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Abstract

The criterion of total weighted completion time occurs as a sub-problem of combina-
torial optimization problems in such diverse areas as scheduling, container loading and
storage assignment in warehouses. These applications often necessitate considering a rich
set of requirements and preferences, which makes constraint programming (CP) an ef-
fective modeling and solving approach. On the other hand, basic CP techniques can be
inefficient in solving models that require inference over sum type expressions. In this pa-
per, we address increasing the solution efficiency of constraint-based approaches to cumu-
lative resource scheduling with the above criterion. Extending previous results for unary
capacity resources, we define the COMPLETIONm global constraint for propagating the
total weighted completion time of activities that require the same cumulative resource. We
present empirical results in two different problem domains: scheduling a single cumulative
resource, and container loading with constraints on the location of the center of gravity. In
both domains, the proposed constraint propagation algorithm out-performs existing propa-
gation techniques.

Key words: constraint programming, scheduling, total weighted completion time, global
constraint, container loading

1 Introduction

Much of the success of constraint programming (CP) arises for the ability to declar-
atively model and solve a given problem with a combination of global constraints.
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A global constraint captures a recurrent and important relation amongst a set of
variables [19] and, importantly, has an associated algorithm for efficiently remov-
ing inconsistent values from the domains of the variables. The classic example of
a global constraint is the all-different constraint which imposes that a set of vari-
ables must each take a unique value and which has an inference algorithm based
on matchings in bi-partite graph [14]. As CP has been increasingly used to address
combinatorial optimization problems, the need to explicitly incorporate reasoning
about costs within global constraints has been recognized [8]. In this paper, we con-
tinue this line of work by addressing the objective function of the total weighted
completion time of a set of jobs that must share a single cumulative resource. While
such a constraint is directly applicable to and, indeed, most clearly explained in the
context of, scheduling problems, there are a wide variety of combinatorial opti-
mization problems in other domains for which this constraint is useful. In particu-
lar, in this paper, after validating the constraint on scheduling problems, we use it
to model and solve container loading problems. Our empirical results demonstrate
significant improvement in problem solving in both domains as compared to the
standard weighted-sum constraint.

In the next section, we provide background on the unary capacity COMPLETION
constraint and a short discussion of related work. We then present the details of
the cumulative COMPLETIONm constraint including our proposed propagation
algorithm. Section 4 empirically validates the global constraint by applying it to
single machine scheduling problems. In Section 5, we turn to the container loading
problem and demonstrate how such a problem can be modeled and solved with the
use of the COMPLETIONm constraint. We then conclude in Section 6.

2 Previous Work

A critical component of the success of CP techniques to optimization problems is
the ability to design a model that exhibits significant back propagation. Back prop-
agation is the reduction in search space through pruning of the domains of decision
variables as a result of a new bound on the objective function. Models that exhibit
a high degree of back propagation tend to be successful as each new (sub-optimal)
solution will result in a tighter bound on the cost and, in turn, a smaller subsequent
search space. In contrast, without back propagation, the full search space will need
to be explored, suggesting that CP will not result in better performance than any
other solution technique.

The significance of cost-based global constraints for strong back propagation has
been emphasized by Focacci et al. [8]. The same authors define a global constraint
for the path cost in traveling salesman problems in [7,8]. Further examples of cost-
based constraints with efficient propagation algorithms are the global cardinality
constraint with costs [15], the minimum weight all-different constraint [18], the
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cost-regular constraint [5], and the inequality-sum constraint [16]. The latter con-
straint propagates objective functions of the form

∑
i xi where variables xi are sub-

ject to binary inequality constraints of the form xj − xi ≤ c. The inequality-sum
constraint can be applied to propagate the total (non-weighted) completion time or
total (non-weighted) tardiness objective functions in a special family of scheduling
problems, the Simple Temporal Problems (STP) [4]. An STP involves finding start
times for activities subject to minimum and maximum time lags between activities,
but it provides no means for representing limited capacity resources.

The COMPLETION constraint is a recently proposed global constraint to prop-
agate the total weighted completion time of activities on a single unary capacity
resource [10]. Formally, the COMPLETION constraint is defined as follows:

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], C)

where there are n activities, Ai, to be executed without preemption on a single,
unary resource. Each activity is characterized by its processing time, pi, and a non-
negative weight, wi. The start time variable ofAi is denoted by Si with Ci = Si+pi
being the activity’s completion time in the schedule. The total weighted completion
time of the activities will be denoted by C. We assume that all data are integral. The
constraint enforces C =

∑
iwi(Si + pi).

The COMPLETION constraint can be viewed as requiring a solution to a schedul-
ing problem denoted as 1|ri, di|

∑
wiCi in the classical scheduling notation. Though

this problem is NP-hard, a pre-emptive variant with a slightly modified objective
function is solvable in polynomial time and can serve as a lower bound. Let Mi be
the mean busy time of activity Ai, i.e., the mean point in time at which the machine
is busy processing activity Ai. The problem 1|ri, pmtn|

∑
wiMi can be solved in

O(n log n) where n is the number of activities [9]. The COMPLETION constraint
filters the domains of the start time variables by computing the cost of the optimal
preemptive mean-busy time relaxation for each activity Ai and each possible start
time t of activity Ai, with the added constraint that activity Ai must start at time
t. If the cost of the relaxed solution is greater than the upper bound on the cost,
then t is removed from the domain of Si. In practice, the relaxation is not actually
re-solved for each start time in the domain of each activity. Instead, a much faster
algorithm transforms an initial relaxed solution into a series of preemptive sched-
ules with given start time assignments. For a detailed presentation of this algorithm
and the COMPLETION constraint readers are referred to [10].
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3 Propagating Total Weighted Completion Time on a Cumulative Resource

Extending the COMPLETION constraint to a cumulative resource, we introduce
the global constraint COMPLETIONm, which states that given a set of non-pre-
emptive activities {A1, ..., An} that require the same cumulative resource with ca-
pacity R, the total weighted completion time of these activities is C. The constraint
takes the form

COMPLETIONm([S1, ..., Sn], [p1, ..., pn], [%1, ..., %n],

[w1, ..., wn], R, C),

where finite-domain variables Si stand for the start time of Ai, while pi, %i, and wi
denote the duration, the capacity requirement, and the weight of Ai, respectively.
The cost variable C is also a finite-domain variable. We assume that pi, %i, wi, and
R are non-negative integer constants, however our approach can be easily adapted
to reasoning with the lower bounds of pi, %i, and wi, and the upper bound of R.
The minimum and maximum values in the current domain of a variable X will be
denoted by X̌ and X̂ , respectively. When appropriate, we call the current lower
bound of a start time variable, Ši, the release time of the activity, and denote it by
ri. For brevity, we denote the relative weight of an activity by µi = wi/pi%i.

The COMPLETIONm constraint tightens the lower and the upper bounds of vari-
ables Si, but only the lower bound of C. The latter is sufficient in problems where
the cost is to be minimized. In other applications, the upper bound of C can be
tightened by posting a COMPLETIONm constraint on a flipped schedule.

3.1 The Relaxed Problem

A standard approach to the effective propagation of a global constraint is to embed
a polynomially solvable relaxation into the constraint. For the COMPLETIONm

constraint, we seek a relaxation of the single cumulative resource total weighted
completion time problem that simultaneously considers capacity constraints, re-
source requirements, and release times. Unlike in the unary case, such a relaxation
does not appear to have been presented in the literature. We therefore propose a
novel relaxation of this scheduling problem.

In the relaxed problem, defined in Fig.1, we assume that activities Ai can be exe-
cuted with a varying intensity over time. That is, in each time period [t, t+ 1), t =
0, ..., T − 1, an intensity xit of Ai can be chosen from [0, R]. As an extremity of
varying intensity, preemption is allowed. The sum of the intensities over time has
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Minimize ∑
i,t

t µi x
i
t +

1

2

∑
i

wi (1)

s.t.

∀i, t xit ≥ 0 (2)

∀i
∑
t

xit = pi%i (3)

∀t
∑
i

xit ≤ R (4)

∀i, t
t∑

t′=0

xit′ ≤

 0 if t < ri

(t− ri + 1)%i if t ≥ ri
(5)

Fig. 1. The variable-intensity relaxation of the cumulative resource scheduling problem.

to match the original volume of the activity (3), and the capacity constraint must
be respected (4). The release time constraint (5) now states that Ai cannot be pro-
cessed before ri, and for t ≥ ri, the maximum volume of Ai processed in [0, t]
grows linearly with t. The objective is to minimize the total weighted mean busy
time of the activities (

∑
i,t t µi x

i
t), shifted by a constant (1

2

∑
iwi) that compensates

for the difference between the mean busy time and the total weighted completion
time criteria. Below, we differentiate between the original problem and the variable-
intensity relaxation by denoting the former as Π, and the latter as Π′. C ′ will stand
for the cost of the optimal relaxed solution to Π′.

Proposition 1 C ′ is a valid lower bound on the original problem Π.

Proof: Let us denote the optimal schedule for Π by σ and its total weighted com-
pletion time by C. Since each activity is processed without preemption in σ, the
difference between the total weighted completion time (weighted sum of the end
times,

∑
iwiCi) and the mean busy time (weighted sum of the mid-points,

∑
iwiMi)

equals 1
2

∑
iwipi. In the variable intensity representation, the mean busy time of σ

can be calculated as
∑
i,t t µi x

i
t. Note that σ is a feasible solution of the relaxed

problem Π′ as well, and its relaxed solution cost equals

∑
i,t

t µi x
i
t +

1

2

∑
i

wipi =
∑
i

wiMi +
1

2

∑
i

wipi =
∑
i

wiCi = C

Since σ is a possibly sub-optimal relaxed solution, its cost, C, is greater or equal to
the cost of the optimal relaxed solution C ′. Hence, C ′ is a lower bound on C. 2

The optimal solution of the variable-intensity mean busy time relaxation can be
computed using the following procedure, called PrepareRelaxed(), which
constructs the schedule chronologically. At each point in time t when a schedul-
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ing decision has to be made, the algorithm assigns intensities to activities in the
order of non-increasing µi. The intensity of Ai will be the minimum of

• the intensity allowed by constraint (5), max(0, (t− ri + 1)%i)−
∑t−1
t′=0 x

i
t;

• the remaining volume of Ai, pi%i −
∑t−1
t′=0 x

i
t;

• the remaining capacity for the subsequent time period.

These intensity values are applied until an activity can no longer be processed at this
rate or the algorithm reaches the release time of another activity. The algorithm fin-
ishes when all activities are completely processed. Since the number of scheduling
decisions is at most O(n2) and intensities can be assigned in O(n) time, the overall
time complexity of the algorithm is O(n3). Note that the complexity is indepen-
dent of the length of the scheduling horizon. The pseudo-code of the algorithm is
presented in Fig. 2.

Proposition 2 The above algorithm builds an optimal schedule for the variable-
intensity mean busy time problem.

Proof: Let σ be an arbitrary feasible schedule that differs from schedule σ∗ built by
our algorithm, such that the difference cannot be characterized by an interchange of
intensities between activities with identical relative weights. Let t1 be the earliest
point in time and Ai1 be the activity with the highest µi1 such that xi1t1[σ] 6= xi1t1[σ

∗].
The construction of the algorithm ensures that xi1t1[σ] < xi1t1[σ

∗]. Then, there exists
a time t2 and activity Ai2 with t1 < t2 and µi1 > µi2 such that increasing xi1t1[σ]
and xi2t2[σ] and decreasing xi2t1[σ] and xi1t2[σ] preserves feasibility and improves the
objective value of σ. Therefore a schedule that differs essentially from the one built
by the algorithm cannot be optimal. 2

3.2 From Relaxed Solutions to Bounds Tightening

The above presented algorithm can easily be modified to PrepareRelaxed(Ai,
t), which computes optimal relaxed solutions with the additional constraint that
activity Ai must start at t. This can be achieved by assigning ri = t and µi = ∞,
which gives activity Ai the largest relative weight among all the activities. This
ensures that Ai starts at t and it is processed at intensity %i throughout its duration.
This restricted relaxed problem will be denoted by Π′〈Si, t〉, and the value of its
optimal solution by C ′〈Si, t〉. Our approach to tightening the bounds of the start
time variables Si exploits the following proposition.

Proposition 3 If C ′〈Si, t〉 > Ĉ, then t can be removed from the domain of Si.

Unlike in the unary case, we are not able to define methods for computing C ′〈Si, t〉
for all values of i and t in low-degree polynomial time. Instead, we apply Prepare-
Relaxed to compute two relaxed solutions for each activity, for the situations
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PROCEDURE PrepareRelaxed()
σ := an empty schedule
t := mini ri
∀i vi := 0 % Volume of activity not yet processed
WHILE there is an activity not completely processed

R′t := R % Remaining capacity at time t
FORALL Ai ordered by non-decreasing µi

xit := min(max(0, (t− ri + 1)%i)−
∑t−1

t′=0 x
i
t,

pi%i −
∑t−1

t′=0 x
i
t,

R′t )
IF ri > t THEN

∆i = ri − t
ELSE IF xit > %i THEN

∆i := min( vi

xi
t
, (t−ri)%i−vi

xi
t−%i

)

ELSE ∆i := vi

xi
t

R′t := R′t − xit
∆ = mini ∆i

Add to σ a fragment [t, t+ ∆] with intensities xit
t := t+ ∆
RETURN σ

Fig. 2. Algorithm for solving the variable-intensity relaxed problem.

when Ai starts at Ši and when it starts at Ŝi. If either of these relaxed solutions vio-
late the current upper bound on the cost, then we estimate how the current bounds of
Si must be modified to achieve consistency. Since our methods can under-estimate
the change that is necessary, this procedure must be iterated until consistent bounds
are found for Si (see Fig. 3). We note that in some uncommon cases the number
of adjustment cycles needed to achieve consistent bounds can be large, which is
computationally costly. For this reason, we limited the number of cycles to 5.

3.2.1 Adjusting the Earliest Start Time

In order to adjust Ši, procedure AdjustEST(σ, Ai) departs from the relaxed
solution σ prepared for Π′〈Si = Ši〉. It investigates how the relaxed cost changes
as the start of Ai is increased from Ši to t > Ši.

Since the exact computation of the relaxed cost for all possible values of t is com-
putationally expensive, our procedure exploits a further relaxation. We take release
times rj such that j 6= i and Ši < rj < t+ pi, and relax rj to r′j = Ši. This leads to
relaxed solutions in which intensities xjt′ with t′ < Ši or t′ ≥ t + pi equal the cor-
responding intensities in σ. Activity Ai is processed from t until t + pi at intensity
%i. However, in interval [Ši, t+ pi] activities other than Ai will be processed in the
non-increasing order of µj .
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PROCEDURE TightenBounds()
FORALL activity Ai

σ := PrepareRelaxed(Ai, Ši)

WHILE cost(σ) > Ĉ

UPDATE Ši ← AdjustEST(σ, Ai)
σ := PrepareRelaxed(Ai, Ši)

σ := PrepareRelaxed(Ai, Ŝi)

WHILE cost(σ) > Ĉ

UPDATE Ŝ′i ← AdjustLST(σ, Ai)

σ := PrepareRelaxed(Ai, Ŝi)

Fig. 3. Algorithm for tightening the bounds of the start time variables.

Solutions to this further relaxed problem can be easily found for all relevant values
of t. Only a small section of the schedule, namely the section in interval [Ši, t+ pi]
varies over different values of t. However, this section can be represented as a
queue. The queue, as well as the cost of the schedule, is updated incrementally for
subsequent values of t at time O(n) for each step. This step is iterated until the cost
of σt decreases below the current upper bound cost Ĉ. The earliest start time of Ai
is then updated to this value of t.

3.2.2 Adjusting the Latest Start Time

Given an optimal relaxed solution σ with cost C ′ for Π′〈Si = Ŝi〉, let t∗ denote the
earliest point in time with t∗ ≥ Ŝi + pi in this relaxed solution such that all the
volume of the activities that has been released before t∗ is processed before t∗:

∀j
t∗−1∑
t=0

xjt = min(pj%j, (t
∗ − rj)%j).

Furthermore, letW denote the total weight of activity fragments processed between
Ŝi and t∗, including activity Ai:

W =
n∑
j=1

t∗−1∑
t′=Ŝi

µjx
j
t′ .

Procedure AdjustLST(σ, Ai) computes these values t∗ and W , and adjust the
latest start time of Ai according to the following proposition.

Proposition 4 Activity Ai cannot start later than Ŝ ′i = Ŝi − dC
′−Ĉ
W
e.

Proof: Let us divide the scheduling horizon to four intervals, I1 : [0, Ŝ ′i), I2 :
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[Ŝ ′i, Ŝi), I3 : [Ŝi, t
∗), and I4 : [t∗,∞). The construction of the PrepareRelaxed

algorithm ensures that decreasing ri from Ŝi to Ŝ ′i does not affect activity intensities
in intervals I1 and I4. Activity fragments in I2 may be swapped later, while activity
fragments in I3 will be swapped earlier by at most Ŝi− Ŝ ′i. Since the total weight of
activities in I3 is exactlyW , this operation decreases the cost of the relaxed solution
by at most W (Ŝi − Ŝ ′i) ≤ C ′ − Ĉ. 2

3.2.3 Computational Complexity

For a given activity Ai, the time and space complexity of computing optimal re-
laxed solutions for Π′〈Si = Ši〉 and Π′〈Si = Ŝi〉 is O(n3), which equals the maxi-
mum size of a relaxed solution. A single run of the functions AdjustEST(.) and
AdjustLST(.) takes at most the same amount of time. However, we cannot give
an estimation of the number of recomputation cycles that are necessary to achieve
consistent bounds. With a constant limit on the number of cycles (as it is done in
our implementation), the time complexity of the propagation algorithm is O(n3)
for a single activity, and O(n4) for a complete run on n activities.

4 Scheduling a Single Cumulative Resource

To evaluate the COMPLETIONm constraint in isolation, we ran computational ex-
periments on a set of single cumulative resource scheduling problems with release
times, with the objective of minimizing total weighted completion time. The vari-
ables in the constraint-based model of the problem are the start times of the activi-
ties. They are subject to inequality constraints expressing release times, and a single
cumulative resource constraint. We compared the performance of the SUM and the
COMPLETIONm models. The former uses the standard weighted-sum constraint
to propagate the objective function, the latter uses the COMPLETIONm constraint.
The proposed propagation algorithms have been implemented in C++ and embed-
ded into ILOG Solver and Scheduler versions 6.1. The resource capacity constraint
is enforced using the timetable and the disjunctive constraints [17].

We applied a depth-first search with a customized version of the SetTimes branching
heuristic [11,17]: in each search node we identify the set of activities that has not
been either scheduled or postponed. We then select the activity with the minimum
start time, breaking ties by choosing the activity with greatest µi. If any postponed
activity can be scheduled before the selected activity, search backtracks immedi-
ately as such a decision would lead to a state that we have already searched over.
Otherwise a choice point is created assigning the selected activity to its minimum
start time and, on the other branch, postponing the activity. An activity is no longer
postponed when its minimum start time is modified via constraint propagation.
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Our set of benchmark instances consisted of problems with the number of activities,
n, taken from {15, 20, 25, 30}, the resource requirement range α from {0.5, 1.0},
and the release time range β from {0, 0.2, 0.6, 1.0}. For each combination of the
above values we generated 10 instances giving 320 problem instances in total. The
capacity of the resource was fixed to R = 10. Activity durations, pi, were random-
ized from [1, 100] with a discrete uniform distribution, weights, wi, from [1, 10],
and resource requirements, %i, from [1, αR]. This leads to instances where approx-
imately k = 2

α
− 1

2
activities are processed in parallel on the resource. Hence, the

release times were randomized from [0, 50.5nβ/k]. The experiments were run on
a 1.86 GHz Intel Xeon computer with 2 GB of RAM under a MS Windows Server
2003, with a time limit of 1200 seconds.

The experimental results are presented in Table 1. Each row of the table contains
combined results for given values of n and β, achieved with the SUM and the
COMPLETIONm models. The results do not depend significantly on the value of
α. For each model, Opt is the number of instances out of 20 for which the optimal
solution is found and proved. Columns MRE and XRE contain the mean and max-
imum relative error compared to the best solution known. Column Nodes shows
the average number of search nodes, while Time presents the average search time,
including the proof of optimality, or 1200 seconds where the solver hit the time
limit.

Problem instances with few activities (n = 15) or release times varying substan-
tially (β = 1.0) were easily solved by both models. In contrast, neither model could
find and prove optimal solutions for the larger and tighter problems. The results
confirm that the COMPLETIONm constraint reduced the search space efficiently
for all the instances: it helped find optimal solutions quicker for the easy prob-
lems, prove optimality more often, and construct better solutions for the hard in-
stances. The latter is the most significant advantage of the COMPLETIONm model,
since the difference between the solutions found reached up to 19% in favor of the
COMPLETIONm model. Notably, the COMPLETIONm model always found at
least as good solution as the SUM model for each problem, except for a single
problem instance (with n = 30 and β = 0.6, the difference was 0.74%).

5 Using COMPLETIONm to Solve the Container Loading Problem

Our primary interest in developing the COMPLETIONm constraint is to use it as a
component in a variety of combinatorial optimization problems. In order to evaluate
its wider applicability, in this section we use the COMPLETIONm constraint to
model and solve the container loading problem.

The container loading problem involves the placement of a set of items in a con-
tainer. While the core of the problem corresponds to bin packing with the objec-
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n β SUM COMPLETIONm

Opt MRE XRE Nodes Time Opt MRE XRE Nodes Time

15 0.0 20 0.00 0.00 1221819 37.8 20 0.00 0.00 41022 16.2

0.2 20 0.00 0.00 80897 2.2 20 0.00 0.00 3359 1.6

0.6 20 0.00 0.00 5175 0.1 20 0.00 0.00 413 0.0

1.0 20 0.00 0.00 5714 0.2 20 0.00 0.00 198 0.1

20 0.0 0 0.25 1.35 33724243 1200.0 15 0.00 0.00 583550 589.9

0.2 15 0.91 13.84 14223048 494.5 20 0.00 0.00 48554 50.0

0.6 20 0.00 0.00 813644 36.0 20 0.00 0.00 6654 7.0

1.0 20 0.00 0.00 3225 0.0 20 0.00 0.00 549 0.2

25 0.0 0 2.40 8.61 30768029 1200.0 2 0.00 0.00 1136717 1149.0

0.2 0 3.11 11.30 31261661 1200.0 11 0.00 0.00 942258 763.2

0.6 14 1.03 10.48 10424189 401.1 20 0.00 0.00 77950 124.1

1.0 20 0.00 0.00 410177 14.8 20 0.00 0.00 4058 4.5

30 0.0 0 4.01 14.71 31718440 1200.0 0 0.00 0.00 1550706 1200.0

0.2 0 3.71 18.72 27453645 1200.0 3 0.00 0.00 1273294 1093.9

0.6 6 0.42 3.81 21736970 946.8 15 0.04 0.74 249753 457.0

1.0 20 0.00 0.00 3132597 157.1 20 0.00 0.00 50870 77.1

Table 1
Experimental results: number of instances (out of 20) solved to optimality (Opt), mean
and maximum relative error in percent (MRE and XRE), average number of search
nodes (Nodes) and average search time in seconds (Time) with the SUM and the
COMPLETIONm model.

tive of high volumetric utilization, in practical applications there are various fur-
ther requirements. These include stacking conditions, cargo stability, and visibility
and accessibility considerations. The rich set of requirements makes CP an attrac-
tive modeling approach in this domain [12]. Among the additional requirements,
Davies & Bischoff [3] highlight the importance of the weight distribution of the
loaded container, focusing on the location of the center of gravity (COG). The ex-
act requirements depend on the specific application, especially on the means of
transport. For example, in aircraft loading, or when loading a container that will be
lifted by a crane, the COG of the cargo has to be located in the center of the con-
tainer. Since the length of the container (or the aircraft hull) is much greater than its
width or height, the longitudinal balance is the most important issue. In contrast, in
road transport, it is often preferred to have the COG above the axles of the vehicle.

For container loading with weight distribution considerations, Davies & Bischoff
[3] proposed a heuristic that achieves high space utilization combined with an even
weight distribution, and claim that the latter leads to a COG located near to the
center of the container. Wodziak & Fadel [20] apply a genetic algorithm to mini-
mize the distance of the COG from the desired location in one, two, and two and
a half dimensions. Various authors have focused on the longitudinal balance, and
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approached the problem from a one-dimensional perspective (e.g. [13]). Fasano
[6] proposed a mixed-integer programming approach to solving the 3D single bin
packing problem with orthogonal rotation allowed and the center of gravity location
constrained in all three dimensions.

We address the problem of loading box-shaped items into a rectangular container,
with rotation disallowed. The location of the COG can be constrained to an arbitrary
rectangular region of the container. For simplicity, we present our results on the
two-dimensional variant of the problem, although it is straightforward to extend
the model to k dimensions.

5.1 Modeling the Problem

Let there be given a set of two-dimensional boxes B1, ..., Bn that have to be placed
in a rectangular container of length L and width W . Box Bi is characterized by
its length ai, width bi, and weight wi. The placement of Bi is described by two
integer variables xi and yi that stand for the horizontal and vertical origin of the
box, respectively. Assuming homogeneous boxes, the COG of the cargo is then
located at

(xCOG, yCOG) = (

∑
iwi(xi + ai

2
)∑

iwi
,

∑
iwi(yi + bi

2
)∑

iwi
).

The objective is to find a placement of the boxes in the container such that the COG
of the cargo is situated in the rectangular area defined by xCOGmin , xCOGmax , yCOGmin , and
yCOGmax . In order to avoid fractional variables and facilitate simpler computation, our
model works with scaled variables x∗ and y∗ as follows.

x∗ =
∑
i

wi(xi + ai) = αxCOG + βx

y∗ =
∑
i

wi(yi + bi) = αyCOG + βy,

where α =
∑
iwi, βx = 1

2

∑
iwiai and βy = 1

2

∑
iwibi. The bounds on the COG

location in the scaled representation can be described by the following constants.

x∗min = αxCOGmin + βx y∗min = αyCOGmin + βy

x∗max = αxCOGmax + βx y∗max = αyCOGmax + βy

Then, the container loading problem can be stated as displayed in Fig. 4.
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∀i 0 ≤ xi ≤ L− ai (6)
∀i 0 ≤ yi ≤ W − bi (7)
∀i, j 6= i (xi + ai ≤ xj) ∨ (xj + aj ≤ xi) ∨ (yi + bi ≤ yj) ∨ (yj + bj ≤ yi)

(8)

x∗ =
∑
i

wi(xi + ai) (9)

y∗ =
∑
i

wi(yi + bi) (10)

x∗min ≤ x∗ ≤ x∗max (11)
y∗min ≤ y∗ ≤ y∗max (12)

(13)

Fig. 4. The SUM model of container loading problem.

Constraints (6) and (7) state that the boxes have to be located inside the container.
The boxes must not overlap (8). Finally, inequalities (9-12) determine the location
of the COG and constrain it in both dimensions. Strong propagation is trivial for
the inequality constraint, and several current constraint solvers offer efficient global
constraints for propagating the non-overlapping relation of a set of boxes [1,2].
The weakness of this model is the propagation of the weighted-sum constraints
in equalities (9) and (10). This model will be referred to as the SUM model. In
the sequel we demonstrate how the COMPLETIONm constraint can be used to
strengthen the propagation of the constraints on the COG location.

ai ≈ pi

bi ≈ ρiBi ≈ Ai

COGxmax
COGxmin

COGymax

COGymin

ai ≈ pi

bi ≈ ρiBi ≈ Ai

COGxmax
COGxmin

COGymax

COGymin

Fig. 5. Similarities of a container loading and a cumulative resource scheduling problem.

Observe that x∗ equals the total weighted completion time in a single cumulative
resource scheduling problem, where the container corresponds to the hull of the
schedule, defined by the scheduling horizon (horizontal axis) and the resource ca-
pacity (vertical axis). Boxes correspond to activities, with box length standing for
activity duration and box width for the resource requirement of the activity. The
physical weight of the box corresponds to the weight assigned to activity Ai. 1

1 Cumulative resource scheduling is a relaxation of container loading, rather than an equiv-
alent problem. The difference is that in scheduling it is allowed to assign any two units of
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Container loading Scheduling

Container length Scheduling horizon

Container width Resource capacity

Box Activity

Box length Activity duration

Box width Activity’s resource requirement

COG location Total weighted completion time (scaled)

Table 2
Corresponding notions in container loading and scheduling.

Fig. 5 illustrates the similarities of the container loading and the scheduling prob-
lems, while the corresponding notions in the two problem domains are summarized
in Table 2. The same relation holds between y∗ and the total weighted comple-
tion time in the schedule that is received by rotating Fig. 5 by 90 degrees. Fur-
thermore, since the COMPLETIONm constraint propagates only the lower bound
of the cost but we need both lower and upper bounds on x∗ and y∗, we post the
COMPLETIONm constraint on flipped schedules as well. Hence, we define the
COMPLETIONm model of the container loading problem by adding the following
four global constraints to the basic SUM model.

COMPLETIONm([x1, ..., xn], [a1, ..., an], [b1, ..., bn], [w1, ..., wn],W, x∗)

COMPLETIONm([L− x1 − a1, ..., L− xn − an], [a1, ..., an], [b1, ..., bn],

[w1, ..., wn],W, x∗ +
∑
i

wi(L+ 2ai))

COMPLETIONm([y1, ..., yn], [b1, ..., bn], [a1, ..., an], [w1, ..., wn], L, y∗)

COMPLETIONm([W − y1 − b1, ...,W − yn − bn], [b1, ..., bn], [a1, ..., an],

[w1, ..., wn], L, y∗ +
∑
i

wi(W + 2bi))

5.2 Computational Experiments

The performance of the COMPLETIONm and the SUM models of the container
loading problem was compared in computational experiments. We addressed the
satisfiability problem presented above, hence the outcome of the solution process
was either a feasible solution or a proof that the boxes could not be loaded with an
appropriate weight distribution. A depth-first search was implemented for solving
the problem using a simple labeling heuristic (called IloGenerate in Ilog) that cre-
ates two children of a search node: (xi = x̌i) vs. (xi > x̌i) or (yi = y̌i) vs. (yi > y̌i).

the resource to an activity, while in container loading, adjacent units of the container sur-
face must be assigned to a box. For instance, it is impossible to place one half of the box to
the lowermost, the other half to the uppermost region of the container.
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We experimented with more sophisticated branching heuristics as well that made
decisions on the relative positions of two boxes, but the simple strategy proved to
be the best with both models.

Problem instances have been generated with the number of boxes, n, varying be-
tween 10 and 45 with increments of 5, and the container length, L, varying between
20 and 60 with increments of 10. The container width was fixed to 8. Box sizes ai
and bi were taken randomly from [1, 5], while weights wi from [1, 10] with a dis-
crete uniform distribution. We focused on the longitudinal balance, and imposed
xCOGmin = L

2
− 1 and xCOGmax = L

2
+ 1. For each value of n and L, we generated 10

instances, which resulted in 400 instances altogether.

The models were implemented in ILOG Solver and Scheduler 6.1, using the earlier
presented COMPLETIONm constraint, written in C++. The experiments were run
on a 1.86 GHz Intel Xeon computer with 2 GB of RAM under a MS Windows
Server 2003 operating system, with a time limit of 1200 CPU seconds.

The experimental results are displayed in Table 3. Each row contains results for
a given number of boxes. Columns Solved, Nodes, and Time show the percentage
of solved instances, the average number of search nodes, and the average search
time for either of the SUM and the COMPLETIONm models. Nodes and Time also
contain the elapsed effort and time for instances where the time limit was reached.
Instances in which the boxes did not fit into the container, independent of the COG
location constraints, have been excluded from the experimental results.

The results illustrate that propagation by the COMPLETIONm constraint efficiently
reduced the search space in the container loading problem, resulting in an order of
magnitude reduction in solution times. Furthermore, the COMPLETIONm model
scaled much better with n. It solved 75% of the largest instances experimented as
well, whereas those were practically intractable with the SUM model.

n SUM COMPLETIONm

Solved (%) Nodes Time (sec) Solved (%) Nodes Time (sec)

10 100.0 27 0.0 100.0 16 0.0

15 100.0 71530 30.5 100.0 314 0.1

20 97.6 195948 102.1 97.6 25645 28.8

25 68.6 638110 415.3 100.0 4190 6.3

30 40.0 517817 840.5 90.0 62148 133.7

35 28.6 484507 869.1 92.9 32192 139.6

40 31.6 301704 875.6 78.9 71021 301.5

45 8.3 177966 1154.3 75.0 79416 486.5

Table 3
Experimental results on the container loading problem, for the SUM and the
COMPLETIONm models.
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6 Conclusions

In this paper we investigated constraint-based scheduling with the total weighted
completion time criterion. This scheduling problem is interesting because it ap-
pears as a sub-problem of combinatorial optimization problems in diverse areas,
such as container loading or storage assignment in warehouses. Extending the ear-
lier defined COMPLETION constraint, we introduced the COMPLETIONm global
constraint for propagating the total weighted completion time of activities on a cu-
mulative resource. Our propagation algorithm is based on a novel variable-intensity
relaxation of the single cumulative resource scheduling problem.

To evaluate the applicability of the COMPLETIONm constraint with different sets
of side constraints, we performed computational experiments in two different prob-
lem domains: single cumulative resource scheduling and container loading with
weight distribution considerations. We showed that the location of the center of
gravity of the cargo in a container corresponds to the total weighted completion
time of the activities in a cumulative resource scheduling problem, and hence, can
be propagated by the COMPLETIONm constraint. In both domains, the introduc-
tion of the novel global constraint led to significant improvement compared to the
classical constraint-based model of the problem: better solutions, or the same solu-
tions found often an order of magnitude faster.
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