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Abstract. In the seminal work [8] L. Lovász introduced the concept
of an orthonormal representation of a graph, and also a related value,
now popularly known as the Lovász number of the graph. One of the
remarkable properties of the Lovász number is that it lies sandwiched
between the stability number and the complementer chromatic number.
This fact is called the sandwich theorem.

In this paper, using new descriptions of the Lovász number and linear
algebraic lemmas we give three proofs for a weaker version of the sandwich
theorem.

Mathematics Subject Classifications (2000). 90C22, 90C27

1 Introduction

From the several remarkable properties of the Lovász number of a graph we
mention here only the sandwich theorem: the Lovász number lies ‘sandwiched’
between the stability number, and the chromatic number of the complementer
graph. A weaker form of this sandwich theorem will be derived here using
new descriptions of the Lovász number. This weak sandwich theorem is the
immediate consequence of the sandwich theorem, Brooks’ Theorem (concerning
an upper bound on the chromatic number), and the counterpart of Brooks’
Theorem (concerning a lower bound on the stability number). In this paper our
aim is to give more direct proofs.

We begin this paper with stating the above-mentioned results. First we fix
some notation. Let n ∈ N , and let G = (V (G), E(G)) be an undirected graph,
with vertex set V (G) = {1, . . . , n}, and with edge set E(G) ⊆ {{i, j} : i 6= j}.
The complementer graph will be denoted by G. Thus G = (V (G), E(G)) where
V (G) = V (G) and E(G) = {{i, j} ⊆ V (G) : i 6= j, {i, j} 6∈ E(G)}.

In the seminal work [8] L. Lovász introduced the following number, ϑ(G),
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now popularly known as the Lovász number of the graph G ([7]):

ϑ(G) := inf



 max

1≤i≤n

1
(aiaT

i )11

∣∣∣∣∣∣

m ∈ N ; ai ∈ Rm (i = 1, . . . , n);
aT

i ai = 1 (i = 1, . . . , n);
aT

i aj = 0 ({i, j} ∈ E(G))



 .

The feasible solutions (ai) of the program defining ϑ(G) are called the orthonor-
mal representations of the graph G. (Here (aia

T
i )11 denotes the upper left corner

element of the matrix aia
T
i , that is the square of the first element of the vec-

tor ai, and though not emphasized in the definition of ϑ(G), we suppose that
(aia

T
i )11 6= 0 for all i ∈ V (G).)
By Lemma 3 in [8], the Lovász number ϑ(G) is an upper bound for the

stability number α(G), the maximum cardinality of the (so-called stable) sets
S ⊆ V (G) such that {i, j} ⊆ S implies {i, j} 6∈ E(G). Moreover, by Theorem 11
in [8] if there exists an orthonormal representation of the graph G with vectors
ai in Rm then ϑ(G) ≤ m. Specially, ϑ(G) is at most the chromatic number of
the complementer graph, χ(G), where the chromatic number of a graph is the
minimal number of stable sets covering the vertex set of the graph. Hence (see
[8])

α(G) ≤ ϑ(G) ≤ χ(G),

a fact known as the sandwich theorem (see [7]).
The Lovász number can also be defined via orthonormal representations of

the complementer graph: it is shown in [8] that ϑ(G) = ϑ′(G) where the number
ϑ′(G) is defined as

ϑ′(G) := sup





n∑

i=1

(bib
T
i )11

∣∣∣∣∣∣

m ∈ N ; bi ∈ Rm (i = 1, . . . , n);
bT
i bi = 1 (i = 1, . . . , n);

bT
i bj = 0 ({i, j} ∈ E(G))



 .

(We remark that here the values (bib
T
i )11 are allowed to be zero.) The proof

of the equality ϑ(G) = ϑ′(G) relies on strong duality between Slater-regular
primal-dual semidefinite programs equivalent with the programs defining ϑ(G)
and ϑ′(G), respectively. (See [8], [10] or [15] for the equivalency results; and, for
example, [16], [17] for the duality results.) As a consequence of the sandwich
theorem and the equality between the values ϑ(G) and ϑ′(G) we have

α(G) ≤ ϑ′(G) ≤ χ(G),

a fact that can also be derived easily from the definition of ϑ′(G).
For i ∈ V (G) let N(i) denote the set of vertices j ∈ V (G) such that {i, j} ∈

E(G). Let us denote by di the cardinality of the set N(i), and let dmax denote
the maximum of the values di (i ∈ V (G)). We define similarly N(i), di and
dmax for the complementer graph G instead of G.

The following theorem is well-known (see for example [9]):
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THEOREM 1.1. (Brooks) The chromatic number χ(G) is at most dmax +1,
with equality for a connected graph G if and only if the graph is a clique or an
odd cycle.

As a corollary of Theorem 1.1 and the sandwich theorem we obtain

COROLLARY 1.1. The value ϑ(G) (ϑ′(G) also) is at most dmax + 1.

The counterpart of the Brooks’ Theorem can be found in [1]. For further
lower bounds on the stability number, see [3], [18].

THEOREM 1.2. (Alon-Spencer) The stability number α(G) is at least∑
i∈V (G) 1/(di +1), with equality if and only if the graph G is the disjoint union

of cliques.

Similarly as in the case of Theorem 1.1 we have the following corollary:

COROLLARY 1.2. The value ϑ′(G) (ϑ(G) also) is at least
∑

i∈V (G) 1/(di +
1).

We will call the results described in Corollaries 1.1 and 1.2 together the weak
sandwich theorem. In Sections 2 and 3 we give two proofs for this theorem using
linear algebraic lemmas and new descriptions of the Lovász number. In Section
4 we present a new proof for Theorem 1.2 thus obtaining a third proof for the
weak sandwich theorem.

2 First proof for the weak sandwich theorem

In the first proof of the weak sandwich theorem we will need the following
lemma, implicit in the proof of Theorem 3 in [8]:

LEMMA 2.1. Let PSD denote the set of n by n real symmetric positive
semidefinite matrices. Let S denote the following set of matrices:

S :=
{(

aT
i aj

eT
1 ai · eT

1 aj
− 1

) ∣∣∣∣
m ∈ N ; ai ∈ Rm (1 ≤ i ≤ n);
aT

i ai = 1 (1 ≤ i ≤ n)

}
.

Then PSD = S. (Here e1 denotes the first column vector of the identity matrix
E. Though not emphasized in the definition of the set S, we suppose that the
vectors ai have nonzero first coordinates, that is eT

1 ai 6= 0 for i = 1, . . . , n.)

Proof. First we will prove the inclusion S ⊆ PSD. Let a1, . . . , an be unit vec-
tors. Then the vectors ai · (eT

1 ai)−1 can be written as (1, xT
i )T with appropriate

vectors xi. We have
(

aT
i aj

eT
1 ai · eT

1 aj
− 1

)
= (xT

i xj) ∈ PSD.
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Thus the elements of the set S are positive semidefinite.
To prove the reverse inclusion PSD ⊆ S, let X be a positive semidefinite

matrix. Then there exist vectors xi such that X = (xT
i xj). Let ai := λi(1, xT

i )T

where the constants λi are chosen appropriately so that aT
i ai = 1 holds. With

these definitions we have

X = (xT
i xj) = ((1, xT

i )(1, xT
j )T − 1) =

(
aT

i aj

eT
1 ai · eT

1 aj
− 1

)
.

Thus X ∈ S, which was to be shown. 2

From Lemma 2.1 follows immediately that the program defining ϑ(G) and
the following program are equivalent:

inf max
1≤i≤n

xii + 1, xij = −1 ({i, j} ∈ E(G)), X ∈ PSD. (1)

(We remark that program (1) in an equivalent form was studied previously by
Meurdesoif, see program (PL) in [11].) We can see

THEOREM 2.1. The optimal value of program (1) is equal to ϑ(G), and it
is attained. 2

Now let X be the following matrix:

X := (xij), where xij :=





di, if i = j,
0, if {i, j} ∈ E(G),
−1, if {i, j} ∈ E(G).

Then xii ≥
∑

i 6=j |xij | holds for 1 ≤ i ≤ n, so the matrix X is positive semidefi-
nite, see [14]. (We can also use the fact that X is the Laplacian matrix corre-
sponding to the adjacency matrix of G, see [16].) Moreover, the matrix X is a
feasible solution of program (1), with corresponding value dmax + 1. Thus we
have ϑ(G) ≤ dmax + 1, and Corollary 1.1 is proved. 2

Similarly on the dual side we can apply the variable transformation described
in Lemma 2.1 to the program defining ϑ′(G). This way we obtain the following
program:

sup
n∑

i=1

1
yii + 1

, yij = −1 ({i, j} ∈ E(G)), Y ∈ PSD. (2)

The optimal value of program (2) is a lower bound of ϑ′(G), as when writing
program (2) we considered only the representations (bi) where the vectors bi

had nonzero first coordinates. From these considerations Corollary 1.2 follows
similarly as in the case of Corollary 1.1 above. 2
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We remark that the program defining ϑ′(G), and the program (2) are not
equivalent generally. Really, let G0 be the cherry graph:

G0 := ({1, 2, 3}, {{1, 2}, {1, 3}}).

Then ϑ′(G0) = 2 by the sandwich theorem, but the program (2) has no feasible
solution with corresponding value 2. Otherwise there would exist

Y =




x −1 −1
−1 y a
−1 a z


 ∈ PSD

such that
1

x + 1
+

1
y + 1

+
1

z + 1
= 2.

But then xy ≥ 1, y, z > 0, and

x =
1− yz

2yz + y + z

would hold. From these relations (1− yz)y ≥ 2yz + y + z, that is 0 ≥ z(y + 1)2

would follow, which is a contradiction. This contradiction shows that there exist
graphs such that in every optimal orthonormal representation (bi) there exist
at least one vector bi with zero first coordinate.

In the next two propositions we describe two lower bounds for the optimal
value of program (2).

PROPOSITION 2.1. The optimal value of program (2) is at least n/ϑ(G).

Proof. Let ε > 0, and let X = X(ε) ∈ Rn×n be a feasible solution of program
(1) with G instead of G, such that

max
1≤i≤n

xii + 1 ≤ ϑ(G) + ε.

Then the matrix X is a feasible solution of program (2), and

n =
n∑

i=1

1
xii + 1

· (xii + 1) ≤ max
1≤i≤n

(xii + 1) ·
n∑

i=1

1
xii + 1

.

We can see that n/(ϑ(G)+ ε) is a lower bound for the optimal value of program
(2), and ε → 0 gives the statement. 2

PROPOSITION 2.2. The optimal value of program (2) is at least α(G).
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Proof. Let S ⊆ V (G) be a stable set with cardinality α(G), and let ε > 0.
Let us define the matrix Y = Y (ε) ∈ Rn×n the following way:

Y := (yij), where yij :=





ε, if i = j ∈ S,
0, if i, j ∈ S, i 6= j,
λ, if i = j 6∈ S,
−1, otherwise.

Here let λ = λ(ε) ∈ R be the minimum number such that Y is positive semidef-
inite, that is

λ :=
(

1 +
1
ε

)
· (n− α(G))− 1.

(Schur complements [12] can be used to determine λ.) Then Y is a feasible
solution of program (2). It can be easily seen that the corresponding value
increases to α(G) while ε > 0 decreases to 0. 2

From Propositions 2.1 and 2.2 equality between the optimal value of program
(2) and ϑ′(G) follows:

• for vertex-transitive graphs where the lower bound n/ϑ(G) (Proposition
2.1) and the upper bound ϑ(G) are equal, see Theorem 8 in [8];

• for perfect graphs where the lower bound α(G) (Proposition 2.2) and the
upper bound ϑ(G) are equal by the sandwich theorem and the perfect
graph theorem [9].

Note that in the case of vertex-transitive graphs the optimal value of program
(2) is attained, while in the case of perfect graphs non-attainment is possible.

Equality holds in the general case as well:

THEOREM 2.2. The optimal value of program (2) and ϑ′(G) are equal.

Proof. Let us denote by TH (G) the set of vectors x = (x1, . . . , xn) ∈ Rn

satisfying x ≥ 0 and the so-called orthogonality constraints,

n∑

i=1

(eT
1 ai)2xi ≤ 1,

where (ai) is an orthonormal representation of the graph G.
It can be shown (see [7]) that TH (G) can be described alternatively as the

set of vectors x = (x1, . . . , xn) ∈ Rn such that

xi = (eT
1 bi)2 (i = 1, . . . , n)

for some (bi) orthonormal representation of the complementer graph G.
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Let TH+ (G) denote the set of positive vectors of TH (G). Then TH+ (G) is
a convex set (as TH (G) is a convex set), and it is nonempty (as every graph can
be represented by vectors with nonzero first elements). From this observation
easily follows that

TH+ (G) ⊆ TH (G) ⊆ cl TH+ (G),

where cl denotes closure. Consequently we obtain the same value optimizing
any linear function over TH (G) and TH+ (G); which, for the linear function
(x1, . . . , xn) 7→ ∑

i xi, is exactly the statement. 2

3 Second proof for the weak sandwich theorem

In this section we give an alternative proof for the weak sandwich theorem using
a completely different technique than the one used in the previous section.

Let σ(n) denote the number of integers s in the range 0 < s < n such that
s ≡ 0, 1, 2 or 4 (mod 8). For small values of n, the value σ(n) can be read out
from the following table:

n 1 2 3,4 5,6,7,8
σ(n) 0 1 2 3

n 9 10 11,12 13,14,15,16
σ(n) 4 5 6 7

The table can be continued in a similar manner for larger values of n. With this
notation the following combinatorial lemma holds:

LEMMA 3.1. If n ≥ 2 then there exist n of σ(n)-letter words made up from
the letters a, b, c, d such that the number of letter-pairs (a, b) and (c, d) on the
same position in any two of the words is altogether odd. (For example in the
words “aa” and “cb” there is only one such letter-pair: (a, b), on the second
position.)

Proof. For the values 2 ≤ n ≤ 9 the following word-sets have the desired
property:

n = 2, σ(n) = 1 : a, b
n = 3 or 4, σ(n) = 2 : any n words from the word-set aa, cb, ba, db

n = 5, 6, 7 or 8, σ(n) = 3 : any n words from the word-set
aaa, ccb, cba, cdb, baa, dab, dbc, dbd

n = 9, σ(n) = 4 : aaaa, accb, acba, acdb, abaa
adab, adbc, cdbd, ddbd.
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For larger values of n we can use the following induction argument. Let us
denote by S1, . . . , S9 the words defined above in the case n = 9. Suppose that
for some n we have appropriate σ(n)-letter words T1, . . . , Tn. Then the word-set

S1&T1, . . . , S9&T1, bdbd&T2, . . . , bdbd&Tn,

where & denotes concatenation, is made up of n + 8 of (σ(n) + 4)-letter words,
and also has the desired property. Thus the statement in the lemma is dealt
with for all the values of n. 2

Now let

A :=
(

1 0
0 1

)
, B :=

(
0 −1
1 0

)
, C :=

(
1 0
0 −1

)
, D :=

(
0 1
1 0

)
.

These matrices are orthogonal, furthermore from the matrix set

AT B, AT C,AT D, BT C, BT D, CT D

the matrices AT B and CT D are skew-symmetric, the others are symmetric.
Given a word made up of the letters a, b, c and d we can define a matrix by
Kronecker-multiplying the corresponding matrices: for example the word “dbc”
is transformed into the 8 by 8 matrix D ⊗ B ⊗ C where ⊗ denotes Kronecker
product. (For the definition of the Kronecker product see for example [12].) The
matrices obtained this way are orthogonal, as they are the Kronecker products
of orthogonal matrices.

Using this construction, from Lemma 3.1 immediately follows

LEMMA 3.2. If m = 2σ(n) then there exist m by m orthogonal matrices
C1, . . . , Cn such that for each i 6= j, the matrix CT

i Cj is skew-symmetric.

Proof. Transform a word-set with the properties described in Lemma 3.1 into
a matrix-set using the construction described before Lemma 3.2. We claim that
this matrix-set meets the requirements. For example consider the matrix-set

A⊗A,C ⊗B, B ⊗A, D ⊗B.

As we have noted already, these m by m matrices are orthogonal. On the other
hand,

(A⊗A)T · (C ⊗B) = (AT ⊗AT ) · (C ⊗B) = (AT C)⊗ (AT B) =
= (CT A)⊗ (−BT A) = −(CT ⊗BT ) · (A⊗A) = −(C ⊗B)T · (A⊗A),

and similarly for the other matrix-pairs:

(A⊗A)T · (B ⊗A) = −(B ⊗A)T · (A⊗A) . . . etc.

In the general case similar argument can be applied, so the lemma is proved. 2
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We remark that in [13] Radon proved that there exist m by m orthogonal
matrices C̃1, . . . , C̃n such that for each i 6= j the matrix C̃T

i C̃j is skew-symmetric
if and only if m ≡ 0 (mod 2σ(n)) (see also [6], [12]). The “if” part is an easy
consequence of Lemma 3.2: just Kronecker-premultiply the Ci matrices with
an identity matrix of appropriate dimension. For a similar proof of this part of
Radon’s Theorem, see [4].

We will need one further lemma, concerning new descriptions of the Lovász
number. The idea is to represent the graph G with matrices instead of vectors.
Let us define

ϑ̂(G) := inf



 max

1≤i≤n

1
(AiAT

i )11

∣∣∣∣∣∣

m, k ∈ N ; Ai ∈ Rm×k (i = 1, . . . , n);
AT

i Ai = E (i = 1, . . . , n);
AT

i Aj = 0 ({i, j} ∈ E(G))





and

ϑ̌(G) := sup





n∑

i=1

(BiB
T
i )11

∣∣∣∣∣∣

m, k ∈ N ; Bi ∈ Rm×k (i = 1, . . . , n);
BT

i Bi = E (i = 1, . . . , n);
BT

i Bj = 0 ({i, j} ∈ E(G))



 .

It is obvious that ϑ̂(G) ≤ ϑ(G) and ϑ′(G) ≤ ϑ̌(G). Equalities here follow from
Lemma 3.3.

LEMMA 3.3. With the above definitions the inequality ϑ̌(G) ≤ ϑ̂(G) holds.

Proof. We adapt the proof of Lemma 4 in [8].
Let A1, . . . , An and B1, . . . , Bn be matrices with the properties described in

the definition of ϑ̂(G) and ϑ̌(G), respectively. Then

(Ai ⊗Bi)T · (Aj ⊗Bj) = (AT
i Aj)⊗ (BT

i Bj) = 0 (1 ≤ i, j ≤ n; i 6= j).

Thus the column vectors of the matrices Ai ⊗ Bi (1 ≤ i ≤ n) altogether form
an orthonormal system. Hence

n∑

i=1

((Ai ⊗Bi)(Ai ⊗Bi)T )11 ≤ 1,

which can be written as
n∑

i=1

(AiA
T
i )11 · (BiB

T
i )11 ≤ 1.

From this inequality

min
1≤i≤n

(AiA
T
i )11 ·

n∑

i=1

(BiB
T
i )11 ≤ 1
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follows, and so
n∑

i=1

(BiB
T
i )11 ≤ max

1≤i≤n

1
(AiAT

i )11

holds. We can see that ϑ̌(G) ≤ ϑ̂(G), and the proof of the lemma is finished. 2

Lemma 3.3, together with the equality ϑ(G) = ϑ′(G), gives

THEOREM 3.1. The values ϑ̂(G) and ϑ̌(G) are equal to ϑ(G) (ϑ′(G) also),
and are attained. 2

The weak sandwich theorem is an easy consequence of Lemmas 3.2 and 3.3.
Let C1, . . . , Cn be m by m orthogonal matrices with the property described in
Lemma 3.2. Let us define the matrices A1, . . . , An the following way: the matrix
will be (1 + e)m by m where e denotes the cardinality of E(G). The first m by
m block in Ai is αiCi where

αi :=
1√

di + 1
.

The further m by m blocks correspond to the edges of the complementer graph
G: let the block corresponding to the edge {i, j} be αiCj in Ai, αjCi in Aj , and
the zero matrix otherwise. The matrix set A1, . . . , An defined this way has the
properties described in the definition of ϑ̂(G), so

max
1≤i≤n

1
(AiAT

i )11
≥ ϑ̂(G).

On the other hand,

max
1≤i≤n

1
(AiAT

i )11
= max

1≤i≤n

di + 1
(CiCT

i )11
= dmax + 1

(note that the matrices Ci are orthogonal so the matrix CiC
T
i is the identity

matrix). We obtained dmax + 1 ≥ ϑ̂(G). Similar construction on the dual side
shows that

∑
i∈V (G) 1/(di+1) ≤ ϑ̌(G). The weak sandwich theorem now follows

from Lemma 3.3. and the obvious inequalities ϑ̌(G) ≥ ϑ′(G), ϑ̂(G) ≤ ϑ(G). 2

Note that instead of the matrices Ci in the above construction we can also
use matrices Di with the following properties: the matrices Di are orthogonal;
the matrices DT

i Dj are symmetric and have zero trace (i 6= j). (The only change
is that the block corresponding to the edge {i, j} is αiDj in Ai and −αjDi in
Aj .)

It is an open problem to characterize the numbers m such that there exist m
by m matrices D1, . . . , Dn with the properties described above; but any power

10



of 2, greater than or equal to n meets the requirements: n words of the same
length log2 m, and made up from the letters a and d (or a and c) translate into
appropriate matrices (see the proof of Lemma 3.2).

Using simultaneous diagonalization, the open problem described above can
be cast also in the following form: characterize the numbers (m,n) such that
there exists a matrix M ∈ {±1}m×n such that MT M = E. This is the
Hadamard determinantal problem (see [5]); the conjecture is that the (m,n)
pairs satisfying the requirements are:

• (m, 1) such that m ≥ 1;

• (m, 2) such that m ≥ 2 is even;

• (m,n) such that m ≥ n and m ≡ 0 (mod 4).

4 New proof for the Alon-Spencer Theorem

In this section we will prove the Alon-Spencer Theorem (Theorem 1.2), the coun-
terpart of Brooks’ Theorem (Theorem 1.1). We also describe the counterpart
of Turán’s Theorem.

First we will show that

α(G) ≥
n∑

i=1

1
di + 1

(3)

holds. We apply induction on the cardinality n of V (G). In the case when
n = 1, the statement is trivial; in what follows we will suppose that the number
of vertices is n > 1 and that for graphs with smaller number of vertices the
inequality (3) already holds. Note that we can suppose also that the graph G
is α-critical (that is leaving out any edge the stability number becomes larger).
Really, otherwise delete edges from the graph until this operation does not
change the stability number. In the end we get an α-critical graph, and the
value on the right hand side of (3) became larger, while the value on the left
hand side of (3) stayed the same. We can suppose also that the graph G is
connected: if it has more than one components, then by induction the inequality
(3) holds true for its components, and this implies the validity of (3) for the
whole graph. Hence it is enough to consider the case when the graph G is
α-critical and connected.

Let v be a vertex of G such that dv = dmax. It is easy to prove that
there exists a stable set of the size α(G) such that it does not contain the
vertex v (see Exercise 8.12 in [9]). Let us denote by G − v the graph with
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vertex-set {1, . . . , n} \ {v}, and with edge-set {{i, j} ∈ E(G) : i, j 6= v}. Then
α(G− v) = α(G). By induction, for the graph G− v (3) holds, that is

α(G− v) ≥
∑

i∈N(v)

1
di

+
∑

i 6∈N(v), i 6=v

1
di + 1

. (4)

As dv ≥ di for all i ∈ V (G), we have

1
di
≥ 1

di + 1
+

1
dv(dv + 1)

(i ∈ N(v)) (5)

Writing this bound into (4) we obtain the following inequality:

α(G− v) ≥
∑

i∈N(v)

1
di + 1

+
∑

i 6∈N(v), i 6=v

1
di + 1

+
1

dv + 1
.

As α(G− v) = α(G), this inequality is in fact (3), and the first half of Theorem
1.2 is proved.

To prove the second half of the theorem we will show that if

α(G) =
n∑

i=1

1
di + 1

(6)

holds then the graph G is the disjoint union of cliques (the other direction is
obvious). Again we apply induction on n. Note that if (6) holds then the graph
G is α-critical (otherwise G would have an edge such that after deleting this
edge the stability number stays unchanged, while the value on the right hand
side of (6) becomes larger, contradicting (3)). We can suppose also that G is
connected (if (6) holds then it holds for the components also). Thus it suffices
to prove that if the graph G is α-critical and connected, furthermore (6) holds
then G is a clique.

Let v be the same point as in the first half of the proof, and again consider
the graph G− v. Let us denote by S(G) the sum on the right hand side of (6).
As we have seen in the first half of the proof,

α(G) = α(G− v) ≥ S(G− v) ≥ S(G).

As now α(G) = S(G), we have equalities instead of inequalities, that is

α(G) = α(G− v) = S(G− v) = S(G).

It follows from the S(G − v) = S(G) equality that di = dv (i ∈ N(v)) (as
otherwise (5) would hold with strict inequality). Moreover by the α(G − v) =
S(G − v) equality and by induction the graph G − v is the disjoint union of
cliques. As the graph G is connected, the set N(v) intersects with all of these
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cliques. Let us chose one of the cliques, and a vertex i ∈ N(v) from this clique.
Then di equals dv as well as the cardinality of the clique. Hence the components
of G− v all have the same cardinality dv. Then α(G− v) = (n− 1)/dv. If the
graph G − v would have more than one components then we could chose from
each component a vertex from N(v). These vertices together with the vertex v
would constitute a stable set in G with cardinality larger than α(G − v). This
would contradict the fact that α(G − v) = α(G), so G − v is a clique with
cardinality dv with vertices in N(v). Thus the graph G is a clique, and the
proof of the second half of Theorem 1.2 is finished also. 2

We remark that Turán’s Theorem can be derived as a consequence of the
Alon-Spencer Theorem, see [1]. Here the graph Tn,m is defined as follows:
Divide the vertex set V (Tn,m) := {1, . . . , n} into m disjoint subsets S1, . . . , Sm

such that the cardinality of Si and Sj differ by at most one for each i 6= j. Then
the edge set of the graph Tn,m is

E(Tn,m) := ∪m
`=1{{i, j} ⊆ S` : i 6= j}.

COROLLARY 4.1. (Turán) Let G be a simple graph on n vertices with
stability number α(G) ≤ m. Minimizing the number of the edges of G under
these assumptions, the unique extremal graph is Tn,m.

The following corollary describes the counterpart of Turán’s Theorem which
in turn is a simple consequence of Brooks’ Theorem.

COROLLARY 4.2. Let G be a simple graph on n vertices with chromatic
number χ(G) ≥ m. Then the number of the edges of G is at least m(m− 1)/2.
Equality holds if and only if G is the disjoint union of a clique and a stable set
on m and n−m vertices, respectively.

Proof. It is well-known that the number of the edges of any simple graph G
on n points is at least χ(G)(χ(G) − 1)/2, so it is enough to prove that if the
number of the edges is m(m − 1)/2 and the chromatic number is m then G is
isomorphic with the graph described in the statement.

Hence we can suppose that the vertex set is the disjoint union of m stable
sets with exactly one edge going between each two of them. Let us choose
a connected component G′ of the graph G such that its chromatic number is
χ(G′) = m. By Brooks’ Theorem, then

m = χ(G′) ≤ dmax(G′) + 1 ≤ dmax(G) + 1 ≤ m,

and we can see that G′ is a clique on m vertices; the statement is proved. 2

Finally we mention an open problem. Wilf proved the following result (see
[2]): the chromatic number χ(G) is at most αmax + 1 (where αmax denotes
the maximum eigenvalue of the adjacency matrix of G), with equality for a
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connected graph G if and only if the graph is a clique or an odd cycle. As
αmax ≤ dmax always holds (with equality for a connected graph if and only
if the graph is regular), Wilf’s Theorem is stronger than Brooks’ Theorem.
It would be interesting to see how Theorem 1.2 could be strengthened using
spectral information. (The bound n/(αmax + 1) [18] is not a strengthening of
the Alon-Spencer bound, as — using the convexity of the function

x 7→ 1
dT x + 1

(0 ≤ x ∈ Rn), d = (d1, . . . , dn)T ,

and Rayleigh’s Theorem [14] — it can be easily shown that

n

αmax + 1
≤

n∑

i=1

1
di + 1

holds, with equality if and only if the graph is regular.)

Conclusion. In this paper we presented a new proof for the counterpart
of Brooks’ Theorem (the Alon-Spencer Theorem) concerning a simple lower
bound on the stability number. As a consequence of the sandwich theorem,
Brooks’ Theorem and the Alon-Spencer Theorem we derived a weaker version
of the sandwich theorem. For this weak sandwich theorem we gave another two,
more direct proofs also, which are based on linear algebraic lemmas and new
descriptions of the Lovász number.

Acknowledgements. I am indebted to Tamás Rapcsák and András Frank
for the several consultations.
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