instances solved
to proved optimality and average search time in
seconds, including finding the proof of optimality.

The results show that the COMPLETION model
outperforms the SUM model even on small in-
stances, and it also scales much better with n.
Compared to previous exact optimization ap-
proaches, proposed constraint model solved larger
instances, significantly faster. The results are pre-
sented in detail in (Kovács and Beck, 2007c).

n SUM COMPLETION
Solved Time Solved Time

15 100.0% 4.0 100.0% 0.0

20 85.0% 951.8 100.0% 0.9

25 7.5% 3453.8 100.0% 19.8
30 - - 97.5% 126.8

35 - - 90.0% 657.0

40 - - 67.5% 1358.0

Table 1. Experimental results on the
tool changes problem, for models using
SUM and COMPLETION back propa-

gation.

5. CONTAINER LOADING

The container loading problem involves the place-
ment of 3-dimensional items in a container. While
the core of the problem corresponds to bin packing
with the objective of high volumetric utilization,
in practical applications there are various further
requirements towards the placement of the items.
These include stacking conditions, cargo stability,
visibility and accessibility considerations. The rich
set of requirements makes CP an attractive mod-
eling approach in this domain. Among the addi-
tional requirements, Davies and Bischoff (1999)
highlight the importance of the weight distribu-
tion of the loaded container, focusing on the lo-
cation of the center of gravity (COG). The exact
requirements depend on the specific application,
especially on the means of transport. For example,
in aircraft loading, or when loading a container
that will be lifted by a crane, the COG of the cargo
has to be located in the center of the container.
Since the length of the container (or the aircraft
hull) is much greater than its width or height, the
longitudinal balance is the most important issue.
In contrast, in road transport, it is often preferred
to have the COG above the axes of the vehicle.

Davies and Bischoff (1999) proposed a loading
heuristic that achieves high space utilization com-
bined with an even weight distribution, and claim
that the latter leads to a COG located near to
the center of the container. Wodziak and Fadel
(1994) apply a genetic algorithm to minimize the
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Fig. 3. Sample solution of a container loading
problem. The center of gravity has to be
located between Gmin and Gmax.

distance of the COG from the desired location in
one, two, and two and a half dimensions. Vari-
ous authors have focused on the longitudinal bal-
ance, and approached the problem from a one-
dimensional perspective, see, e.g. (Mathur, 1998).
Fasano (2004) proposed a MIP approach to solv-
ing the 3D single bin packing problem with or-
thogonal rotation allowed and the center of grav-
ity location constrained in all three dimensions.

Below we address the problem of loading box-
shaped items into a rectangular container, with
rotation disallowed. For simplicity, we present
our results on the two-dimensional variant of the
problem, and focus on the longitudinal balance.
However, it is straightforward to extend the model
to k dimensions and constraints on the COG
location in all dimensions.

5.1 Modeling the Problem

Let us start by illustrating the relation of con-
tainer loading to scheduling with total weighted
completion time criterion on Fig. 3. The figure
can be seen both as the placement of boxes in a
container and the Gantt chart representation of
a schedule on a discrete resource. The container
corresponds to the hull of the schedule, defined
by the scheduling horizon (horizontal axis) and
the resource capacity (vertical axis). Boxes corre-
spond to activities, with box length standing for
activity duration and box width for the resource
requirement of the activity. The physical weight
of the box corresponds to the weight assigned to
activity Ai.

Then, assuming homogeneous boxes, the horizon-
tal coordinate of the COG of box Bi equals Si+Ci

2
in the schedule. This implies that the COG of the
complete cargo can be described as

∑
i wi

Si+Ci

2∑
i wi

,

which in turn can be rewritten to

Container loading Scheduling

Container length Scheduling horizon

Container width Resource capacity

Box length Activity duration
Box width Activity’s resource req.

COG location Average weighted completion

time + constant bias

Table 2. Corresponding notions in con-
tainer loading and scheduling.

1∑
i wi

(
∑

i

wiCi −
∑

i

wipi

2
).

Hence, if the total weighted completion time in
the schedule is denoted by K, then the COG
location equals G = c1(K − c2), where c1 =

1∑
i
wi

and c2 =
∑

i
wipi

2 are two constants. The

corresponding notions in container loading and
scheduling are summarized in Table 2.

We note that the difference between scheduling
and container loading is that in scheduling it is
allowed to exchange the load of resource units
arbitrarily. In container loading, it would mean
cutting the loading plan to horizontal stripes and
shuffling those stripes, which is infeasible. Hence,
discrete resource scheduling with total weighted
completion time criterion is a relaxation of con-
tainer loading with constrained COG location.

In the CP model of the problem, the variables
are the horizontal and vertical location of the
boxes, and the location of the COG. There is a
non-overlapping constraint posted on the boxes.
We note that the non-overlapping constraint also
makes use of the scheduling relaxation (Clautiaux
et al., 2008). For propagating the COG location
we use the extension of the COMPLETION con-
straint to discrete resources presented in (Kovács
and Beck, 2007a). We investigate problems where
the COG has to be located within a certain range
of the center line of the container, between Gmin

and Gmax.

5.2 Computational Experiments

We compared the performance of this COMPLE-
TION model to the naive model where the COG
location was propagated by a weighted sum con-
straint, called the SUM model. For solving the
problem, we implemented different search strate-
gies. The search decisions made by each of the
strategies concern a subset of the following: ab-
solute position of a box (AP), relative position
of two boxes (RP), and overlap relation of two
boxes, i.e., deciding whether two boxes overlap in
a given dimension (OR). For the COMPLETION
model, the pure AP strategy proved to be the
most efficient, and therefore we present exper-
imental results for this strategy. We note that



SUM model performed better with a combined
OR+RP+AP strategy than with the AP strategy,
but also that combination was outperformed by
the COMPLETION model with AP.

Each row of Table 3 contains results for a given
number of boxes, n. Columns Solved and Time
display the percentage of solved instances and
the average search time. We note that the total
number of instances generated for each value of
n was 80, with different container sizes. However,
the actual number of instances experimented is
somewhat lower, because in some problems the
container was overloaded.

n SUM COMPLETION
Solved Time Solved Time

10 100.0% 0.0 100.0% 0.0

15 98.0% 32.9 100.0% 0.2
20 97.6% 121.4 97.6% 29.2

25 68.6% 425.5 100.0% 13.1

30 33.3% 868.6 90.0% 147.3
35 28.6% 872.2 92.9% 178.3

40 31.6% 889.2 78.9% 335.4

45 8.3% 1169.7 66.7% 531.4

Table 3. Experimental results on the
container loading problem, for the SUM

and the COMPLETION models.

6. CONCLUSION

We demonstrated how the extension of a standard
CP solver by a novel global constraint can boost
the performance of the solver in various appli-
cation domains. Namely, we introduced a global
constraint for the total weighted completion time
of activities that require the same resource, and
applied this constraint to three different problems:
job shop scheduling, scheduling with tool changes,
and container loading with a constraint on the lo-
cation of the center of gravity. In all of these appli-
cations the new approach outperformed the classi-
cal CP models, while in single-machine scheduling
with tool changes it outstripped all previous exact
optimization approaches.
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