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Chapter 1

Introduction

1.1 Preliminaries and scientific background of the research
work

The research work leading to the results presented in this dissertation is based on the signifi-
cant paradigm changes in control theory, mathematics and system theory, appearing almost
simultaneously in the last decade.

In the last decade, the representation of identification models in system theory has changed
significantly. The origins of the paradigm shift can be linked with the famous speech given
by D. HILBERT in Paris in 1900. HILBERT listed 23 conjectures, hypotheses concerning
unsolved problems which he believed would provide the biggest challenge in the 20th century.
According to the 13th conjecture there exist continuous multi-variable functions which
cannot be decomposed as the finite superposition of continuous functions of less variables
[40, 41, 43, 50]. In 1957 ARNOLD disproved this hypothesis [3], moreover, in the same year,
KOLMOGOROV [52] formulated a general representation theorem, along with a constructive
proof, where the functions in the decomposition were one dimensional. This proof justified
the existence of universal approximators. KOLMOGOROV’s representation theorem was
further improved by several authors (SPRECHER [73] and LORENTZ [61]). Based on these
results, starting from the 1980s, it has been proved that universal approximators exist among
the approximation tools of biologically inspired neural networks and genetic algorithms, as
well as fuzzy logic [17, 25, 27, 45, 55, 66, 82, 88]. In this manner, these approximators have
appeared in the identification models of system theory, and turned out to be effective tools
even for systems that can hardly be described in an analytical way.

One of the most fruitful developments in the world of linear algebra and linear algebra-
based signal processing is the concept of the Singular Value Decomposition (SVD) of matrices.
The history of matrix decomposition goes back to the 1850s. During the last 150 years several
mathematicians—Eugenio Beltrami (1835–1899), Camille Jordan (1838–1921), James Joseph
Sylvester (1814–1897), Erhard Schmidt (1876–1959), and Hermann Weyl (1885–1955), to
name a few of the more important ones—were responsible for establishing the existence of
the singular value decomposition and developing its theory [75]. Thanks to the pioneering
efforts of Gene Golub, there exist efficient, stable algorithms to compute the singular value
decomposition [39]. More recently, SVD started to play an important role in several scientific
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fields [28, 63, 83]. Its popularity also grew in parallel with the more and more efficient
numerical methods. Due to the development of personal computers it became possible to
handle larger-scale, multi-dimensional problems, and there is a greater demand for the higher-
order generalization of SVD for tensors. Higher Order SVD (HOSVD) is used efficiently
in independent component analysis (ICA) [58], as well as in the dimensionality reduction
for higher-order factor analysis-type problems—thus reducing the computational complexity
[57]—to name a few examples. The HOSVD concept was first published as a whole multi-
dimensional SVD concept in 2000 [60], and the Workshop on Tensor Decompositions and
Applications held in Luminy, Marseille, France, August 29–September 2, 2005 was the first
event where the key topic was HOSVD. Its very unique power in linear algebra comes from
the fact that it can decompose a given N -dimensional tensor into a full orthonormal system in
a special ordering of singular values, expressing the rank properties of the tensor in order of
L2-norm. In effect, the HOSVD is capable of extracting the very clear and unique structure
underlying the given tensor. The Tensor Product (TP) model transformation is a further
extension to continuous N -variable functions. It is capable of extracting the fully orthonormal
and singular value ordered structure of the given function. Note that this structure cannot be
analytically achieved, since there is no general analytic solution for the HOSVD. The TP
model transformation was also extended to linear parameter-varying (LPV) models in 2003.
It generates the HOSVD of LPV models. To be specific: it generates the parameter-varying
combination of Linear Time-Invariant (LTI) models that represents the given LPV model
in such a way that: i) the number of the LTI components are minimized; ii) the weighting
functions are univariate functions of the parameter vector; iii) the weighting functions are in
an orthonormal system for each parameter; iv) the LTI systems are also in orthogonal position;
v) the LTI systems and the weighting functions are ordered by the singular values.

In conclusion, the TP model transformation finds the clear well defined and unique
structure of the given LPV model. This cannot be achieved via analytical derivations. Thus
the result of the TP model transformation was termed as the HOSVD-based canonical form
of polytopic or LPV models in 2006 [10, 11].

The appearance of Lyapunov-based stability criteria made a significant improvement in
the control theory of nonlinear systems. This change of the viewpoint was invoked by the
reformulation of these criteria in the form of linear matrix inequalities, in the early 1990s.
Herewith, the stability questions of control theory were given in a new representation, and the
feasibility of Lyapunov-based criteria was reinterpreted as a convex optimization problem,
as well as, extended to an extensive model class. The pioneers GAHINET, BOKOR, CHILAI,
BOYD, and APKARIAN were responsible for establishing this new concept [1, 2, 19, 29, 32, 33,
36,49,64,71]. The geometrical meaning and the methodology of this new representation were
developed in the research group of Prof. József BOKOR. Soon, it was also proved that this new
representation could be used for the formulation of different control performances—in the
form of linear matrix inequalities—beyond the stability issues together with the optimization
problem. Ever since, the number of papers about linear matrix inequalities guaranteeing
different stability and control properties are increasing drastically. BOYD’s paper [20] states
that it is true of a wide class of control problems that if the problem is formulated in the form
of linear matrix inequalities, then the problem is practically solved.
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In parallel with the above research and thanks to the significant increase in the computa-
tional performance of computers, efficient numerical mathematical methods and algorithms
were developed for solving convex optimization problems—thus linear matrix inequalities.
The breakthrough in the use of convex optimization in practical applications dates back
to the introduction of interior point methods. These methods were developed in series of
papers [48], and have real importance in connection with linear matrix inequality problems
in the work of Yurii NESTEROV and Arkadii NEMIROVSKI [65]. Today, these methods are
used in “everyday” engineering work, and it turns out to be equally efficient in cases when
the closed formulation is unknown. In consequence, the formulation of analytical problems
has gained a new meaning.

It is well-known that a considerable part of the problems in modern control theory neces-
sitate the solution of Riccati-equations. However, the general analytical (closed formulation)
solution of multiple Riccati-equations is unknown. In turn—with the usage of numerical
methods of convex optimization—we consider solved those problems today that require the
resolution of a large number of convex algebraic Ricatti-equations, in spite of the fact that a
result of the obtained solution is not a closed (in classical sense) analytical equation.

In conclusion, the most advantageous property of the new, convex optimization
based representation in control theory is that it is possible to easily combine
different controller design conditions and goals in the form of numerically man-
ageable linear matrix inequalities [20]. This makes it possible to solve numerous
(complex) control theory problems with remarkable efficiency.

This is especially true of Lyapunov-based analysis and synthesis, but also of optimal
Linear Quadratic (LQ) control, H∞ control [30,38,76], as well as minimal variance control.
The linear matrix inequality-based design also appeared in other areas such as estimation,
identification, optimal design, structural design, and matrix-sizing problems. The following
enumeration lists further problems that can be managed and solved in a representation using
linear matrix inequalities: robust stability of linear time-invariant systems with uncertainty
(µ-analysis) [67, 74, 92], quadratic stability [21, 44], Lyapunov-based stability of parameter-
dependent systems [35], the guarantee of constraints on linear time-invariant system inputs,
state variables, and outputs, or other goals [20], multi-model and multi-objective state-
feedback control [4,16,20,26,51], robust pole-placement, optimal LQ control [20], robust
H∞ control [34, 46], multi-goal H∞ synthesis [26, 51, 62], control of stochastic systems [20],
weighted interpolation problems [20].

1.2 General description of the scientific problem
According to the above, a model, given either by a closed analytical formulation, or as
the output of an identification using soft-computing techniques such as fuzzy logic, neural
networks, or genetic algorithms, can be transformed to HOSVD-based canonical form by TP
model transformation. The only requirement is that the model must be able to discretize over
a grid. From the HOSVD-based canonical form, different convex polytopic models can be
generated by simple numerical transformations depending on the further application of the
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model. The control goals also can be given as a convex optimization problem in the form of
linear matrix inequalities, and can be solved using modern numerical convex optimization
algorithms. The convex polytopic models generated by the TP model transformation can be
immediately applied to the linear matrix inequalities, and this makes it possible to solve a
wide class of problems irrespective of the existence or non-existence of an analytical solution
in a closed form. The TP model transformation based controller design methodology offers a
uniform, tractable, straightforward numerical controller design framework. In many cases,
the analytical derivation, affine decomposition, or the convex optimization can be really
troublesome, time consuming or even impossible even with state-of-the-art analytical tools,
while in many applications it can be proved that numerical methods can easily overcome on
these difficulties. The intention of the presented dissertation is to analyze the applicability
and feasibility of TP model transformation in control theory problems.

The linear matrix inequality based controller design was well-researched in the last decade,
therefore its validity and applicability analysis is not set as a goal in this dissertation.

1.3 Goal of the dissertation
As a result of the paradigm shift outlined in Section 1.1 several efficient system theory tools
were developed using different representations. Even with the joint usage of the tools, the
adaptation of different representations—in the point of view of design methods and the
mathematical tools, especially the analytical transformations—are difficult, and in many cases
this problem is not solved. During my research work, my main goal was to investigate and
analyze the applicability and feasibility, and to extend the usability of the Tensor Product
model transformation based controller design methodology, a tractable and uniform controller
design methodology for a wide class of complex control theory problems.

Therefore, my comprehensive goals in details are as follows

• Investigate whether the Tensor Product model transformation for complex, benchmark
and real-world type dynamic systems yields models that are interpretable and can be
formulated for convex optimization problems composed in the form of linear matrix
inequalities. An academic benchmark problem is chosen for the theoretical evaluation,
and valid comparison with other published methodologies. Besides, industry related
experimental analysis is also an important aspect of the investigation.

• Show that the finite element HOSVD-based canonical form and the convex finite
element TP models of the chosen models exist and the TP model transformation
generates the minimal number of linear time-invariant systems.

• Since a crucial point of the Tensor Product model transformation is the computational
complexity explosion for higher dimensional problems, my goal is to investigate the
applicability of the Tensor Product model transformation and to suggest algorithms and
methods for decreasing the computational complexity load of the transformation for
higher dimensional problems.
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1.4 Structure of the dissertation
The dissertation is divided into four parts. Part I discusses the preliminaries of the dissertation.
In Part II and Part III the new results are studied. Part IV concludes the dissertation.

In Chapter 2 the Higher Order Singular Value Decomposition (HOSVD) of tensors are
introduced. The decomposition is a generalization of the Singular Value Decomposition intro-
duced for matrices. The Higher Order Singular Value Decomposition is a key mathematical
tool of Tensor Product model transformation. Chapter 3 defines the HOSVD-based canonical
form of linear parameter-varying dynamic models that is a parameter-varying weighted com-
bination of parameter independent (constant) system models (linear time-invariant systems).
Section 3.4 defines the Tensor Product model transformation that is capable of transforming
the linear parameter-varying dynamic models to HOSVD-based canonical form. In Chapter
4 different convex hulls of linear parameter-varying models are shown. These convex hulls
make possible the immediate use of linear matrix inequality-based controller design methods
and the derivation of multi-objective controller satisfying the given control performance
requirements. For the sake of completeness, a short introduction to Parallel Distributed
Compensation based control design framework is given in Chapter 5. The framework joints
the convex Tensor Product models and the linear matrix inequality-based controller design.

Part II discusses the new theoretical achievements. In Chapter 6 the computational
complexity load problem of Tensor-Product model transformation is considered. For problems
with high degree of nonlinearity the computation complexity explodes. I propose two solutions
to overcome this problem. One is based on the decrease of the discretization grid density,
whilst the other’s key idea is to avoid the computation of constant elements in the LPV model.

Part III is devoted for applications. I investigated whether the Tensor Product model
transformation for a complex, academic benchmark type dynamic system yields models that
are interpretable and can be formulated for convex optimization problems composed in the
form of linear matrix inequalities in Chapter 7. The TORA system that is considered as a
fourth-order benchmark problem is chosen for the theoretical evaluation, and valid comparison
with other published methodologies.

Another application is an industry related experimental analysis that is always a key issue
of a controller design methodology. In Chapter 8 I investigate the applicability of the Tensor
Product model transformation on a real-world, industrial experimental setup. In industrial
crane systems the load swinging is a key problem. The Single Pendulum Gantry (SPG) system
is a laboratory model of a simplified crane system. I design and evaluate the position and
swing angle controller derived by Tensor Product model transformation controller design, a
tractable and uniform numerical controller design methodology for a wide class of complex
control theory problems.

Part IV summarizes the new results and achievements of the dissertation.
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Part I

Preliminaries
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Chapter 2

Higher Order Singular Value
Decomposition of Tensors

The theoretical utility of matrix decompositions has long been appreciated. More recently,
they have become the mainstay of numerical linear algebra, where they serve as computational
platforms from which a variety of problems can be solved.

One of the most fruitful developments in the world of linear algebra and linear algebra-
based signal processing is the concept of the Singular Value Decomposition (SVD) of matrices.
The history of matrix decomposition goes back to 1850s. During the last 150 years several
mathematicians—the most important ones are Eugenio Beltrami (1835–1899), Camille Jor-
dan (1838–1921), James Joseph Sylvester (1814–1897), Erhard Schmidt (1876–1959), and
Hermann Weyl (1885–1955)—were responsible for establishing the existence of the singular
value decomposition and developing its theory [75]. Thanks to the pioneering efforts of
Gene Golub, there exist efficient, stable algorithms to compute the singular value decom-
position [39]. More recently, SVD started to play an important role in several scientific
fields [28, 63, 83]. Its popularity also grew in parallel with the more and more efficient
numerical methods. Due to the development of personal computers it became possible to
handle larger-scale, multi-dimensional problems, and there is a greater demand for the higher
order generalization of the SVD for tensors. Higher Order SVD (HOSVD) is used efficiently
in independent component analysis (ICA) [58], as well as in the dimensionality reduction
for higher-order factor analysis-type problems—thus reducing the computational complex-
ity [57]—to name a few examples. The HOSVD concept was first published as a whole
multi-dimensional SVD concept in 2000 [60], and the Workshop on Tensor Decompositions
and Applications held in Luminy, Marseille, France, August 29–September 2, 2005 was the
first event where the key topic was HOSVD.

This section briefly introduces the basic operators of tensor algebra used throughout this
dissertation, and the main concept of Higher Order Singular Value Decomposition (HOSVD)
tensors. Several research results have been published in this area, however this section is
mainly based on Lathauwer’s work [60].
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2.1 Basic concept of tensor algebra
The starting point in the derivation of a multilinear singular value decomposition (SVD) for
tensors, as multi-dimensional matrices, is to consider an appropriate generalization of the link
between the column (row) vectors and the left (right) singular vectors of a matrix. In order to
formalize this idea, we define the matrix representations of the tensor in which all the column
(row, . . . ) vectors are stacked one after the other in the following way:

Definition 2.1 (n-mode matrix of tensor A). Assume an N th-order tensor A ∈ RI1×···×IN .
The matrix A(n) ∈ RIn×(In+1In+2···IN I1I2···In−1) contains the element ai1,i2,...,iN at the position
with row number in and column number equal to:

(in+1 − 1)In+2In+3 · · · INI1I2 · · · IN−1 + (in+2 − 1)In+3In+4 · · · INI1I2 · · · In−1 + · · ·+
+ (iN − 1)I1I2 · · · In−1 + (i1 − 1)I2I3 · · · In−1 + (i2 − 1)I3I4 · · · In−1 + · · ·+ in−1.

Remark 2.1. The ordering of the column vectors can be arbitrarily determined. The only
important thing is that in all cases the same ordering and reordering must be used system-
atically later on. In general, the rth column of n-mode matrix A(n) is equivalent to the
I1, I2, . . . , In−1, In+1, . . . , IN -th vector of dimension n, where

r = ordering(i1, i2, . . . , in−1, in+1, . . . , iN).

Figure 2.1 shows an example for the n-mode matrix of a 3rd-order tensor.

Rank property of N th-order tensor There are major differences between matrices and
higher-order tensors when rank properties are concerned. These differences directly affect
the generalization of singular value decomposition based on matrices to N th-order matrices.
There are many theories in the literature concerning the rank properties of tensors. This
section represents only that definition which is used in this dissertation henceforth. This
definition generalizes the notion of column and row rank. If we refer in general to the column,
row, . . . vectors of an N th-order tensor A ∈ RI1×···×IN as its “n-mode vectors,” defined as
the In-dimensional vectors obtained from A by varying the index in and keeping the other
indices fixed, then we have the following definition.

Definition 2.2 (n-mode rank of tensor A). The n-rank of A, denoted by Rn = rankn(A), is
the dimension of the vector space spanned by the n-mode vectors.

From computational point of view it directly follows that rankn(A) = rank
(
A(n)

)
, which

is used for the calculation of n-rank.

Scalar product, orthogonality, norm of higher-order tensors In the HOSVD definition
of Section 2.2, the structure constraint of diagonality imposed on the matrix of singular
values will, in the second-order case, be replaced by a number of geometrical conditions.
This requires a generalization of the well-known definitions of scalar product, orthogonality,
and Frobenius-norm to tensors of arbitrary order. These generalizations can be defined in a
straightforward way as follows.
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I1

I2

I3

A

⇒
I2 I2 I2

I1

A(1)

I1

I2

I3

A

⇒
I3 I3 I3 I3

I2

A(2)

I1

I2

I3

A

⇒
I1 I1 I1 I1 I1

I3

A(3)

Figure 2.1: Illustration of 3-mode matrices of a 3rd-order tensor A

Definition 2.3 (Scalar product). The scalar product 〈A,B〉 of two tensorsA,B ∈ RI1×I2×···×IN

is defined as
〈A,B〉 def

=
∑
i1

∑
i2

· · ·
∑
iN

bi1i2...iNai1i2...iN .

Definition 2.4 (Orthogonality). Arrays of which the scalar product equals 0 are orthogonal.

Definition 2.5 (Frobenius-norm). The Frobenius-norm of a tensor A is given by

‖A‖ def
=
√
〈A,A〉.

Multiplication of a higher-order tensor by a matrix. The HOSVD of a higher-order
tensor A ∈ RI1×···×IN , in a way analogous to the HOSVD of matrices, will be defined
by looking for orthogonal coordinate transformations of RI1 ,RI2 , . . . ,RIN that induce a
particular representation of the higher-order tensor. In this section we establish a notation for
the multiplication of a higher-order tensor by a matrix. This will allow us to express the effect
of basis transformations.
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Let us first have a look at the matrix product G = U · F · VT , involving matrices
F ∈ RI1×I2 ,U ∈ RJ1×I1 ,V ∈ RJ2×I2 , and G ∈ RJ1×J2 . To avoid working with “generalized
transposes” in the multilinear case, we observe that the relationship between U and F and the
relationship between V (not VT ) and F are in fact completely similar: in the same way as U
makes linear combinations of the rows of F, V makes linear combinations of the columns of
F; in the same way as the columns of F are multiplied by U, the rows of F are multiplied
by V; in the same way as the columns of U are associated with the column space of G,
the columns of V are associated with the row space of G. This typical relationship will be
denoted by means of the ×n-symbol: G = F×1 U×2 V. In general, we have the following
definition.

Definition 2.6 (n-mode product of a tensor by a matrix). The n-mode product of a tensor
A ∈ RI1×I2×···×IN by a matrix U ∈ RJn×In , denoted by A ×n U, is an (I1 × I2 × · · · ×
In−1 × Jn × In+1 × · · · × IN)-tensor of which the entries are given by

(A×n U)i1i2...in−1jnin+1...iN
def
=
∑
in

ai1i2...in−1jnin+1...iNujnin .

The multiple n-mode product of a tensor, such as A ×1 U1 ×2 U2 ×3 · · · ×N UN can be
shortly denoted as

A N⊗
n=1

Un.

From a computational point of view, the n-mode product of a tensor by a matrix A =
B ×n U can be defined as A(n) = UB(n).

The n-mode product satisfies the following properties.

Property 2.1. Given the tensor A ∈ RI1×I2×···×IN and the matrices F ∈ RJn×In ,G ∈
RJm×Im , (n 6= m), one has

(A×n F)×m G = (A×m G)×n F = A×n F×m G.

Property 2.2. Given the tensor A ∈ RI1×I2×···×IN and the matrices F ∈ RJn×In ,G ∈
RKn×Jn , one has

(A×n F)×n G = A×n (G · F).

2.2 Higher Order Singular Value Decomposition (HOSVD)
In this section an SVD model is proposed for N th-order tensors. To facilitate the concept, we
first recall the matrix SVD as follows.

Theorem 2.1 (Matrix SVD). Every real (I1 × I2)-matrix F can be written as the product

F = U(1) · S ·VT
(2) = S×1 U(1) ×2 V(2) = S×1 U(1) ×2 U(2) = S

2⊗
n=1

U(n), (2.1)

in which
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1. U(1) =
(
u

(1)
1 u

(1)
2 · · ·u(1)

I1

)
is a unitary (I1 × I1)-matrix,

2. U(2) =
(
u

(2)
1 u

(2)
2 · · ·u(2)

I1

)
is a unitary (I2 × I2)-matrix,

3. S is an (I1 × I2)-matrix with the properties of

(a) pseudodiagonality:

S = diag
(
σ1, σ2, . . . , σmin(I1,I2)

)
, (2.2)

(b) ordering:
σ1 ≥ σ2 ≥ · · · ≥ σmin(I1,I2) ≥ 0. (2.3)

The σi are singular values of F and the vectors u
(1)
i and u

(2)
i are, respectively, an ith left and

an ith right singular vector.

Remark 2.2. The number of non-zero singular values σi equals to the rank of matrix F.

Now we state the generalization of matrix SVD.

Theorem 2.2 (Higher Order SVD, HOSVD). Every real (I1 × I2 × · · · × IN )-tensor A can
be written as the product

A = S ×1 U(1) ×2 U(2) ×3 · · · ×N U(N) = S N⊗
n=1

U(n), (2.4)

in which

1. U(n) =
(
u

(n)
1 u

(n)
2 · · ·u(n)

In

)
, n = 1 . . . N is a unitary (In × In)-matrix,

2. S is a real (I1× I2× · · ·× IN)-tensor of which the subtensors Sin=α obtained by fixing
the nth index to α, have the properties of

(a) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all possible
values of n, α and β subject to α 6= β:

〈Sin=α,Sin=β〉 = 0, when α 6= β, (2.5)

(b) ordering:
‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In‖ ≥ 0, (2.6)

for all possible values of n.

The Frobenius-norms ‖Sin=i‖, symbolized by σ(n)
i , are n-mode singular values of A and the

vector u
(n)
i is an ith n-mode singular vector. The decomposition is visualized for third-order

tensors in Figure 2.2.

Note that the HOSVD uniquely determines tensor S, but the determination of matrices
U(n) may not be unique if there are equivalent singular values at least in one dimension.
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AI1

I2

I3

=

S
I1

I2

I3

U(1)

I1

I1
U(2)

I2

I2

U(3)

I3

I3

Figure 2.2: Visualization of the HOSVD for a third-order tensor

2.3 Approximation trade-off by HOSVD
In the following section we analyze the approximation property of Higher Order SVD.

Definition 2.7 (Exact Minimized form of Higher Order SVD (Exact MHOSVD)). The
HOSVD is computed by executing SVD on each dimension of S. If we discard the zero
singular values and the related singular vectors urn+1...In,n, where rn = rankn(S), during the
SVD computation of each dimension then we obtain the Exact Minimized form of HOSVD as

S = D N⊗
n=1

Un, (2.7)

which has all the properties as in Theorem 2.2 except the size of Un and D. Here Un has the
size of In × rn and D has the size of r1 × · · · × rN .

Definition 2.8 (Non-Exact Minimized form of Higher Order SVD (Non-Exact MHOSVD)).
If we discard non-zero singular values (not only the zero ones) and the corresponding singular
vectors , then the decomposition only results an approximation of tensor S with the following
property.

Property 2.3. Assume the HOSVD of tensor A is given according to Theorem 2.2, and the
n-mode rank of A is Rn (1 ≤ n ≤ N). Let us define Â by changing the corresponding
elements of singular values σ(n)

I′n+1, σ
(n)
I′n+2, . . . σ

(n)
Rn

of tensor S to zero, for a given I ′n < Rn. In
this case

γ = ‖A − Â‖2 ≤
R1∑

i1=I′1+1

(
σ

(1)
i1

)2

+

R2∑
i2=I′2+1

(
σ

(2)
i2

)2

+ · · ·+
RN∑

iN =I′N+1

(
σ

(N)
iN

)2

. (2.8)
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This property is the N th-order generalization of the connection between the singular value
decomposition of a matrix and its best, lower ranked matrix approximation (in the sense of
least square).

In the higher order case, the discarding of singular values in each dimension results in a
lower rank along each dimension, while, contrarily to the singular value decomposition for
matrices, the resulting tensor Â, having a lowered rank along each of its dimensions, is not the
best approximation to the given tensor A. Irrespective of this fact, the descending order of the
singular values indicates the increasing error during their discard. The upper limit of this error
can be given by (2.8). The best approximation for a given rank reduction can be achieved by
the proper modification of the elements of tensor Â, for further details see [56, 59].

2.4 Computation of HOSVD
The n-mode singular matrix U(n) (and the n-mode singular values) can directly be found as
the left singular matrix (and the singular values) of an n-mode matrix of A (any matrix of
which the columns are given by the n-mode vectors can be resorted to, as the column ordering
is of no importance). Hence computing the HOSVD of an N th-order tensor leads to the
computation of N different matrix SVDs of matrices with size (In× I1I2 . . . In−1In+1 . . . IN),
(1 ≤ n ≤ N).

A(n) = U(n)Θ(n)

(
V(n)

)T
.

Afterwards, the core tensor S can be computed by bringing the matrices of singular vectors to
the left side of (2.4)

S = A×1 UT
(1) ×2 UT

(2) ×3 · · · ×N UT
(N) = A

N⊗
n=1

UT
(n).
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Chapter 3

Higher Order Singular Value
Decomposition of Linear
Parameter-Varying state-space models

3.1 Linear Parameter-Varying state-space model
Consider the following linear parameter-varying (LPV) state-space model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (3.1)
y(t) = C(p(t))x(t) + D(p(t))u(t),

with input u(t) ∈ Rk, output y(t) ∈ Rl and state vector x(t) ∈ Rm. The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R(m+k)×(m+l) (3.2)

is a parameter-varying object, where p(t) ∈ Ω is a time varying N -dimensional parameter
vector, and is an element of the closed hypercube Ω = [a1, b1]×[a2, b2]×· · ·×[aN , bN ] ⊂ RN .
Parameter p(t) can also include some elements of x(t). Therefore this type of model is
considered to belong to the class of non-linear models. In the followings O = m + k and
I = m+ l.

Definition 3.1 (Finite element TP model). S(p(t)) of (3.2) is given for any parameter p(t) as
the parameter-varying combination of linear time-invariant (LTI) system matrices Si1i2...iN ∈
RO×I also called vertex systems(

ẋ(t)
y(t)

)
= S N⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
, (3.3)

where row vector wn(pn) ∈ RIn n = 1, . . . , N contains one bounded variable and continuous
weighting functions wn,in(pn), (in = 1 . . . In). The weighting function wn,in(pn(t)) is the
inth weighting function defined on the nth dimension of Ω, and pn(t) is the nth element of
vector p(t). In <∞ denotes the number of the weighting functions used in the nth dimension
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of Ω. Note that the dimensions of Ω are respectively assigned to the elements of the parameter
vector p(t). The (N+2)-dimensional coefficient tensor S ∈ RI1×I2×···×IN×O×I is constructed
from LTI vertex systems Si1i2...iN ∈ RO×I . For further details we refer to [5–7, 12].

3.2 HOSVD-based canonical form of LPV models
Consider an LPV model (3.1), which can be given in the finite element TP model form (3.3).
Namely, the matrix function S(p(t)) can be given as:

S(p(t)) = S N⊗
n=1

wn(pn(t)),

where p(t) ∈ Ω. We assume that, functions wn,in(pn(t)), n = 1 . . . N and in = 1 . . . In are
linearly independent (in the means of L2[an, bn]) over the intervals [an, bn], respectively. The
linearly independent functions wn,in(pn)(t) are determinable by the linear combinations of
orthonormal functions (for instance by Gram–Schmidt-type orthogonalization method): thus,
one can determine such a system of orthonormal functions for all n as ϕn,in(pn(t)), 1 ≤ in ≤
In, respectively defined over the intervals [an, bn] , where all ϕn,kn(pn(t)), 1 ≤ kn ≤ In are
the linear combination of wn,in , where in is not larger than kn for all n. The functions wn,in
can respectively be determined in the same way by functions ϕn,kn . Thus, one can see that if
the form (3.3) of (3.1) exists then one can determine(

ẋ(t)
y(t)

)
= C N⊗

n=1
ϕn(pn(t))

(
x(t)
u(t)

)
, (3.4)

where tensor C has constant elements, and vectors ϕn(pn(t)) consist of elements ϕn,kn(pn(t)).

Corollary 3.1. We can assume, without the loss of generality, that functions wn,in in the
tensor-product representation of S(p(t)) are given in an orthonormal system:

∀n :

∫ bn

an

wn,in(pn(t))wn,jn(pn(t))dx = δin,jn , 1 ≤ in, jn ≤ In,

where δin,jn is a Kronecker-function (δin,jn = 1, if in = jn and δin,jn = 0, if in 6= jn)-type

Having the resulting matrices Un by executing exact MHOSVD, as given in Definition
2.7, on the first N -dimension of tensor S we can determine the following weighting functions:

w̄n(pn(t)) = wn(pn(t))Un

Then, based on (3.3) and (2.7) we arrive at:(
ẋ(t)
y(t)

)
= D N⊗

n=1
w̄n(pn(t))

(
x(t)
u(t)

)
, (3.5)

Since the number of elements of tensor D in dimension n (n = 1 . . . N ) is equivalent to
rn = rankn(S), we have rn number of functions on dimension n in (3.5). Observe that
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matrices Un are orthonormal matrices and wn,in(pn(t)), 1 ≤ in ≤ In are also in orthonormal
position for all n = 1 . . . N . Therefore, functions w̄n,1(pn(t)), . . . , w̄n,rn(pn(t)) are also in
orthonormal position for all n, since∫ bn

an

w̄n(pn(t))w̄T
n (pn(t))dpn(t) = UT

n

(∫ bn

an

wn(pn(t))wT
n (pn(t))dpn(t)

)
Un =

= UT
nIrnUn = UT

nUn = Irn ,

where matrix Irn denotes identity matrix with the size of rn × rn. Based on the above and
Corollary 3.1 we obtain the following theorem:

Theorem 3.1. Consider (3.1) which have the form of (3.3). Then we can determine:(
ẋ(t)
y(t)

)
= D N⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
, (3.6)

by generating the Exact Minimized form of HOSVD on the first N -dimension of S. The
resulting tensor D has the size of r1 × · · · × rN ×O × I . The weighting functions have the
following properties:

1. The rn number of weighting functions wn,in(pn(t)) contained in vector wn(pn(t)) form
an orthonormal system. The weighting function wi,n(pn(t)) is an ith singular function
on dimension n = 1 . . . N .

Tensor D has the following properties:

2. Tensor S ∈ RI1×I2×...×IN×O×I whose subtensors Din=α have the properties of

(a) all-orthogonality: select one element of dimension N + 1 and N + 2 of tensor
D. The selected N -dimensional subtensor D′ has all-orthogonality as: two
subtensors D′in=α and D′in=β are orthogonal for all possible values of n, α and
β :
〈D′in=α,D′in=β

〉
= 0 when α 6= β,

(b) ordering:
∥∥D′in=1

∥∥ ≥ ∥∥D′in=2

∥∥ ≥ · · · ≥ ∥∥D′in=In

∥∥ ≥ 0 for all possible values of
n = 1 . . . N .

3. The Frobenius-norms
∥∥D′in=i

∥∥, symbolized by σ(n)
i , are n-mode singular values of S.

4. D is termed core tensor consisting the LTI systems.

Definition 3.2 (HOSVD-based canonical form of finite element TP model). We call (3.6) the
HOSVD-based canonical form of (3.3).

Remark 3.1. If there are equal singular values on any dimension when the Exact Minimized
form of HOSVD is generated, then the canonical form is not unique. Obviously, if the
non-zero singular values are different then the signum of the corresponding elements of the
singular matrices may systematically vary. This means that the signum of the weighting
functions may vary in the same way.
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3.3 Numerical reconstruction of the HOSVD-based canon-
ical form

For the sake of completeness, we give necessary concepts and theorems for the numerical
reconstruction of the HOSVD-based canonical form without the detailed deduction in this
section.

Let us decompose the intervals [an, bn], n = 1 . . . N into Mn number of disjunct subinter-
vals4n,mn , 1 ≤ mn ≤Mn so as:

ξn,0 = an < ξn,1 < . . . < ξn,Mn = bn, 4n,mn = [ξn,mn , ξn,mn−1),

Utilizing the above intervals, we can discretize the function S(p) at given points over the
intervals, for example by letting

xn,mn ∈ 4n,mn , 1 ≤ mn ≤Mn (3.7)

Let us define a hyper-rectangular grid by elements xn,mn . We define all grid points by N
element vector g, whose elements are gm1,...,mN

=
(
x1,m1 · · · xN,mN

)
. Then we discretize

function S(p(t)) for all grid points as:

Bm1,...,mN
= S(gm1,...,mN

).

Then we construct N + 2-dimensional tensor B from matrices Bm1,...,mN
. Obviously the size

of this tensor is M1 × · · · ×MN ×O × I .
Furthermore, discretize vector valued functions wn(pn(t)) over the discretization points

xn,mn and construct matrices Wn from the discretized values as

Wn =


wn,1(xn,1) wn,2(xn,1) · · · wn,rn(xn,1)
wn,1(xn,2) wn,2(xn,2) · · · wn,rn(xn,2)

...
... . . . ...

wn,1(xn,Mn) wn,2(xn,Mn) · · · wn,rn(xn,Mn)

 (3.8)

Then tensor B can simply be given by (3.6) and (3.8) as

B = D N⊗
n=1

Wn (3.9)

Theorem 3.2. Assume that the decomposition (3.6) of function S(p(t)) exists, and we de-
fine Mn number of equidistant subinterval on each dimension n = 1 . . . N over [an, bn],
respectively for the discretization of S(p(t)). If we define sufficiently large Mn for all n then

rankn(B) = rn.

Theorem 3.3. Assume that functions wn,in(pn), 1 ≤ in ≤ rn, are continuously derivable (at
the endpoints of the interval we mean left and right hand side derivatives). If

Mn > M̄n = 2rn(bn − an)2K1K
′
1
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then
rankn(B) = rn,

where

max
1≤in≤rn

max
an≤pn≤bn

|wn,in(pn(t))| = K1,

max
1≤in≤rn

max
an≤pn≤bn

|w′n,in(pn(t))| = K ′1.

Theorem 3.4. Let the Exact Minimized form of HOSVD of discretized tensor B be:

B = D̂ N⊗
n=1

Un, (3.10)

where the size of Un is Mn × rn and the size of D̂ is r1 × · · · × rN ×O × I . We assume that
the Exact Minimized from of HOSVD of B results in different non-zero singular values on
each dimension. Then(√

4pnWn −Un

)T (√
4pnWn −Un

)
→ 0 (3.11)

while Mn →∞. Here4pn = (bn − an)/Mn. Column-vectors Wn,in are determined to the
extent of their sign.

Corollary 3.2. Denote ŵn,in(xn,mn) = un,in,mn , that is the mnth element of the inth column
of Un, xn,mn ∈ 4n,mn . Theorem 3.4 immediately leads to (functions wn,in are determined to
the extent of their signum, see Remark 3.1):∫ bn

an

(wn,in(pn)− ŵn,in(pn(t)))2dpn → 0,

Mn →∞, in = 1 . . . rn

this means that the functions ŵn,in(pn(t)) converge to wn,in(pn) in the sense of L2[an, bn]. As
a matter of fact if the smoothness of (3.6) satisfies further conditions then we may derive even
stronger theorems than Theorem 3.4.

In the same way:

Theorem 3.5. Let the Exact Minimized form of HOSVD of discretized tensor B is:

B = D̂ N⊗
n=1

Un, (3.12)

where the size of Un is Mn × rn and the size of D̂ is r1 × · · · × rN ×O × I . We assume that
the Exact Minimized form of HOSVD of B results in different non-zero singular values on
each dimension. Then

D̂ → D,
with ∀n : Mn →∞. Here D is form the HOSVD based canonical form. Namely, when we
increase Mn to infinity the resulting D̂ converges to D.
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3.4 Computation of the HOSVD-based canonical form by
TP model transformation

The TP model transformation was first introduced in [5, 12]. The goal of the TP model
transformation is to transform a given state-space model (3.1) into TP model form (3.3).
The transformation is a numerical method and has three key steps. The first step is the
discretization of the given S(p(t)) over a huge number of points p(t) ∈ Ω. The discretized
points are defined by a dense hyper-rectangular grid. The second step extracts the LTI vertex
systems from the discretized systems. This step is specialized to find the HOSVD-based
canonical form. The third step defines the continuous weighting functions to the LTI vertex
systems.

Method 3.1 (TP model transformation).
Step 1) Discretization

• Define the transformation space Ω as: p(t) ∈ Ω : [a1, b1]× [a2, b2]× · · · × [aN , bN ].

• Define a hyper-rectangular grid by arbitrarily located grid-lines in the transformation
space Ω. For simplicity, define as equidistantly located grid-lines: gn,mn = an +
bn−an

Mn−1
(mn − 1), mn = 1 . . .Mn. The numbers of the grid lines in the dimensions are

Mn.

• Discretize the given function S(p(t)) over the grid-points:

SDm1,m2,...,mN
= S(pm1,m2,...,mN

) ∈ RO×I ,

where pm1,m2,...,mN
=
(
g1,m1 . . . gN,mN

)
. Superscript “D” means “discretized”.

• Store the discretized matrices SDm1,m2,...,mN
into the tensor SD ∈ RM1×M2×···×MN×O×I

Step 2) Extracting the LTI vertex systems
This step uses the previously defined MHOSVD (see Section 2.2) on the first N dimensions
of tensor SD. While performing the MHOSVD we discard all zero or small singular values σk
and their corresponding singular vectors in all n = 1 . . . N dimensions. As a result we have

SD≈
γ
S ⊗

n
Un,

where the error γ is bounded by Properties 2.3 as:

γ =

(∥∥∥∥SD−S ⊗n Un

∥∥∥∥
L2

)2

≤
∑
k

σ2
k. (3.13)

The resulting tensor S , with the size of (I1×I2×· · ·×IN×O×I), where ∀n : In ≤ rn ≤Mn,
contains the LTI vertex systems, and is immediately substitutable into (3.3).
Step 3) Constructing continuous weighting function system
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• The inth column vector un,in=1...In of matrix Un ∈ RMn×In determines one discretized
weighting function wn,in(pn(t)) of variable pn(t). The values un,mn,in of column in
define the values of the weighting function wn,in(pn(t)) over the grid-lines pn(t) =
gn,mn:

wn,in(gn,mn) = un,mn,in .

• The weighting functions can be determined over any points by the help of the given
S(p(t)). In order to determine the weighting functions in vector wd(pd), let pk be fixed
to the grid-lines as:

pk = gk,1 k = 1 . . . N, k 6= d.

Then for pd:

wd(pd) = (S(p(t)))(3)

((
S ⊗

k
uk,1

)
(n)

)+

,

where vector p(t) consists of elements pk and pd as p(t) =
(
g1,1 . . . pd . . . gN,1

)
,

and superscript “+” denotes pseudo inverse and uk,1 is the first row vector of Uk. The
third-mode matrix (S(p(t)))(3) of matrix S(p(t)) is understood such that matrix S(p(t))
is considered as a three-dimensional tensor, where the length of the third-dimension
is one. This practically means that the matrix S(p(t)) is stored in a one-row vector by
placing the rows of S(p(t)) next to each other, respectively.

The error of the transformation can be estimated by the equation (3.13) given above.
However the precise error between the resulting tensor-product by the transformation and the
original model can be computed numerically over the dense hyper grid defined in space Ω.

From a practical point of view, it is worth mentioning that the computational time of the
TP model transformation greatly depends on the computational time of the HOSVD.
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Chapter 4

Different convex hulls of LPV models by
TP model transformation

There are many ways to define the vertex systems. The applications of TP models specifies
special requirements for the weighting functions. Such an example is the Parallel Distributed
Compensation (PDC) based controller design framework, will be introduced in the next
Section, that can be applied in cases when the vertex systems resulted by the TP model
transformation give a convex hull of S(p(t)). In some cases even more conditions have to be
satisfied. In PDC based controller design at least the convexity is necessary in theory, but as
several application experiences show it is not enough in most cases. We can find examples
when the tight convex hull of the system matrix S(p(t)) gave satisfactory results, while for
observer design the convex hull extended with other properties made the problem solvable.

The type of the convex hull determined by the vertex system can be defined by the
weighting functions. Therefore, we introduce weighting functions satisfying different convex
hull types, and methods how they can be generated in Step 2 of the TP model transformation
(Method 3.1).

4.1 Different types of weighting functions
First, let us define some possible types of the vector w(q) containing the weighting functions
wi(q), q ∈ Ω.

Definition 4.1 (Sum Normalized (SN) type). The vector w(q) containing the weighting
functions is Sum Normalized if the sum of the weighting functions for all p ∈ Ω is 1.

Definition 4.2 (Non-Negative (NN) type). The vector w(q) containing the weighting func-
tions is Non-Negative if the values of the weighting functions for all is non-negative.

Definition 4.3 (Normal (NO) type). The vector w(q) containing the weighting functions is
Normal if it is SN and NN type and the largest value of all weighting functions is 1. As well
as, it is close to NO (CNO) if it is SN and NN type and the largest value of all weighting
functions is 1 or close to 1.
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Definition 4.4 (Relaxed Normal (RNO) type). The vector w(q) containing the weighting
functions is Relaxed Normal if the largest values of all weighting functions are all the same
(if the weighting functions are SN and NN, then this value is always between 0 and 1).

Definition 4.5 (Inverted Normal (INO) type). The vector w(q) containing the weighting
functions is Inverted Normal if the smallest value of all weighting function is 0.

Henceforward, the superscript of the weighting functions w(q) shows its type, such
as wSN(q), wNN(q), wNO(q), wCNO(q), wINO(q), and wRNO(q) mean that the type of the
weighting functions are SN, NN, NO, CNO, INO, or RNO, respectively. The convex weighting
functions that are at least SN and NN types are indicated as wCO(q).

The geometrical interpretation of these weighting functions are the following. In case
of SN and NN types weighting functions, the LTI vertex systems in the resulting TP model
define convex hull of the system matrix S(p(t)). The SN, NN, and NO types of weighting
functions define the tight convex hull of the LTI vertex systems in such a way that the most
LTI vertex systems are the same with S(p(t)) at different points of space Ω, and the others
are close to it (in the sense of L2-norm). The SN, NN, and RNO types of weighting functions
result a tight convex hull where the LTI vertex systems are at the same distance to system
matrix S(p(t)) in the space Ω. In case of SN, NN, and INO types weighting functions, it is
guaranteed that there are points p(t) in the space Ω. In case of INO type it is guaranteed that
in the space Ω there exist such points p(t) where the system matrix S(p(t)) is defined by
the convex combination of a set of the vertex systems only. If the weighting functions are
also RNO type, then it is guaranteed that those vertex systems that contribute in the convex
combination are equal distance to the system matrix S(p(t)) in space Ω.

4.2 Computation of the different convex hulls by TP model
transformation

As the continuous weighting functions are generated from matrices Un these matrices contain
the discretized weighting functions and resulted by the HOSVD in Method 3.1 Step 3 of the
TP model transformation. It is shown in this section how the matrices Un can be produced
that will result SN, NN, RNO, or INO type weighting functions in Step 3 of the TP model
transformation. Therefore, let us redefine these weighting function types for matrices.

Definition 4.6 (SN type matrix). A real matrix U is SN type, if the sum of all elements in all
rows are 1.

Definition 4.7 (NN type matrix). A real matrix U is NN type, if it does not have any negative
element.

Definition 4.8 (NO type matrix). A real matrix U is NO type, if it is SN and NN, and the
largest value of all columns is 1. The matrix is close to NO type if it is SN and NN, and the
largest value of all columns is 1, or close to 1.

Definition 4.9 (RNO type matrix). A real matrix U is RNO type, if the largest values of all
columns are the same (if the matrix is SN and NN type, then this value is always between 0
and 1).
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Definition 4.10 (INO type matrix). A real matrix U is INO type, if the smallest value of all
columns is 0.

Papers [6, 15, 90, 91] give a constructive proof that says there exists an invertible transfor-
mation T that generates the specific type of matrix Un. The construction of SN, NN and NO
type matrices is detailed in [15,90], while for INO and RNO type paper [91] gives satisfactory
details. The construction of the NO type matrix is not possible in all cases if the number of
columns is limited. Certainly, it is possible by the increase of columns as the identity matrix
is also NO type. However, from the point of view of computational complexity the goal is to
give an NO type matrix with as few columns as possible. In case of TP model transformation
the close to NO type matrix in almost all cases gives satisfactory results.

Method 4.1 (TP model transformation extended with different type of weighting functions).
In Step 2 of the TP model transformation (Method 3.1), let us extend the execution of HOSVD
of tensor SD on dimensions n = 1 . . . N by the generation of SN, NN, NO, CNO, RNO, or
INO type matrices Un. Then, define the LTI vertex systems

S = SD N⊗
n=1

U+
n .

So, we obtain

SD≈
γ
S N⊗
n=1

Un,

where the matrices Un can be arbitrarily SN, NN, NO, RNO, or INO types. The approximation
error γ still can be bounded by (3.13) as the generation of SN, NN, NO, RNO, or INO type
matrices do not change the error. The continuous weighting functions are generated in Step 3
of the algorithm. The resulting weighting functions inherit the SN, NN, NO, RNO, or INO
type of matrices Un.
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Chapter 5

Tensor-Product model transformation
based control design methodology

One of the control design frameworks widely adopted to LPV models is based on the following
two steps. In the first step a polytopic model is derived from the LPV model and in the second
step a controller is generated to the polytopic model.

The TP model transformation based control design methodology is based on this structure.
In the first step it applies the TP model transformation (Method 4.1) to obtain a polytopic
model. The second step of the design methodology is based on the Parallel Distributed
Compensation design concept. The key idea of this concept is to find the controller in the
same polytopic structure as that of the model. This polytopic structure combines the LTI
feedback gains derived from the LTI systems of the polytopic model. The feedback gains can
be derived by various techniques. One of the most powerful design techniques capable of
optimizing various desired control specifications is based on linear matrix inequalities (LMI).
Therefore, the PDC is typically applied with LMIs. The LMI design developed under the
PDC framework requires that the weighting functions define the convex combination, namely
the convex hull, of the LTI systems. Furthermore, paper [6] examines that the type of the
convex hull may considerably relax the feasibility of the further LMI design (for instance
tight convex hull). In order to have a complete view, we give a brief introduction to the basic
concepts of PDC and LMI optimization.

5.1 Parallel Distributed Compensation based control design
framework

The Parallel Distributed Compensation framework (PDC) was proposed by Tanaka and
Wang in 1995, [87]. It was developed for Takagi–Sugeno (TS) fuzzy decision operator-
based models (TS fuzzy models) with antecedent fuzzy sets defined in Ruspini-partition.
Book [80] introduces the PDC design with a number of LMI theorems for various control
design specifications. In the last decade the number of LMI design theorems developed for
the PDC design framework exploded.
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The closed formulation of the transfer function of this kind of TS fuzzy model is equivalent
to the TP model form where the weighting functions represent the membership functions
of the antecedent sets given in Ruspini-partition. Therefore, from now on let us define this
specific Ruspini-partition TS fuzzy model equivalent TP model as convex finite element TP
model.

Definition 5.1 (Convex finite element TP model). The finite element TP model (3.3) is convex
only if the weighting functions are wCO

n (p(t)), namely

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1] (5.1)

∀n, pn(t) :
In∑
i=1

wn,i(pn(t)) = 1 (5.2)

In conclusion, the transfer functions of the Ruspini-partitioned TS fuzzy model is equiv-
alent to finite element convex TP model form. This simply means that the PDC design is
immediately applicable to finite element convex TP models. Therefore, let us introduce the
PDC design framework in the followings for the finite element convex TP models.

The PDC framework starts with(
ẋ(t)
y(t)

)
= SCO

N⊗
n=1

wCO
n (pn(t))

(
x(t)
u(t)

)
, (5.3)

and determines one LTI feedback to each LTI component of the TP model:

SCO −→ F

The control value is computed in the same TP structure as:

u(t) = −
(
F N⊗

n=1
wCO
n (pn(t))

)
x(t). (5.4)

Here, the weighting functions wCO
n (pn(t)) are equivalent to the weighting functions of the the

convex TP model (5.3), and tensor F contains the feedback forces in a similar way as tensor
S .

There are several ways for finding the feedback gains F of the vertex models. As
the vertex models are LTI systems, the well-known controller design techniques for linear
systems e.g. pole placement, Linear-quadratic (LQ) control, sliding mode control, etc. can
be used to determine the feedback gains. However, more recently, there is an explosive
growth in the appearance of scientific works that propose new and more advantageous linear
matrix inequality systems that can readily be integrated into the PDC framework, in terms of
different control properties [78,80,86,87]. The stability theorems formulated by linear matrix
inequalities can be chosen according to the desired multi-objective specifications. Such goals
can be, for instance, the quadratic or asymptotic stability, decay rate control, or the different
constraints formulated on state vectors, outputs, and control signals.
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5.2 Linear Matrix Inequality in system control design
Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as powerful design
tools in areas ranging from control engineering to system identification and structural design.
Three factors make LMI techniques appealing:

• A variety of design specifications and constraints can be expressed as LMIs.

• Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex
optimization algorithms (the “LMI solvers”).

• While most problems with multiple constraints or objectives lack analytical solutions
in terms of matrix equations, they often remain tractable in the LMI framework. This
makes LMI-based design a valuable alternative to classical “analytical” methods.

The most significant advantage of LMIs is that it is easy to numerically specify and
combine numerous design constraints, conditions, and goals. Many control problems and
design specifications have LMI formulations [20]. This is especially true for Lyapunov-based
analysis and design, but also for optimal LQG control, H∞ control, covariance control, etc.
Further applications of LMIs arise in estimation, identification, optimal design, structural
design, matrix scaling problems, and so on. The main strength of LMI formulations is the
ability to combine various design constraints or objectives in a numerically tractable manner.

A non-exhaustive list of problems addressed by LMI techniques includes the following:

• Robust stability of systems with LTI uncertainty (µ-analysis) [67, 74, 92]

• Quadratic stability of differential inclusions [21, 44]

• Lyapunov stability of parameter-dependent systems [35]

• Input/state/output properties of LTI systems (invariant ellipsoids, decay rate, etc.) [20]

• Multi-model/multi-objective state feedback design [4, 16, 20, 26, 51]

• Robust pole placement

• Optimal Linear Quadratic Gaussian control [20]

• Robust H∞ control [34, 46]

• Multi-objective H∞ synthesis [26, 51, 62]

• Control of stochastic systems [20]

• Weighted interpolation problems [20]

In the following section, a short introduction to linear matrix inequalities is given.
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5.2.1 Definition of LMI
Before proceeding, we give the definition of a term used often in the literature. This will be
followed by the introduction of the linear matrix inequalities.

Definition 5.2 (Affine function). A function f : S 7→ T is affine if f(x) = f0 + T (x) where
f0 ∈ T and T : S 7→ T is a linear map, i.e.,

T (α1x1 + α2x2) = α1T (x1) + α2T (x2)

for all x1, x2 ∈ S and α1, α2 ∈ R.

Hence f : Rn 7→ Rm is affine if and only if there exists x0 ∈ Rn, such that the mapping
x 7→ f(x) − f(x0) is linear. This means that all affine functions f : Rn 7→ Rm can be
represented as f(x) = f(x0) + T · (x−x0) where T is some matrix of dimension m× n and
the dot · denotes multiplication. We will be interested in the case where m = 1 and denote by
〈·, ·〉 the standard inner product in Rn, that is, for x1,x2 ∈ Rn, 〈x1,x2〉 = xT2 x1.

A linear matrix inequality is an expression of the form:

F(x) = F0 + x1F1 + · · ·+ xmFm > 0, (5.5)

where

1. x = (x1, . . . , xm) is a vector of m real numbers called the decision variables.

2. F0, . . . ,Fm are real symmetric matrices, i.e., Fi = FT
i ∈ Rn×n, i = 0, . . . ,m for some

n ∈ Z+-re.

3. the inequality > 0 in (5.5) means ‘positive definite’, i.e., uTF(x)u > 0 for all u ∈
Rn,u 6= 0. Equivalently, the smallest eigenvalue of F(x) is positive.

In more general terms

Definition 5.3 (Linear Matrix Inequalities). A linear matrix inequality (LMI) is an inequality

F(x) > 0 (5.6)

where F is an affine function mapping a finite dimensional vector space V to the set S :=
{M | ∃n > 0 such that M = MT ∈ Rn×n}, of real symmetric matrices.

Remark 5.1. An affine mapping F : V 7→ S necessarily takes the form F(x) = F0 + T(x)
where F ∈ S and T : V 7→ S is a linear transformation. Thus if V is finite dimensional, say
of dimension m, and {e1, . . . , em} constitutes a basis for V, then we can write

T(x) =
m∑
j=1

xjFj

where the elements {x1, . . . , xm} are such that x =
∑m

j=1 xjej and Fj = T(ej) for j =
1, . . . ,m. Hence we obtain (5.5) as a special case.
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Remark 5.2. The same remark applies to affine mappings F : Rn×n 7→ S. A simple example
is the Lyapunov inequality F(X) = ATX + XA + Q > 0. Here, A,Q ∈ Rn×n are assumed
to be given and X ∈ Rn×n is unknown. The unknown variable is therefore a matrix. Note
that this defines an LMI only if Q is symmetric. We can view this LMI as a special case of
(5.5) by defining a basis E1, . . . ,Em of V and writing X =

∑m
j=1 xjEj . Indeed,

F(X) = F

(
m∑
j=1

xjEj

)
= F0 +

m∑
j=1

xjF(Ej) = F0 +
m∑
j=1

xjFj

which is of the form (5.5).

Remark 5.3. A non-strict LMI is a linear matrix inequality where > in (5.5) and (5.6) is
replaced by ≥. The matrix inequalities F(x) < 0, and F(x) > G(x) with F and G affine
functions are obtained as special cases of Definition 5.3 as they can be rewritten as the linear
matrix inequality −F(x) > 0 and F(x)−G(x) > 0.

5.2.2 Constraints expressed using LMI
The linear matrix inequality (5.6) defines a convex constraint on x. That is, the set S :=
{x | F(x) > 0} is convex. Indeed, if x1,x2 ∈ S and α ∈ (0, 1) then

F(αx1 + (1− α)x2) = αF(x1) + (1− α)F(x2) > 0,

where in the equality we used that F is affine and the inequality follows from the fact that
α ≥ 0 and (1− α) ≥ 0.

Although the convex constraint F(x) > 0 on x may seem rather special, it turns out
that many convex sets can be represented in this way. In this subsection we discuss some
seemingly trivial properties of linear matrix inequalities which turn out to be of eminent help
in the reduction of multiple constraints on an unknown variable to an equivalent constraint
involving a single linear matrix inequality.

Definition 5.4 (System of LMIs). A system of linear matrix inequalities is a finite set of linear
matrix inequalities

F1(x) > 0,F2(x) > 0, . . . ,Fk(x) > 0. (5.7)

It is a simple but essential property that every system of LMIs can be rewritten as one
single LMI. Specifically, F1(x) > 0,F2(x) > 0, . . . ,Fk(x) > 0 if and only if

F(x) =


F1(x) 0 . . . 0

0 F2(x) . . . 0
... . . . ...
0 0 . . . Fk(x)

 > 0.

The last inequality indeed makes sense as F(x) is symmetric for any x. Furthermore, since
the set of eigenvalues of F(x) is simply the union of the eigenvalues of F1(x), . . . ,Fk(x),
any x that satisfies F(x) > 0 also satisfies the system of LMI’s (5.7) and vice versa.
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A second important property amounts to incorporating affine constraints in linear matrix
inequalities. By this, we mean that combined constraints (in the unknown x) of the form{

F(x) > 0
Ax = b

or {
F(x) > 0
x = Ay + b for some y

where the affine function F : Rm 7→ S and matrices A ∈ Rm×n and b ∈ Rm are given can
be lumped in one linear matrix inequality F(x) > 0. More generally, the combined equations{

F(x) > 0
x ∈M (5.8)

whereM is an affine subset of Rm i.e.,

M = x0 +M0 = {x0 + m0 |m0 ∈M0},
with x0 ∈ Rm andM0 a linear subspace of Rm, can be rewritten in the form of one single
linear matrix inequality F(x) > 0. To actually do this, let e1, . . . , em0 ∈ Rm be a basis of
M0 and let F(x) = F0 + T(x) be decomposed as in Remark 5.1. Then (5.8) can be rewritten
as

0 < F(x) = F0 + T

(
x0 +

m0∑
j=1

xjej

)
= F0 + T(x0)︸ ︷︷ ︸

constant part

+

m0∑
j=1

xjT(ej)︸ ︷︷ ︸
linear part

= F0 + x1F1 + · · ·+ xm0Fm0

= F(x)

where F0 = F0 + T(x0),Fj = T(ej) and x = (x1, . . . , xm0) are the coefficients of x− x0

in the basis ofM0. This implies that x ∈ Rm satisfies (5.8) if and only if F(x) > 0. Note
that the dimension m0 of x is smaller than the dimension m of x.

A third property of LMIs is obtained from a simple exercise in algebra. It turns out to
be possible to convert some non-linear inequalities to linear inequalities. Suppose that we
partition a matrix M ∈ Rn×n as

M =

(
M11 M12

M21 M22

)
,

where M11 has dimension r × r. Assume that M11 is non-singular. Then the matrix S =
M22 −M21M

−1
11 M12 is called the Schur-complement of M11 in M. If M is symmetric then

we have that

M > 0 ⇐⇒
(

M11 0
0 S

)
> 0

⇐⇒
{

M11 > 0
S > 0

.

In conclusion we can state the following proposition.
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Proposition 5.1 (Schur complement). Let F : V 7→ S be an affine function which is parti-
tioned according to

F(x) =

(
F11(x) F12(x)
F21(x) F22(x)

)
,

where F11(x) is square. Then F(x) > 0 if and only if{
F11(x) > 0

F22(x)− F12(x) [F11(x)]−1 F21(x) > 0
. (5.9)

Note that the second inequality in (5.8) is a non-linear matrix inequality in x. Using this
result, it follows that non-linear matrix inequalities of the form (5.8) can be converted to
linear matrix inequalities. In particular, it follows that non-linear inequalities of the form (5.8)
define a convex constraint on the variable x in the sense that all x satisfying (5.8) define a
convex set.

5.2.3 Application-oriented forms of LMI
As the publications listed in the introduction show, many optimization problems in control,
identification and signal processing can be formulated (or reformulated) using linear matrix
inequalities. Clearly, it only makes sense to cast these problems in an LMI setting if these
inequalities can be solved in an efficient and reliable way. Since the linear matrix inequality
F(x) > 0 defines a convex constraint on the variable x, optimization problems involving
the minimization (or maximization) of a performance function f : S 7→ R with S :=
{x | F(x) > 0} belong to the class of convex optimization problems. Casting this in the
setting of the previous section, it may be apparent that the full power of convex optimization
theory can be employed if the performance function f is known to be convex.

Suppose that F,G,H : V 7→ S are affine functions. There are three generic problems
related to the study of linear matrix inequalities:

1. Feasibility: The test whether or not there exist solutions x ∈ V of F(x) > 0 is called
a feasibility problem. The LMI is called feasible if such x exists, otherwise the LMI
F(x) > 0 is said to be infeasible.

2. Optimization: Let f : S 7→ R and suppose that S = {x | F(x) > 0}. The problem to
determine

Vopt = inf
x∈S

f(x)

is called an optimization problem with an LMI constraint. This problem involves the
determination of Vopt and for arbitrary ε > 0 the calculation of an almost optimal
solution x which satisfies x ∈ S and Vopt ≤ f(x) ≤ Vopt + ε.

3. Generalized eigenvalue problem: The generalized eigenvalue problem amounts to
minimizing a scalar λ ∈ R subject to

λF(x)−G(x) > 0
F(x) > 0
H(x) > 0

.
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5.2.4 Computation of LMIs
A major breakthrough in convex optimization lies in the introduction of interior-point methods.
These methods were developed in a series of papers [48] and became of true interest in the
context of LMI problems in the work of Yurii Nesterov and Arkadii Nemirovskii [65].

The mathematical apparatus used in the resolution is not covered in this dissertation due to
its lengthiness and complexity. Detailed descriptions are given in [48, 65]. The interior-point
method is the most popular optimization technique thanks to its efficiency. It is also widely
used in commercial scientific applications such as MATLAB Optimization Toolbox and Robust
Control Design Toolbox [37].
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Part II

Theoretical Achievements
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Chapter 6

Complexity relaxation of Tensor-Product
model transformation

A crucial point of the TP model transformation is that its computational load explodes
easily with the dimensionality of the parameter vector of LPV model. The reason for the
computational explosion is that Step 2 of the transformation (see Section 3.4) executes Higher
Order Singular Value Decomposition on a large size multi-dimensional tensor resulted by
the discretization of a given LPV model. The number of dimensions of the tensor equals
the number of elements in the parameter vector. If the number of these elements is high
(this practically means more than 4 or 5) then a regular computer cannot execute HOSVD
on the discretized tensor, hence, the TP model transformation neither, as well. For instance,
in practical cases in order to generate a fine convex hull of the TP model at least 100 points
along each dimension is necessary [6, 7, 14, 68, 69]. This results a discretized tensor with a
size of 1004 if the number of dimensions is 4.

This chapter proposes two ways for relaxing the computational load problem of the TP
model transformation. The goal of both ways is to decrease the number of elements of
the discretized tensors that directly result “the decrease of” the computational load of the
HOSVD. The first proposes an approach to considerable decrease the discretized grid-density
and modifies the algorithm of the TP model transformation accordingly. The key idea of the
second way is to restrict the computation of the TP model transformation to the non-constant
elements only, which means that TP model transformation is executed on a discretized
subtensor only. These two main approaches modify the TP model transformation at different
levels, thus the computational load can be decreased even more with their combination.

6.1 Decreasing the discretization grid density
The denser the hyper-rectangular grid Θ applied in the transformation space Ω, the more
accurate will be the results obtained. The dense grid allows a more accurate numerical
reconstruction of the weighting functions and a finer convex hull, hence, a more appropriate
TP model (see Section 3.4). However, the complexity (number of elements) of the discretized
tensor equals the complexity (number of sampling points) of the discretization grid Θ (see

33



Step 1 of Method 3.1). The computational load of HOSVD explodes with the complexity of
the discretized tensor.

According to the above, we have two contradictory constraints to define the density of
Θ. The first constraint forces us to use dense Θ to achieve an appropriate decomposition
of S(p(t)) with fine convex hulls. The second constraint comes from the easily exploding
computational load of the HOSVD.

The key idea comes from the practical considerations as we cannot apply more than a few
weighting functions (up to about 4–5) per dimension, because the computational load of the
further LMI based controller design also explodes easily with the number of the resulting LTI
systems, and therefore we may not be able to solve them. Moreover, a few weighting functions
per dimension are practically enough to have an exact or close-to-exact transformation. Thus,
the first approach we limit the TP model transformation to the search of a few weighting
functions by dimensions only.

6.1.1 The algorithm of the modified TP model transformation
The key point of the modification is that we apply two discretization grids Θ and Γ. Θ
is a sparse grid upon which we discretize the S(p(t)) and generate SD,Θ. Superscript “Θ”
indicates that SD is the discretization over Θ. Then we execute HOSVD on the “small sized”
SD,Θ to yield the minimal number of LTI systems and do the approximation trade-off if it is
necessary. So, Θ is defined according to the maximum computational capacity available for
HOSVD. After this we introduce a new step capable of expanding the resulting decomposition
to the dense grid Γ without generating SD,Γ by discretization (which would be an extremely
large tensor) and executing HOSVD on SD,Γ. Once we have the decomposition over Γ then
we can generate “fine” convex hulls as in the original TP model transformation. The last step
generates the continuous weighting functions in the same way as in the original TP model
transformation.

Step 1) Discretization over a sparse grid Θ

• Define the transformation space Ω as: p(t) ∈ Ω : [a1, b1]× [a2, b2]× · · · × [aN , bN ].

• Define a hyper-rectangular N -dimensional sparse grid Θ using equidistantly located
grid-lines: θn,hn = an+ bn−an

Hn−1
(hn−1), hn = 1 . . . Hn. The numbers of the grid lines in

the dimensions are Hn. Notice here that the Hn must be larger or equal to the allowed
maximum number of weighting functions in each dimension of the TP model to be
generated. The reason for this is that the TP model transformation in Step 2 cannot
generate more weighting functions then Hn, because the number of weighting functions
are equal to the number of the remaining singular values in each dimension.

• Sample the given function S(p(t)) over the grid-points of Θ:

SD,Θh1,h2,...,hN
= S(ph1,h2,...,hN

) ∈ RO×I ,

where ph1,h2,...,hN
=
(
θ1,h1 θ2,h2 . . . θN,hN

)
.

• Store the discretized matrices SD,Θh1,h2,...,hN
into the tensor SD,Θ ∈ RH1×H2×···×HN×O×I
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Step 2) Approximation trade-off via HOSVD In this step we execute HOSVD on the
first N dimensions of tensor SD,Θ. While performing the HOSVD we discard all zero or
small singular values σk and their corresponding singular vectors in all dimensions, as in the
original TP model transformation. Assume that we keep In singular values in dimensions
n = 1 . . . N . As a result we have

SD,Θ≈
δ
S ⊗

n
UΘ
n . (6.1)

The error δ is bounded as (3.13). The resulting tensor S, with the size of (I1 × I2 × · · · ×
IN ×O × I), where ∀n : In ≤ Hn, contains the first variant of the LTI vertex systems, and is
immediately substitutable into (3.3). The size of UΘ

n is Hn × In.

Step 3) Increasing the grid density to Γ This step expands the result of the second step to
the dense discretization grid Γ. Define a hyper-rectangular dense grid Γ using equidistantly
located grid-lines: γn,mn = an + bn−an

Mn−1
(mn − 1), mn = 1 . . .Mn. The numbers of the grid

lines in the dimensions are Mn. Define Mn in such a way that all grid points of Θ are in Γ,
namely Θ ⊂ Γ.

The goal is to generate the HOSVD of SD,Γ as:

SD,Γ≈
ε
S ⊗

n
UΓ
n, (6.2)

where the size of UΓ
n is Mn× In (∀n : Mn � Hn) and the rows of the UΓ

n are assigned to the
grid-lines of Γ. We have ε = 0 if the rank of SD,Γ is equal to maximum rank constraint In
on dimensions n = 1 . . . N . If it has higher rank then we obtain ε > 0. However, we do not
have SD,Γ since its size and especially the computational load of HOSVD would transcend
the capacity of a regular computer. Therefore, in order to avoid the execution of HOSVD on
SD,Γ we compute each row of UΓ

n one by one from S and S(p(t)). We determine the mdth
row (assigned to the grid line γd,md

) in matrix UΓ
d in such a way that let pk be fixed to one

θk,hk
of the grid-lines in each dimensions k = 1 . . . N, k 6= d of discretization grid Θ except

the dth dimension as:
pk = θk,hk

k = 1 . . . N, k 6= d,

where hk ∈ {1, . . . , Hk} is arbitrarily selected. We may simply select hk = 1 in practical
cases if there is no special reason not to. Then we create vector

p(t) =
(
θ1,h1 θ2,h2 . . . γd,md

. . . θN,hN

)
.

The new row uΓ
d,md

of matrix UΓ
d is computed as:

uΓ
d,md

= (S(p(t)))(1)

((
S ⊗

k
uΘ
k,hk

)
(d)

)+

, (6.3)

where superscript ”(·)+” denotes pseudo inverse, and uΘ
k,hk

is the hkth row vector of UΘ
k . The

first-mode matrix (S(p(t)))(1) of matrix S(p(t)) is understood such that matrix S(p) ∈ RO×I

is considered as a three-dimensional tensor S(p) ∈ R1×O×I , where the length of the first
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dimension is one. S(p(t))(1) practically means that the matrix S(p(t)) is stored into one row
vector by placing the rows of S(p(t)) next to each other, respectively, see [60].

As a result we now have a decomposition

SD,Γ≈
ε
S ⊗

n
UΓ
n,

in which the matrices Un may not be the same as could be resulted by HOSVD in (6.2),
however we kept the In rank constraint and yield the best approximation of the new rows
in Un in the sense of L2 norm. This is guaranteed by the use of pseudo inverse. Note that
if δ = 0 in (6.1) and SD,Γ has the same rank as SD,Θ in each dimension then ε = 0, see for
instance the example in the next section.

Step 4) Generating different convex hulls This step executes SN (Sum Normalization),
NN (Non Negativeness), and NO (Normality) or INO–RNO (Inverse-NO and Relaxed-NO)
transformations [6, 18, 84, 90, 91] according to the desired type of the convex hull. The
previous step results in UΓ

n. The goal is here to transform matrices UΓ
n to ŪΓ

n, where the
bar over matrix U means that the matrix is SN, NN NO or of any other type according to
the executed transformation. Note that the Yam’s type SN transformation [90,91] needs the
discarded singular values computed by the HOSVD. Since we do not have the singular values
of SD,Γ we use transformation techniques proposed in papers [6] and [84]. These techniques
do not use any information about the result of HOSVD, but matrices UΓ only. As a matter of
fact when we transform matrices UΓ

n to ŪΓ
n then we must modify S to S̄ accordingly, in order

to keep:
S ⊗

n
UΓ
n = S̄ ⊗

n
ŪΓ
n,

S̄ could be readily computed form a SD,Γ as:

S̄ = SD,Γ⊗
n

(
ŪΓ
n

)+
,

however, as mentioned we do not have SD,Γ, but we have SD,Θ. Therefore, let us select those
rows of ŪΓ

n which are also assigned to the sparse grid Θ and then store this information into
matrix ŪΘ

n (note that if ŪΓ
n is SN, NN, NO, RNO or INO–RNO type then ŪΘ

n will also be
SN, NN, NO, RNO or INO–RNO type, respectively). Thus, the tensor S̄ can be computed by:

S̄ = SD,Θ⊗
n

(
ŪΘ
n

)+
.

Finally we have
SD,Θ≈

δ
S̄ ⊗

n
ŪΘ
n = S ⊗

n
UΘ
n .

then
SD,Γ≈

ε
S̄ ⊗

n
ŪΓ
n = S ⊗

n
UΓ
n.
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Step 5) Generating the continuous weighting functions This step is equivalent with the
last step of the original TP model transformation. It results in the continuous weighting
functions such as

S(p(t))≈ S̄ N⊗
n=1

wn(pn(t)). (6.4)

Finally we numerically check the accuracy of the resulting TP model over a huge number
of points in Ω. We also check the SN, NN, NO, RNO and INO–RNO type of the weighting
functions via numerical computation. In the case of exact transformation the best error we
can achieve is in the range of about 10−13 that is caused by the numerical computation of the
HOSVD.

6.1.2 Evaluation of the calculation complexity reduction
In this subsection we compare the computational complexity of the original and the modified
TP model transformation. Since the computation problem is caused by the computational
explosion of the HOSVD, we focus attention on the number of elements in SD in both cases.

We denote the computational load of SVD of a matrix with R number of elements by
CSVD(R). The original TP model transformation executes SVD N times on a matrix with R
number of elements:

Coriginal = N × CSVD(O × I ×
N∏
n=1

Mn)

In practical cases Mn is about 100, see papers [6–9, 13, 42, 68]. The modified TP model
transformation executes SVD N times as well, however the number of the elements of the
matrix whereupon SVD is executed could be considerable less than in the case of the original
TP model transformation. The modified TP model transformation executes HOSVD on SD
with the size of H1 ×H2 × · · · ×HN ×O × I , where Hn is about 2–5. The computation of
the modified algorithm is

Cmodified = N × CSVD(O × I ×
N∏
n=1

Hn)

The algorithm offers a polynomial computational complexity reduction.
In higher dimensions even the discretization step of the original TP model transformation

fails, since the storage of SD requires a huge memory capacity in memory; a requirement
which exceeds the limits of today’s computers.

The next section gives a 6-dimensional example where the original TP model transforma-
tion cannot be applied because of the overwhelming computational complexity, but where the
modified TP model transformation can easily be executed.

6.1.3 Numerical example
In this section we demonstrate the complexity relaxation of the firsts approach on a numerical
example.
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Consider the following dynamic model:

ẋ(t) = S(p(t))x(t),

where

S(p(t)) =



s1,1 2 s1,3 −1 0 1 0 s1,8

s2,1 0 1 3 s2,5 0 0 1
s3,1 1 3 0 0 5 s3,7 1
−2 0 3 s4,4 0 −2 0 1
0 s5,2 5 10 −2 s5,6 0 1
0 3 0 s6,4 1 −1 0 1
5 1 0 s7,4 0 −1 0 1.5
s8,1 1 s8,3 1 0 1 0 s8,8


(6.5)

s1,1 = x1 + x2
1 + x3

2 + x4
2

s1,3 = cos(x3)

s1,8 = x7(2 + x5)

s2,1 = 3 + x2
2 + x3

3

s2,5 = x6 cos(x5)2

s3,1 =
x3

1 + x2
1

1− sin(x2)
+ x4

3 cos(x3) + 4

s3,7 = x2 + x4

s4,4 = sin(x4) cos(x5)

s5,2 = x2
1x6

s5,6 = x2
6 cos(x4)

s6,4 = x1x3x4

s7,4 = x8 sin(x4)

s8,1 = x6

s8,3 =
cos(x8)

1− x7

s8,8 =
x3

3

2− x6 − x7

Observe that the above system matrix S(p(t)) nonlinearly depends on all elements of
the state vector x(t) ∈ R6. This means that N = 6 and p(t) = x(t). Let the transformation
space be Ω : [a1, b1] × [a2, b2] × · · · × [aN , bN ], where ∀n : an = −0.5 and ∀n : bn = −an.
First we apply the original TP model transformation and we define 129 grid-lines for each
dimension for discretization. The discretization result in SD whose number of elements is
36 · 1296. A regular software (for instance MATLAB) and a computer cannot store a tensor as
large as SD, and even if it could, HOSVD could not be executed. In conclusion the original
TP model transformation cannot be executed in the present case.

Let us apply the modified TP model transformation. We use the same Ω and we require
the same grid density with 129 grid-lines for each dimension. First we define the sparse
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Figure 6.1: Discretized weighting functions over Θ

discretization grid. Here we have to consider two constraints. The first one is that the HOSVD
(in MATLAB) can be executed when the number of grid-lines per dimension are about 3
in the present 6-dimensional case. The second restriction is that the computational load of
LMI solver (to be executed in the case of controller design) explodes easily. Therefore, we
restrict the computation of the TP model transformation to yield 3 weighting functions per
dimension, that means maximum 36 = 729 LTI systems. Thus, we define discretization grid
Θ as ∀n : Hn = 3. The discretization results in SD,Θ whose number of elements is only
36 · 36. Executing HOSVD, we find that the rank of SD,Θ along each of its dimensions is 2, 3,
3, 3, 2, 2, respectively. Hence, the sizes of the resulting Un, n = 1 . . . N are: 3× 2, 3× 3,
3×3, 3×3, 3×2 and 3×2. The size of S is 2×3×3×3×2×2×6×6. Figure 6.1 depicts
the values of the columns of Un (assigned to the discretization grid-lines) as the points of the
discretized weighting functions. For easier visualization, we connected the points by straight
line segments.
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Figure 6.2: Discretized weighting functions over Γ

For Step 3 we define the dense grid Γ with 129 grid-lines for each dimension. The
resulting weighting functions, discretized over 129 points, are depicted on Figure 6.2.

(If we execute Step 5 directly here then we can generate the continuous weighting functions
and numerically check the error between the original and the resulting TP model over huge
number of points. We find that the error, resulting from the numerical computation of HOSVD,
is in the range of 10−13. In conclusion we can say that the resulting TP model is exact and
it includes a minimum number of 216 LTI systems.) As a next step we execute Step 4 and
generate SN, NN, and NO type weighting functions as in the case of the original TP model
transformation. By Step 5 we can generate the continuous weighting functions see Figure 6.3.

We can conclude from the above example that the original TP model transformation
cannot be applied in case of this 6-dimensional problem because of its heavy computational
load. The modified TP model transformation, however, can be executed on a regular PC and
in the present example it yields an exact TP model.
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Figure 6.3: Continuous weighting functions over Γ
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6.2 Avoiding the computation of constant elements in the
LPV model

This approach deals with the matrix S(p(t)) and based on the fact that the constant, linear
and nonlinear elements behave in different ways, have different effects, and have different
computational cost consequences on the result of the TP model transformation. The TP model
form of the constant elements can be determined without any computation, thus by separating
the constant from linear, nonlinear elements and applying the TP model transformation for
each set, the computational load can be reduced. A further refinement of this concept is when
we separate the non-constant elements based on the degree of nonlinearity and degree of
dependence on p(t).

6.2.1 The algorithm of the modified TP model transformation
The TP model transformation is capable of transforming an LPV model defined as (3.1) into
TP model form (3.3):

S(p(t)) = S N⊗
n=1

wn(pn(t)), (6.6)

As the elements of the matrix S(p(t)) are independent, the TP model transformation can be
performed for each element individually, and then we can write for an arbitrary (k, l) element
of the matrix S(p(t))

Sk,l(p(t)) = Sk,l N⊗
n=1

wk,l
n (pn(t)), (6.7)

where Sk,l is an N -dimensional subtensor of S that is selected by fixating the last two coordi-
nates of the N + 2-dimensional S to (k, l), and wk,l

n (pn(t)), n = 1 . . . N is the corresponding
weighting function set. The reason for executing the TP model transformation for the whole
matrix S(p(t)) and not for each element separately is that the resulting weighting functions
must be identical for all the elements as the transformation is trying to determine a solution.

However, if an arbitrary element sk,l(p(t)) is constant, namely it does not depend on any
element of p(t), then for any arbitrary set of weighting functions warb

n (pn(t)), n = 1 . . . N
(the abbreviation “arb” means arbitrary) that is Sum-Normalized (SN) and Non-Negative
(NN), namely satisfying the conditions given by Definition 5.1, we can write

Sk,l(p(t)) = Ssk,l
N⊗
n=1

warb
n (pn(t)), (6.8)

where Ssk,l is such an N -dimensional subtensor of S that is selected by setting the last two
coordinates of the N + 2-dimensional S to (k, l) and all values equal to sk,l.

It is clear that the TP model transformation, applied to a constant element, is reduced to
the simple construction of a subtensor, and the creation of a set of weighting functions that
satisfies the SN and NN criteria. This set can be any weighting function set, for example, the
weighting functions of a nonlinear element. So, for the constant elements the subtensors can
be constructed in a straightforward way. In order to avoid the non-identical sets of weighting
functions, the TP model transformation is performed on all linear and nonlinear elements
simultaneously. The resulting weighting functions are appropriate for all elements (constant,
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linear, and nonlinear) of the matrix S(p(t)). So, by doing the separation of the elements of
the S(p(t)), performing the TP model transformation only on the non-constant set, which
is computation intensive, and applying the resulting weighting functions to the constant set,
the computational load of the TP model transformation can be reduced. The efficiency of
this computation load relaxation is greatly depends on the ratio of constant and non-constant
elements, the higher the number of constant elements the better relaxation can be achieved.

6.2.2 Evaluation of the calculation complexity reduction
In this subsection we compare the computational complexity of the original and the modified
TP model transformation. Since the computation problem is caused by the computational
explosion of the HOSVD, we focus attention on the number of elements in SD in both cases.

We denote the computational load of SVD of a matrix with R number of elements by
CSVD(R). The original TP model transformation executes SVD N times on a matrix with R
number of elements:

Coriginal = N × CSVD(O × I ×
N∏
n=1

Mn)

The modified TP model transformation executes SVD N times as well, however the number
of the elements of the matrix whereupon SVD is executed could be less than in the case of
the original TP model transformation, because the SVD is executed only on the non-constant
element of the system matrix. The modified TP model transformation executes HOSVD
on the same grid density

∏N
n=1Mn, but the system matrix is reduced to a vector containing

only the non-constant element. Denote the number of non-constant elements by Snc. The
computation of the modified algorithm is

Cmodified = N × CSVD(Snc ×
N∏
n=1

Mn)

The algorithm offers a linear computational complexity reduction.

6.2.3 Numerical example
Consider the following dynamic model:

ẋ(t) = S(p(t))x(t),

43



where

S(p(t)) =


s1,1 2 2 4 s1,5 8
2 s2,2 3 1 4 2
2 s3,2 −2 s3,4 7 3
s4,1 3 8 s4,4 9 3
1 2 0.5 4 5 0.2

0.6 2 7 4 5 s6,6

 (6.9)

s1,1 = x1 + x2
1 + x3

1 + x4
1

s1,5 = 3 + x2
1 + x4

1

s2,2 = 3 + x3
2

s3,2 =
sin(x2)

cos(x2)2

s3,4 = 3 cos(x2) sin(x2)2

s4,1 = cos(x2)

s4,4 = 1 + x3
1

s6,6 = cos(x2)

Observe that the above system matrix S(p(t)) nonlinearly depends on the first two
elements of the state vector x(t) ∈ R6. This means thatN = 2 and p(t) = {x1(t), x2(t)}. Let
the transformation space be Ω : [a1, b1]× [a2, b2], where ∀n : an = −0.5 and ∀n : bn = −an.
First we apply the original TP model transformation and we define 137 grid lines on each
dimension for discretization. The discretization results in SD whose number of elements is
36 · 1372. However, if we apply the proposed modification, the discretization can be done
only on the non-constant elements. In this case, we put all the non-constant elements to a
vector STP(p(t)) like

STP(p(t)) =



s1,1

s1,5

s2,2

s3,2

s3,4

s4,1

s4,4

s6,6


(6.10)

and then we execute the TP model transformation on this reduced set. Thus the size of SD
becomes 8 · 1372 which is a 78% reduction.

The results of the TP model transformation show that the example model can be exactly
given as a combination of 4× 5 = 20 LTI systems:

S(p(t)) = S 2⊗
n=1

wn(pn(t)), (6.11)

The resulting weighting functions are depicted on Figure 6.4.
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Figure 6.4: Weighting functions of x1 and x2

The size of the final tensor S is 4× 5× 6× 6, namely it means it has 4× 5 = 20 panes of
6×6. Each pane is constructed from the constant elements of S(p) and from the 4×5×8-size
tensor STP that contains the LTI values for the non-constant elements as

Si,j,k,l =

{
S(p(t))k,l if S(p(t))k,l = constant
STP
i,j,q if S(p(t))k,l 6= constant , (6.12)

where i, j define a given pane, and k, l define a given element on the pane, Si,j,k,l is the
element k, l of the pane i, j in the tensor, S(p(t))k,l is the element k, l of the matrix. Because
of the limited space, all the 20 LTI systems cannot be given, but for an arbitrary pane i, j of S
the result is:

Si,j =


STP
i,j,1 2 2 4 STP

i,j,2 8
2 STP

i,j,3 3 1 4 2
2 STP

i,j,4 −2 STP
i,j,5 7 3

STP
i,j,6 3 8 STP

i,j,7 9 3
1 2 0.5 4 5 0.2

0.6 2 7 4 5 STP
i,j,8

 (6.13)

We can conclude form the above example that the modified TP model transformation
gives a significant reduction on the computational load. However we must note that the degree
of its reduction capability depends on the structure of the system matrix.
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Part III

Applications
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Chapter 7

TORA System

7.1 Introduction to the TORA system
The study is conducted through a output and state-feedback control design for the Translational
Oscillations with an Eccentric Rotational Proof Mass Actuator (TORA) system, which was
originally studied as a simplified model of a dual-spin spacecraft with mass imbalance to
investigate the resonance capture phenomenon [47, 70]. The same plant was later studied
involving the rotational proof-mass actuator for feedback stabilization of translational motion
[23, 85]. The TORA system is also considered as a fourth-order benchmark problem [22, 24,
89]. The International Journal of Robust and Nonlinear Control published a series of studies
about the control issue of the TORA system in Volume 8 in 1998 [72].

7.1.1 Nomenclature
• M = mass of cart

• k = linear spring stiffness

• m = mass of the proof-mass actuator

• I = moment of inertia of the proof-mass actuator

• e = distance between the rotation point and the center of the proof mass

• N = control torque applied to the proof mass

• F = is the disturbance force on the cart

• q = translational position of the cart

• θ = angular position of the rotational proof mass
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Figure 7.1: TORA system

7.1.2 Equations of motion
The TORA system is shown in Figure 7.1 with the notation defined above. The oscillation
consists of a cart of massM connected to a fixed wall by a linear spring of stiffness k. The cart
is constrained to have one-dimensional travel in the horizontal plane. The rotating proof-mass
actuator is attached to the cart. The control torque is applied to the proof mass. θ = 0◦ is
perpendicular to the motion of the cart, while θ = 90◦ is aligned with the positive q direction.
The equations of motion are given by [72]:

(M +m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) (7.1)

(I +me2)θ̈ = −meq̈ cos θ +N (7.2)

with the normalization [85]:

ξ '
√
M +m

I +me2
q τ '

√
k

M +m
t (7.3)

u ' M +m

k(I +me2)
N (7.4)

the equations of motion become

ξ̈ + ξ = ρ
(
θ̇2 sin θ − θ̈ cos θ

)
(7.5)

θ̈ = −ρξ̈ cos θ + u (7.6)

where ξ is the normalized cart position, and u is the per unit control torque. τ is the normalized
time whereupon the differentiation is understood. ρ is the coupling between the rotational and
the translational motions:

ρ ' me√
(I +me2)(M +m)

. (7.7)
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The above equations can be given in the state-space model form

ẋ(t) = f(x(t)) + g(x(t))u(t), (7.8)

y(t) = c(x(t)),

where

f(x(t)) =


x2

−x1+ρx2
4 sin(x3)

1−ρ2 cos2(x3)

x4
ρ cos(x3)(x1−ρx2

4 sin(x3))

1−ρ2 cos2(x3)

 , g(x(t)) =


0

−ρ cos(x3)
1−ρ2 cos2(x3)

0
1

1−ρ2 cos2(x3)

 , (7.9)

c(x(t)) =

(
0 0 x3 0
0 0 0 x4

)
.

and x(t) =
(
x1(t) x2(t) x3(t) x4(t)

)T
=
(
ξ ξ̇ θ θ̇

)T
. Let us write the above equation

in the typical form of linear parameter-varying state-space model as

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
y(t) = Cx(t), (7.10)

where system matrix S(p(t)) contains:

S(p(t)) =
(
A(p(t)) B(p(t))

)
and p(t) =

(
x3(t) x4(t)

) ∈ Ω is time-varying 2nd-order parameter vector, thus

A(x3(t), x4(t)) =


0 1 0 0

− 1
1−ρ2 cos2(x3)

0 0 ρx4 sin(x3)
1−ρ2 cos2(x3)

0 0 0 1
ρ cos(x3)

1−ρ2 cos2(x3)
0 0 −x4ρ2 cos(x3) sin(x3)

1−ρ2 cos2(x3)

 (7.11)

B(x3(t)) = g(x(t)) C =

(
0 0 1 0
0 0 0 1

)
.

The laboratory version of the TORA system is described in [24]. The nominal configuration
of this version is given in Table 7.1.

7.2 HOSVD-based canonical form of the TORA system
We execute the TP model transformation on the LPV model (7.10) of the TORA. As a first
step of the TP model transformation we have to define the transformation space Ω. If we see
the simulations in the papers of special issue [72] and [31, 77, 79] we find that θ is always
smaller than 0.85 rad, and according to the maximum allowed torque u = 0.1 N the system
would not achieve larger θ̇ than 0.5 rad, but could have a little overshoot, see [72, page 392]
and control specifications section of this paper. Therefore, we define the transformation space
as Ω = [−a, a] × [−a, a] (x3(t) ∈ [−a, a] and x4(t) ∈ [−a, a]), where a = 45

180
π rad (note
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Table 7.1: Parameters of the TORA system
Description Parameter Value Units
Cart mass M 1.3608 kg
Arm mass m 0.096 kg
Arm eccentricity e 0.0592 m
Arm inertia I 0.0002175 kg m2

Spring stiffness k 186.3 N/m
Coupling parameter ρ 0.200 —
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Figure 7.2: Weighting functions of the HOSVD-based canonical TP model of x3(t) and x4(t)

that these intervals can be arbitrarily defined). The TP model transformation starts with the
discretization over a rectangular grid. Let the density of the discretization grid be 137× 137
on (x3(t) ∈ [−a, a])× (x4(t) ∈ [−a, a]). The result of the TP model transformation shows
that TORA system can be exactly given in the HOSVD-based canonical polytopic model
form with minimum 5× 2 = 10 LTI vertex models

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
=

5∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (7.12)

The weighting functions are depicted in Figure 7.2.

7.2.1 Different finite element TP model forms of TORA system
In a mathematical point of view the TP model resulted in the previous section for TORA
system is correct, however other TP model forms can be more advantageous in applications.
These TP models are introduced in the followings.

TP MODEL 1 In order to have convex TP model to which the LMI control design condi-
tions can be applied, let us generate convex TP model (SN and NN type weighting functions)
by the TP model transformation which satisfies Definition 5.1. The results are depicted in
Figure 7.3.
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Figure 7.3: Weighting functions of TP model 1 for x3(t) and x4(t)
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Figure 7.4: Weighting functions of TP model 2 for x3(t) and x4(t)

TP MODEL 2 In many cases the convexity of the TP model is not enough, the further LMI
controller design is not feasible. In order to relax the feasibility of the LMI conditions, let us
define the tight convex hull of the LPV models via generating close to NO type weighting
functions by the TP model transformation, see Figure 7.4.

The corresponding LTI system matrices of this TP model is also given, as the further
controller design is based on it.

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
=

5∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) .

The LTI system matrices of the polytopic model are

A1,1 =


0 1.0000 0 0

−1.0493 0 0 0.0094
0 0 0 1.0000

0.2288 0 0 −0.0010

 B1,1 =


0

−0.2288
0

1.0493
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A1,2 =


0 1.0000 0 0

−1.0493 0 0 −0.0094
0 0 0 1.0000

0.2288 0 0 0.0010

 B1,2 =


0

−0.2288
0

1.0493



A2,1 =


0 1.0000 0 0

−1.0204 0 0 0.1133
0 0 0 1.0000

0.1443 0 0 −0.0160

 B2,1 =


0

−0.1443
0

1.0204



A2,2 =


0 1.0000 0 0

−1.0204 0 0 −0.1133
0 0 0 1.0000

0.1443 0 0 0.0160

 B2,2 =


0

−0.1443
0

1.0204



A3,1 =


0 1.0000 0 0

−1.0204 0 0 −0.1133
0 0 0 1.0000

0.1443 0 0 0.0160

 B3,1 =


0

−0.1443
0

1.0204



A3,2 =


0 1.0000 0 0

−1.0204 0 0 0.1133
0 0 0 1.0000

0.1443 0 0 −0.0160

 B3,2 =


0

−0.1443
0

1.0204



A4,1 =


0 1.0000 0 0

−1.0328 0 0 0.1439
0 0 0 1.0000

0.1884 0 0 −0.0272

 B4,1 =


0

−0.1884
0

1.0328



A4,2 =


0 1.0000 0 0

−1.0328 0 0 −0.1439
0 0 0 1.0000

0.1884 0 0 0.0272

 B4,2 =


0

−0.1884
0

1.0328



A5,1 =


0 1.0000 0 0

−1.0222 0 0 −0.1578
0 0 0 1.0000

0.1572 0 0 0.0282

 B5,1 =


0

−0.1572
0

1.0222



A5,2 =


0 1.0000 0 0

−1.0222 0 0 0.1578
0 0 0 1.0000

0.1572 0 0 −0.0282

 B5,2 =


0

−0.1572
0

1.0222


The LMI stability theorems phrased under the PDC framework based controller design

use linear indexing for the LTI systems. The multidimensional indexing of the LTI systems in
the polytopic model can be linearized. For demonstrational purposes and better understanding
Figure 7.5 and 7.6 show the weighting functions of TP model 2 in a 2nd-order form.

TP MODEL 3 Let us define further types of the weighting functions and define their INO–
RNO type, see Figure 7.7. This INO–RNO type convex hull may relax the observer design in
the output feedback control problem, see paper [6].

The weighting functions can be derived analytically in some special cases, but as the
model become more complex, the analytical derivations needs more expertise and it can
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Figure 7.5: 2nd-order weighting functions of TP model 2
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Figure 7.6: 2nd-order weighting functions of TP model 2 in a common coordinate system
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Figure 7.7: Weighting functions of TP model 3 for x3(t) and x4(t)
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easily be a very complex and hard task. Moreover, the analytical derivations of the tight
convex hull or INO–RNO type weighting functions need the analytical solution of the tight
convex hull problem that is unavailable in general. Finding the minimal number of LTI
systems or the orthogonal weighting functions or LTI systems could also be very complex via
analytical derivations. However all these features can readily be guaranteed by the Higher
Order Singular Value Decomposition (whose analytic derivation is also unsolved in general)
executed as the core of the TP model transformation. The TP model transformation requires
a few minutes on a regular personal computer and is not dependent on the actual analytical
form of the given LPV model. If the model is changed we can simply execute the TP model
transformation again.

7.2.2 Complexity relaxed TP models
During the TP model transformation based controller design procedure complexity issues
can occur that can inhibit the derivation of the controller, or the complexity of the resulting
controller is so high that it is impossible to handle in real world operation. The TP model
transformation based control design framework offers trade-off techniques that help us to
control the model complexity and approximation accuracy challenge.

Besides the exact TP model, we also generate complexity relaxed TP models of the TORA
system. In later section for each TP model a corresponding controller is designed. We analyze
how the complexity relaxation changes the behavior of the TP models, and influence the
controller performances.

In the previous subsection several exact, finite element TP model of the TORA system
has been introduced. In the followings we generate close to NO types weighting function, but
in each TP model we reduce the number of weighting function, thus the complexity of the
model.

As it has been already shown, the rank of the system matrix S(p(t)) in the dimension
of x3(t) is 5, whilst in the dimension of x4(t) is 2. The nonzero singular values in each
dimension is

σ1,1 = 341.31

σ1,2 = 5.5948

σ1,3 = 3.8334

σ1,4 = 0.085134

σ1,5 = 0.041615

σ2,1 = 341.31

σ2,2 = 5.5948

TP MODEL 2b The complexity of the TP model can be reduced in the dimension of x3(t)
by discarding some singular values. Note that in the dimension of x4(t) the reduction is not
possible since convexity (Definition 5.1) requires at least two weighting functions. Hence, let
us keep the four largest singular values of dimension x3(t). It results an approximation of the
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Figure 7.8: Close to NO type weighting functions of the reduced TP model of 8 LTI systems

TORA system that is composed of 4× 2 = 8 LTI systems. Figure 7.8 shows the weighting
functions of the tight convex hull of the reduced LPV model.

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
=

4∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (7.13)

Equation (3.13) gives only an upper bound for the approximation error that is calculated by
the discarded singular values. In case of TP MODEL 2b it is σ1,5 = 0.041615. In order to
measure the actual modeling approximation error by numerical checking, the difference of the
analytical model and TP models, in terms of L2 norm, were calculated over 10 000 random
sample points. The numerical approximation error of TP MODEL 2b is 0.0023.

TP MODEL 2c In the dimension of x3(t) further reduction is possible. By discarding the
two smallest singular values, namely σ1,4 and σ1,5, we get a more complexity relaxed TP
model of the TORA system. The resulting system equation is

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
=

3∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (7.14)

In this case the upper bound of the approximation error is 0.126749, while the maximal
numerical error is 0.0024. In Figure 7.9 the resulting weight functions are illustrated.

TP MODEL 2d By keeping only the two largest singular values in dimension x3(t), the
most reduced TP model of the TORA system realizes. The system equation of this model is

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
=

2∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (7.15)

In this case the upper bound of the approximation error is 3.960149, while the maximal
measured error is 0.21513. In Figure 7.10 the resulting weight functions are illustrated.
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Figure 7.9: Close to NO type weighting functions of the reduced TP model of 6 LTI systems
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Figure 7.10: Close to NO type weighting functions of the reduced TP model of 4 LTI systems

Comparison of the resulting TP models The main conclusion of the comparison is the
complexity of the model can be drastically reduced without causing unacceptable approxima-
tion error as the results, summarized in Table 7.2 on page 71, show. The second conclusion
is that the estimated error bound from the singular values are much worse than the actual
approximation error. As a matter of fact we have to be careful when selecting the non-exact
approximation. In most cases, and in the case of TORA, the approximated model is suitable,
but there are some systems, e.g. chaotic systems, when even slight changes can cause drastic
differences. It is also worth noticing here that usually the error of typical identification
techniques is in a larger range than the discarded singular values.
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7.3 Multi-objective state-feedback controller design

7.3.1 Control specifications
According to the papers in the special issue [72] and papers [31,77,79] we summarize here the
typical design specifications [72, page 309] of the benchmark problem of the TORA system:

Design a controller that satisfies the following criteria:

• The closed-loop system is stable (in this paper we aim at achieving asymptotic stability).

• The closed-loop system exhibits good settling behavior for a class of initial conditions.

• The physical configuration of the system necessities the constraint |q| ≤ 0.025 m.

• The control value is limited by N ≤ 0.100 Nm, although somewhat higher torques can
be tolerated for short periods.

7.3.2 Asymptotic stability of the TORA system
This section derives controllers for different specifications by applying the TP model 2 and
the LMI stability theorems. Having the solution of the LMIs, the feedback gains are computed
by (7.18), and the control value is computed by (5.4). In the present case it is:

u(t) = −
(

5∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t))Fi,j

)
x(t),

where
Fi,j = Fr, and r = 2(i− 1) + j

We compare the control results to various different alternative solutions [31,72,77,79]. An
important difference from other controller design methods is that they are analytical solutions,
while the present solution is automatically derived via numerical methods in a few minutes
on a regular computer without analytical interaction. Further design specifications such as
parameter uncertainty and robust control, etc. can be readily included in the design, if needed,
by selecting other LMIs from the control literature. If the dynamic model is modified then the
design process can be repeated in a few minutes unlike the analytical solutions which may
lead to a hard work again even in case of a small modification.

CONTROLLER 0 In order to guarantee asymptotic stability, let us substitute the LTI systems
of TP model 2 into the following LMI system. The derivation and the proof of the theorem is
fully detailed in [80].

Theorem 7.1 (Asymptotic stability). Polytopic model (5.3) with control value (5.4) is asymp-
totically stable if there exist X > 0 and Mr satisfying equations

−XAT
r −ArX + MT

r BT
r + BrMr > 0 (7.16)
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for all r and
−XAT

r −ArX−XAT
s −AsX+ (7.17)

+MT
s BT

r + BrMs + MT
r BT

s + BsMr ≥ 0.

for r < s ≤ R, except the pairs (r, s) such that wr(p(t))ws(p(t)) = 0,∀p(t), and where the
feedback gains are determined form the solutions X and Mr as

Fr = MrX
−1. (7.18)

We find that the LMIs are feasible. The simulation result is depicted on Figure 7.11, where
x(0) =

(
0.023 m 0 0 0

)
. We can compare the control result to stable fuzzy control on

Figures 1–4 of [79, page 318]. Note that the parameters on the figures of [79] are per unit
and x(0) =

(
0.0195 m 0 0 0

)
. Other difference is that ε = 0.05 (we used ε = 0.2). The

stabilization time is about 100 per unit that is 8.84 s. If we use the same ε and initials then we
can conclude that CONTROLLER 0 is slightly faster and uses smaller control value.

CONTROLLER 1 In order to achieve better response of the controller we may design decay
rate control by the next theorem

Theorem 7.2 (Decay rate control). Assume the polytopic model (5.3) with controller (5.4).
The largest lower bound on the decay rate by quadratic Lyapunov function is guaranteed by
the solution of the following generalized eigenvalue minimizations problem (GEVP):

maximize
X,M1,...,MR

α subject to

X > 0,

−XAT
r −ArX + MT

r BT
r + BrMr − 2αX > 0,

−XAT
r −ArX−XAT

s −AsX + MT
s BT

r + BrMs

+MT
r BT

s + BsMr − 4αX ≥ 0

for r < s ≤ R, except the pairs (r, s) such that wr(p(t))ws(p(t)) = 0,∀p(t), and where the
feedback gains are determined form the solutions by (7.18).

The simulation result is depicted on Figure 7.12 with x(0) =
(
0.023 m 0 0 0

)
. If we

compare Figures 7.11 and 7.12 we can observe that the system is stabilized significantly faster,
however the control value is considerably larger.

In the followings, we set constraints on the control value and the output to meet the control
specifications listed in Section 7.3.1.

CONTROLLER 2 In order to satisfy the constraints defined in Section 7.3.1, the following
LMIs are added to the previous ones.
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Figure 7.11: CONTROLLER 0: Asymptotic stability control design, x(0) = (0.023 0 0 0)
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Figure 7.12: CONTROLLER 1: Decay rate control design, x(0) = (0.023 0 0 0)
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Theorem 7.3 (Constraint on the control value). Assume that ‖x(0)‖ ≤ φ, where x(0) is
unknown, but the upper bound φ is known. The constraint ‖u(t)‖2 ≤ µ is enforced at all
times t ≥ 0 if the LMIs

φ2I ≤ X(
X MT

i

Mi µ2I

)
≥ 0

hold.

Theorem 7.4 (Constraint on the output). Assume that ‖x(0)‖ ≤ φ, where x(0) is unknown,
but the upper bound φ is known. The constraint ‖y(t)‖2 ≤ λ is enforced at all times t ≥ 0 if
the LMIs

φ2I ≤ X(
X XCT

i

CiX λ2I

)
≥ 0

hold.

Thus we solve these LMIs for the constraints together with the LMIs of Theorem 7.1
to guarantee asymptotic stability. The simulation result is depicted on Figure 7.13 with
x(0) =

(
0.023 m 0 0 0

)
. Comparing Figures 7.11 and 7.13 we can conclude that the

maximum control value of CONTROLLER 2 (0.0802 Nm) is significantly smaller than the
control value of CONTROLLER 1 (1.2113,Nm) and even of CONTROLLER 0 (0.2968 Nm),
see Figure 7.11. This is obviously expected by solving the LMIs of Theorem 7.3 and 7.4. We
can find simulation results of different controllers presented in the special issue [72].

Figure 2 of [72, page 324] shows the result of a simple linear controller (per unit param-
eters), where x(0) =

(
0.0195 m 0 0 0

)
. The stabilization time is more than 40 per unit

that is 3.1 s. Having the same initials CONTROLLER 2 stabilizes the system in about 2.5 s.
The control value is not published in [72, page 324].

Figures 3 and 4 of [72, page 363] present control results of different controllers for initial
vector x(0) =

(
0.03 m 0 0 0

)
. Here the controllers are derived based on nonlinear passive

control synthesis. In order to be comparable let us simulate the response of the CONTROLLER

2 for the same initials, see Figure 7.14. We can observe that the CONTROLLER 2 stabilizes
the system in about 6 s while the stabilization time on Figures 3 and 4 of [72, page 363]
is about 13 s and 20 s depending on the controller applied. The maximum control value of
CONTROLLER 2 is 0.0802 Nm while on the Figures 3 and 4 on the page 363 are between
0.03 Nm and 0.05 Nm depending on the controller applied. For instance, the full order control
system is stabilized in about 13 s with maximum 0.035 Nm control value. The conclusion is
that the CONTROLLER 2 is significantly faster, but generates twice as large control value in
the first moments.

Figures 2 and 3 on page 394 show the effectiveness of a measurement-scheduled control
for x(0) =

(
0.023 m 0 0 0

)
. CONTROLLER 2 on Figure 7.13 shows a slightly faster stabi-

lization and applies slightly smaller maximum (0.0802 Nm) control value than the controller
of Figures 2 and 3 on page 394. We can conclude that these control results are very similar.
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Figure 7.13: CONTROLLER 2: Asymptotic stability control design with constraints, x(0) =
(0.023 0 0 0)
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Figure 7.14: CONTROLLER 2: Asymptotic stability control design with constraints, x(0) =
(0.03 0 0 0)
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Figure 3 and 5 on page 412 present the control results of state-dependent Riccati Equation
based optimal solutions for x(0) =

(
0.0058 m 0 0 0

)
. Note that the values on the figures

are dimensionless. The stabilization time is about 1.9 s and the maximum control value is
0.0531 Nm. CONTROLLER 2 stabilizes the system in about 3.3 s with maximum 0.0802 Nm.
Figures 2 and 3 of paper [31] shows the saturated passivity based control results. This
simulation uses the same initials as our simulation shown on Figure 7.13. We can conclude
that the results are very similar in the sense of settling time and the maximum of the control
value.

7.3.3 Disturbance rejection performance
The disturbance rejection performance is also a measure to analyze the robustness of a
controller. Some articles of Special issue [72] on the TORA system proposes different
simulations and solutions for disturbance rejection.

For disturbance rejection performance the following extended TORA model is used. The
notation is the same as used in Section 7.1. The extended state-space model form with
disturbance is

ẋ(t) = f(x(t)) + g(x(t))u(t) + d(x)w(t), (7.19)

y = c(x(t)),

where

f(x(t)) =


x2

−x1+εx2
4 sinx3

1−ε2 cos2 x3

x4
ε cosx3(x1−εx2

4 sinx3)

1−ε2 cos2 x3

 , g(x(t)) =


0

−ε cosx3

1−ε2 cos2 x3

0
1

1−ε2 cos2 x3

 , d(x) =


0
1

1−ε2 cos2 x3

0
−ε cosx3

1−ε2 cos2 x3


(7.20)

c(x(t)) =

(
x1 0 0 0
0 0 x3 0

)
,

x(t) =
(
x1 x2 x3 x4

)T
=
(
ξ ξ̇ θ θ̇

)T
and w(t) is the disturbance.

The disturbance rejection property of CONTROLLER 2 designed in Section 7.3.2 in
introduced and compared to other results in the followings. Simulation of the disturbance
rejection of the controller derived via measurement-scheduled based technique is presented on
the Figure 6 of special issue [72, page 395]. In that simulation w(t) = 1.8 sin(10t) is added
to the system for all t > 0, where x(0) =

(
0 0 0 0

)
. The results are shown in Figure 7.15.

The system is stabilized in about 6 s and about 1.7 ·10−3 m amplitude remains. CONTROLLER

2 is also stabilized in about 6 s for the same initials and disturbance, however the remaining
amplitude is significantly smaller: 0.4 · 10−3 s.

Figure 13 of [72, page 419] shows the disturbance rejection of a controller design via
state dependent Riccati Equation (SDRE) technique. The disturbance w(t) = 0.01 sin(5t) is
added to the system for all t > 0, where x(0) =

(
0 0 0 0

)
. Note that this figure shows

dimensionless values. For comparison Figure 7.16 shows the results of CONTROLLER 2 for
the same initials and disturbance. When we compare Figure 7.16 to Figure 13 of [72, page
419] we can observe that the resulting performances are very similar.
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Figure 7.15: Controller 2. Asymptotic stability control design with constraints and disturbance
w(t) = 1.8 sin(10t), x(0) = (0 0 0 0)
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Figure 7.16: Controller 2. Asymptotic stability control design with constraints and disturbance
w(t) = 0.01 sin(5t), x(0) = (0 0 0 0)
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7.3.4 Evaluation of complexity relaxed TP model based controller de-
sign

For the present evaluation of complexity and approximation accuracy challenge, we apply the
control specification given in Section 7.3.1.

We compose a joint LMI system of Theorem 7.1 and Theorems 7.3 and 7.4 to guarantee
the stability issues and constraints defined in the above control specification.

CONTROLLER 4 We consider this controller as the reference controller, and the response
of the rest of the controllers are compared to this. The controller is designed for TP MODEL
2. This requires the solution of 67 LMI equations.

CONTROLLER 4b The feedback gains for the controller of TP MODEL 2b is obtained by
the feasible solution of an LMI system containing 46 LMI equations.

CONTROLLER 4c The LMI system of TP MODEL 2c consists of 29 LMIs. The feedback
gains of the controller, that is derived from the feasible solution of LMI system, is the
following:

CONTROLLER 4d We applied the same LMI system to TP MODEL 2d that results a
system of 16 LMI equations. The feedback gains of the controller is obtained from the
feasible solution of the LMI system.

Simulation results and comparison of derived controllers In the simulation the system’s
initial configuration was x(0) =

(
0.023 m 0 0 0

)
. The results of the four controllers are

shown and are plotted together for better visualization in Figure 7.17. Figure 7.18 shows
some parts of the simulation results magnified in order to highlight the differences. We can
see on the figures, there are only slight differences between the responses of the different
controllers, practically we can say that the results are identical despite of the applied reduction
during the TP model transformation. The main reason behind this fact is that the strength of
influence of the LTI models is proportional to the magnitude of the singular values. Therefore,
the magnitude of differences between the designed controllers is also strongly related to the
magnitude of the singular values. For illustration, we should analyze carefully the responses of
the controller of the exact model (indicated with “CTRL 4” in the figures), and the controller
CONTROLLER 4b. The difference is so small, because the difference of the exact TP model,
TP MODEL 4 and the TP MODEL 4b from which the controllers were derived is also really
small. The contribution of the neglected LTIs to the TP model is proportional to the ratios
of the singular values, and σ1,5 has only an effect of 0.012%. If we analyze the response of
CONTROLLER 4c, we cannot see more significant difference, because the contribution of σ1,4

is also around 0.025%, thus together with σ1,5 it is still around 0.037% in total. A slightly
significant change can be observer in the response of CONTROLLER 4d. In case the sum of the
discarded singular values has an effect of about 1.16%, thus a bigger results in the response
of the controller.
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Figure 7.17: Asymptotic stability controller design of exact and reduced TP models
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Figure 7.18: Magnification of Figure 7.17 for emphasizing the differences of controllers
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Table 7.2: Summary of approximation trade-off of the TORA system
Number of

singular
values kept

Number
of LTIs

Reduction
ratio of
model

transforma-
tion

Upper-
bound of

esti-
mated
error

Measured
maximal
L2 error

Number of
LMIs of

the
controller

Reduction
ration of the
number of

LMIs

5 10 0% 0 10−12 67 0%
4 8 20% 0.00416 0.0023 46 31%
3 6 40% 0.12675 0.0024 29 56%
2 4 60% 3.96015 0.21513 16 76%

Another important issue concerning these results is that in order to derive CONTROLLER

4, an LMI system of 67 LMIs has to be solved, whilst 16 LMIs can describe CONTROLLER 2,
the controller of the most reduced TP model that is a 76% of reduction. The TORA system is
a simple model, the number of LMIs is moderate, but by defining more constraints, applying
more complex controller specifications, such as decay rate control, observer design, etc., and
if the TP model of the system consists of more LTI systems, the number of LMIs can easily
explode to such a manner that is difficult to handle [81].

Table 7.2 shows a comprehensive chart on the approximation trade-off of the TORA
system.

Again we have to be careful with the approximation trade-off. In case of exact TP models,
the feasible solution of the LMI system are proofed to guarantee the stability and defined
controller specifications for original model. In this case the solution is trackable through
the LMIs and TP model transformation. On the other hand, if the TP model is only an
approximation of the original model, then in mathematical sense we can only say that the
stability and control specification are guaranteed only for the approximated model described
by the TP model. Even in case of comprehensive series of simulation the controller shows
stabilization capability, it is not trackable mathematically. For instance in case of a dynamic
system with chaotic behavior, a small error can cause explosion in the system. However,
in most cases the controllers derived from the approximated models are satisfactory as the
modeling error of typical identification techniques in in larger range than the approximation
error.

7.4 Observer based output-feedback controller design

7.4.1 Asymptotically stable observer design for the TORA system
In real-world control problems, if it often the case that the complete information of the states
of a system is not always available. In such cases, one need to resort to output-feedback
design methods such as observer-based designs.

As in all observer designs, TP model transformation based observers are required to satisfy

x(t)− x̂(t)→ 0 as t→∞,
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where x̂(t) denotes the state vector estimated by a TP model transformation based observer.
This condition guarantees that the steady-state error between x(t) and x̂(t) converges to 0.
As in the case of controller design, the PDC concept is employed to arrive at the following
observer structure:

ˆ̇x(t) = A(p(t))x̂(t) + B(p(t))u(t) + K(p(t))(y(t)− ŷ(t))

ŷ(t) = C(p(t))x̂(t),

That is in TP model form:

ˆ̇x(t) = A⊗
n

w(pn(t))x̂(t) + B⊗
n

wn(pn(t))u(t) +

+K⊗
n

w(pn(t))(y(t)− ŷ(t)) (7.21)

ŷ(t) = C ⊗
n

w(pn(t))x̂(t).

At this point, we should emphasize that the vector p(t) does not contain values form the
estimated state-vector x̂(t) in our case, since p1(t) equals to angular position (x3) and p2(t)
equals to angular speed (x4(t)). These variables are observable. We estimate only state-values
x1(t) and x2(t). Consequently, the goal, in the present case, is to determine gains in tensor K
for (7.21).

CONTROLLER 5 For this goal, the following LMI theorem can be derived:

Theorem 7.5 (Globally and asymptotically stable observer). Assume the polytopic model
(5.3) with controller (5.4) and observer structure (7.21). This controller is globally and
asymptotically stable if there exists such P1 > 0,P2 > 0 and M1i,N2i (i = 1, . . . , R)
satisfying equations

P1A
T
i −MT

1iB
T
i + AiP1 −BiM1i < 0,

AT
i P2 −CT

i NT
2i + P2Ai −N2iCi < 0,

P1A
T
i −MT

1jB
T
i + AjP1 −BiM1j + P1A

T
j −MT

1iB
T
j + AjP1 −BjM1i < 0,

AT
i P2 −CT

j NT
2i + P2Ai −N2iCj + AT

j P2 −CT
i NT

2j + P2Aj −N2jCi < 0

for i < j ≤ R, except the pairs (i, j) such that wi(p(t))wj(p(t)) = 0,∀p(t), and where
M1i = FiP1 and N2i = P2Ki.

The matrices P1,P2,M1i and N2i can be found using convex optimization techniques
involving LMIs if they exist. The feedback gains and the observer gains can then be obtained
as Fi = M1iP

−1
1 and Ki = P−1

2 N2i.

We apply now Theorem 7.5 and Theorems 7.3 and 7.4 for system constraints to TP
MODEL 2 of the TORA system. We define the matrix C for all r from

y(t) = Cx(t),

that is in present case:

Cr =

(
0 0 1 0
0 0 0 1

)
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The LMIs of Theorem 7.5, applied to TP MODEL 2, are feasible.
In conclusion the state values x1(t) and x2(t) are estimated by (7.21) as:

ˆ̇x(t) = A(p(t))x̂(t) + B(p(t))u(t)+(
5∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t))ki,j

)
(y(t)− ŷ(t)) ,

where

y(t) =

(
x3(t)
x4(t)

)
and ŷ(t) =

(
x̂3(t)
x̂4(t)

)
and p(t) =

(
x3(t)
x4(t)

)
,

The design process, similar to the state-feedback controller design, does not need any analytic
interaction and takes a few minutes only on regular computers. We can easily guarantee
various design specification beyond stability by selecting proper LMI conditions.

7.4.2 Simulation results
To demonstrate the performance of the output-feedback control system, numerical experiments
are presented in this section. In order to be comparable to other published results, the
numerical examples are performed with the system parameters listed in Table 7.1, control
specifications detailed in Section 7.3.1, and for initial conditions x(t) =

(
0.023 m 0 0 0

)
.

The initial observer state is x̂(t) =
(
0 0 0 0

)
. Figure 7.19 shows that the system is

asymptotically stabilized. We can see that the stabilization time is a bit longer with the
observer than without the observer as depicted in Figure 7.13. Figure 7.20 shows how the
estimated state variables x̂1(t) and x̂2(t) converge to the state variables x1(t) and x2(t), while
Figure 7.21 shows how the error y(t)− ŷ(t) converges to zero.
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Figure 7.19: CONTROLLER 5: Observer based asymptotic stability control design with
constraints, x(0) = (0.023 0 0 0)
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Figure 7.20: Convergence of estimated state variables x1 and x2 to state variables
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75



Chapter 8

Single Pendulum Gantry

The Single Pendulum Gantry system, an example of a translational electromechanical system,
is used for educational purposes at University of Zagreb, Croatia. It is an experimental testbed,
and the goal is to design, compare and evaluate several controller approaches. For more
details about the testbed, please, refer to [53, 54].

8.1 Equation of motion
Let us consider the stabilization problem as shown in Figure 8.1. Only a brief discus-
sion is presented here, for detailed description, please, refer to [53, 54]. Letting x(t) =(
x1 x2 x3 x4

)T
=
(
xc ẋc α α̇

)T , the equations of motion in linear parameter-varying
state-space form is:

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), (8.1)

Figure 8.1: Schematic of the Single Pendulum Gantry model
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Table 8.1: Parameters of the SPG system
Description Parameter Value Units
Equivalent viscous damping coefficient Beq 5.4 N ms/rad
Viscous damping coefficient Bp 0.0024 N ms/rad
Planetary gearbox efficiency ηg 1 —
Motor efficiency ηm 1 —
Gravitational constant of earth g 9.81 m/s2

Pendulum moment of inertia Ip 0.0078838 kg m2

Rotor moment of inertia Jm 3.9001e-007 kg m2

Planetary gearbox gear ratio Kg 3.71 —
Back electro-motive force constant Km 0.0076776 Vs
Motor torque constant Kt 0.007683 Nm/A
Pendulum length from pivot to COG lp 0.3302 m
Lumped mass of the cart system Mc 1.0731 kg
Pendulum mass Mp 0.23 kg
Motor armature resistance Rm 2.6 Ω
Motor pinion radius rmp 0.00635 m

where

A(x(t)) =


0 1 0 0
0 a1/ax a2/ax a3/ax
0 0 0 1
0 a4/ax a5/ax a6/ax

 ,B(x(t)) =


0

b1/ax
0

a2/bx

 ,

a1 = −(Ip +Mpl
2
p)

(
ηgK

2
gηmKtKm

Rmr2
mp

+Beq

)
a2 =

M2
p l

2
pg cos(x3)sin(x3)

x3

a3 = (M2
p l

3
p + lpMplp) sin(x3)x4 +MplpBp cos(x3)

a4 = Mplp cos(x3)

(
Beq −

ηgK
2
gηmKtKm

Rmr2
mp

)
a5 =

−(Mc +Mp)Mplp sin(x3)

x3

a6 = −(Mc +Mp)Bp −M2
p l

2
p cos(x3) sin(x3)x4

ax = (Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin2(x3)

b1 = −(IpMplp)
2ηgKgηmKt

Rmrmp

b2 = −Mplp cos(x3)
ηgKgηmKt

Rmrmp

The parameters of the experimental system are given in Table 8.1.
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8.2 TP model representations of the Single Pendulum Gantry
Observe that the nonlinearity is caused by state values x3(t) and x4(t). The operation range
of the pendulum’s tip which is considered as the load of the gantry crane system is limited
to ±25 deg for safety reasons i.e. the swinging of the load should be limited, and the an-
gular acceleration for the motor is maximum 0.7 rad

s . For the TP model transformation we
define the transformation space as Ω = [−27

180
π, 27

180
π]× [−0.8, 0.8] (note that these intervals

can be arbitrarily defined). Let the density of the discretization grid be 137 × 137. The
discretization results in AD

i,j and BD
i,j , where i, j = 1 . . . 137. Then we construct the matrix

SDi,j =
(
AD
i,j BD

i,j

)
, and after that the tensor SD ∈ R137×137×4×5 from SDi,j . The TP transfor-

mation is executed by the beta version of the MATLAB Toolbox for TP Model Transformation.
If we execute HOSVD on the first two dimensions of SD then we find that the rank of SD on
the first two dimensions are 7 and 2 respectively.

The singular values are as follows in the dimension x3: σ1,1 = 1609.4, σ1,2 = 206.72,
σ1,3 = 12.604, σ1,4 = 10.719, σ1,5 = 2.3109, σ1,6 = 0.14075, σ1,7 = 0.001854, and in the
dimension x4: σ2,1 = 1622.7, σ2,2 = 10.965. This means that the SPG system can be exactly
given as convex combination of 7×2 = 14 linear vertex models (the L2 numerical error of the
TP model transformation for exact model is less than 10−12). The TP model transformation
describes SPG system as:

ẋ(t) = S(t)(p(t))

(
x(t)
u(t)

)
=

7∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (8.2)

As in most cases it is to expensive in computational sense to work with 14 LTI models, and
in real world situations the sensor and actuators accuracy is much worse than the modeling
accuracy, it is possible to reduce the model. If we only keep the four largest singular values
in dimension x3(t) and keep the two singular values in dimension x4(t), the system can be
reduced to 8 LTI models. The theoretical maximum of L2 approximation error is the sum of
the discarded singular values that means σ1,5 + σ1,6 + σ1,7 = 2.4535 however by checking
the actual L2 error for 10000 test points, an average maximal error of 0.080307 is received.
This means that by adding a maximal theoretical error of 0.13%, the measurement shows that
the actual additional error is not significant at all, the complexity of the system is reduced by
43%. The resulting system model is as follows, and its weighting functions are depicted in
Figure 8.2.

ẋ(t) = S(p(t))

(
x(t)
u(t)

)
≈

4∑
i=1

2∑
j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) . (8.3)

The LTI system matrices of the model are:

A1,1 =


0 1.0000 0 0
0 −11.2630 1.2457 −0.0192
0 0 0 1.0000
0 22.8870 −24.2374 −0.0311

 B1,1 =


0

1.4794
0

−3.0061
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Figure 8.2: Weighting functions of the TP model on dimensions x3(t) and x4(t)

A1,2 =


0 1.0000 0 0
0 −11.2906 1.2657 0.0270
0 0 0 1.0000
0 23.1794 −24.3744 −0.1306

 B1,2 =


0

1.4830
0

−3.0455



A2,1 =


0 1.0000 0 0
0 −11.8223 1.6427 0.0052
0 0 0 1.0000
0 28.5811 −26.9299 −0.0852

 B2,1 =


0

1.5528
0

−3.7540



A2,2 =


0 1.0000 0 0
0 −12.4388 2.1008 0.0066
0 0 0 1.0000
0 35.3681 −30.0863 −0.0901

 B2,2 =


0

1.6338
0

−4.6455



A3,1 =


0 1.0000 0 0
0 −11.2630 1.2457 0.0275
0 0 0 1.0000
0 22.8870 −24.2374 −0.1316

 B3,1 =


0

1.4794
0

−3.0061



A3,2 =


0 1.0000 0 0
0 −11.2906 1.2657 −0.0185
0 0 0 1.0000
0 23.1794 −24.3744 −0.0324

 B3,2 =


0

1.4830
0

−3.0455



A4,1 =


0 1.0000 0 0
0 −11.8223 1.6427 0.0053
0 0 0 1.0000
0 28.5811 −26.9299 −0.0855

 B4,1 =


0

1.5528
0

−3.7540



A4,2 =


0 1.0000 0 0
0 −12.4388 2.1008 0.0063
0 0 0 1.0000
0 35.3681 −30.0863 −0.0894

 B4,2 =


0

1.6338
0

−4.6544


A linearized model is selected for the conventional state-feedback control design
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Alin =


0 1 0 0
0 −11.651 1.521 0.0049
0 0 0 1
0 26.845 −26.109 −0.0841

 Blin =


0

1.530
0

−3.526

 (8.4)

8.2.1 Controller design
We compare the control performances to various different alternative solutions.

Conventional controller based on pole placement

CONTROLLER 1 (Pole Placement for the linearized system) The poles of the closed
loop linearized system (8.4) with state-feedback are selected with the consideration of about
2 sec settling time and 5% overshoot in the following way

Poles =
(−1.8182 + 1.9067i −1.8182− 1.9067i −20 −40

)
(8.5)

The state feedback control is

u = −Flinx, Flin =
(
160 88 −210 23

)
(8.6)

Derivation of TP based controllers

In the present case the controller (5.4) has the following form:

u = −
(

4∑
i=1

2∑
j=1

w1,i(x3)w2,j(x4)Fi,j

)
x, (8.7)

Two methods are presented to define the feedback gains Fi,j for the eight systems.

CONTROLLER 2 (Pole Placement for TP based system) The feedback gains Fi,j are
selected separately for the all systems to place closed loop system poles to (8.5).

FPP
1,1 =

(
158.45 86.771 −205.71 22.625

)
FPP

1,2 =
(
172.65 95.228 −243.48 29.380

)
FPP

2,1 =
(
171.96 94.775 −241.20 29.014

)
FPP

2,2 =
(
140.72 76.248 −162.00 15.788

)
FPP

3,1 =
(
158.45 86.772 −205.72 22.626

)
FPP

3,2 =
(
172.65 95.185 −243.21 29.392

)
FPP

4,1 =
(
171.96 94.811 −241.43 28.999

)
FPP

4,2 =
(
140.72 76.238 −161.95 15.783

)
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CONTROLLER 3 (LMI for TP based system) We design here a controller capable of
asymptotically stabilizing the SPG and satisfies the given constraints. By using the LMI
solver of MATLAB Robust Control Toolbox, the following feasible solution and feedback
gains are obtained for the controller:

FLMI
1,1 =

(
118.3947 51.3126 −45.6237 16.4703

)
FLMI

1,2 =
(
118.0638 51.3291 −46.1783 16.4069

)
FLMI

2,1 =
(
117.5669 52.2320 −50.2620 15.9900

)
FLMI

2,2 =
(
141.1224 63.2115 −56.1795 19.1934

)
FLMI

3,1 =
(
118.2570 51.2608 −45.6394 16.4747

)
FLMI

3,2 =
(
118.2075 51.3926 −46.1995 16.3999

)
FLMI

4,1 =
(
117.5665 52.2318 −50.2620 15.9900

)
FLMI

4,2 =
(
141.1182 63.2101 −56.1805 19.1918

)
8.2.2 Experimental results
The experimental results with the three controllers are presented in Figure 8.3–8.5. The
reference was a pulse train. In the first set of plots (Figure 8.3) the time functions of the
reference and the load (tip of the pendulum) position is shown. In the second set of plots
(Figure 8.4), the time functions of the angle of the load are shown. As it was expected, the
performances of CONTROLLER 1 and CONTROLLER 2 are quite similar since they are set
to have the same poles. The 5% overshoot can be observed well. The CONTROLLER 3
seems to be faster but there are no significant difference among the three responses. However,
CONTROLLER 3 does not produce an overshoot, so it sticks a bit before reaching goal
position. A more flexible LMI stability theorem can offer such characteristics. Around 4 sec
you can also see a small jump on the plots. These are coming from the mechanical damage of
the trail. The main difference appears in the control activity. According to Figure 8.5, the
CONTROLLER 3 has the most smooth time functions.
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Figure 8.3: The position of the load Mp, comparison of the performances of three controllers
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Figure 8.4: The the angle of the load (Mp), comparison of the performances of three controllers
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Figure 8.5: The control signal, comparison of the performances of three controllers
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Part IV

Conclusion
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Chapter 9

Theses

Thesis 1: Computational complexity relaxation of the Tensor
Product model transformation by decreasing the discretiza-
tion grid density [P–1]
I proposed a computational complexity relaxed TP model transformation that is executable on
a sparse discretization grid of the system matrix that immediately leads to a computational
complexity reduction. However, the utilization of the sparse discretization grid may degrade
the accuracy of the convex hull searching. In order to compensate this problem, I also proposed
a theoretical modification of the TP model transformation that is capable of extending the
TP model to a dense discretization grid. I also developed a numerical implementation of
the modified TP model transformation. The proposed implementation is ready to use in
real-world applications, I made it available as a toolbox to MATLAB. The detailed algorithm
is discussed in Section 6.1.1 on page 34.

I gave an estimate that the proposed relaxation polynomially reduces the computational
load of the TP model transformation. In practical cases the expected number of weighting
functions are small, the grid density can be reduced by several orders. The efficiency of the
proposed modification is evaluated in Section 6.1.2 on page 37.

Thesis 2: Computational complexity relaxation of the Tensor
Product model transformation by separating the constant
and non-constant elements [P–2]
I made a suggestion for the relaxation of the computational load in TP model transformation
by avoiding the computation of constant elements in the LPV model. The key idea of this
approach is the separation of constant and non-constant elements of the discretized system
matrix. For the numerical implementation, I developed an algorithm that decompose the
system matrix into constant and non-constant matrices, then execute a modified TP model
transformation on each discretized set, and finally reconstruct into the TP model form. I must
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emphasize here that the proposed modification can only be applied to convex TP models, it
cannot be used for HOSVD-based canonical form. The proposed method is ready to use in
real-world applications, I made it available as a toolbox to MATLAB. The details are discussed
in Section 6.2.1 on page 42.

I showed that the proposed separation of the constant and non-constant elements of the
discretized system matrix can significantly reduce the computational load in cases when the
ratio of constant elements in the discretized matrix is high. The proposed method gives a
linear complexity reduction. In practical cases the ratio of the constant elements in the system
matrix is about 70–80%, thus the proposed method offers a good relaxation in these cases.
Section 6.2.3 on page 43 shows a numerical example for it.

Thesis 3: Solving complex control problems by Tensor Prod-
uct model transformation based controller design [P–3, 5, 6,
12, 16–18]
Thesis 3.1 I proved that the finite element HOSVD-based canonical forms of the TORA
and SPG systems exist as a parameter-varying weighting combination of ten, fourteen vertex
systems, respectively. These new forms are given as(

ẋ(t)
y(t)

)
= S 2⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
. (9.1)

In this regards, I proved that different types of convex finite element TP models (Sum-
Normalized and Non-Negative, tight convex, Inverted Normalized and Relaxed Normalized)
exist and can be given as a convex combination of minimum ten and fourteen vertex systems,
respectively for TORA and SPG systems.

In Section 7.2 on page 49 I derived all these finite element TP models for TORA system,
whilst Section 8.2 on page 78 gives the TP models for SPG system. These TP model forms
are new representations, they have not been published before in the scientific literature. This
new representation opens a new way for LMI based controller design methodologies.

Thesis 3.2 I proved by the Lyapunov stability theorems formulated in terms of linear matrix
inequalities in Section 7.2.1 and 8.2 that the continuous finite element convex polytopic model
of TORA and SPG systems are controllable and observable in the space Ω.

I proved that the TP models (9.1) of the TORA and SPG systems with SN, NN, and NO
type weighting functions satisfies the conditions of the Parallel Distributed Compensation
based controller design. Utilizing this controller design technique I derived controllers. I
proved by the LMI theorems under PDC framework that the derived controllers guarantee
multi-objective control performances such as asymptotic stability and given constraints on
control value and on the output vector. Further details are discussed in Section 7.3 on page 58
for TORA system and in Section 8.2.2 on page 81 for SPG system.
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I also showed that the tight convex TP model of TORA system immediately applicable for
observer structure based output feedback control design. Utilizing this observer structure we
are capable of estimating unmeasurable state vectors, and guarantee that this output feedback
control design satisfies multi-objective control performances such as asymptotic stability and
given constraints on control value and on the output vector. Further details are discussed in
Section 7.4 on page 71.

Thesis 3.3 I carried out the analysis of the trade-off property between the computational
complexity and approximation accuracy of different types of convex (SN, NN, and CNO
type weighting functions) polytopic models of the TORA system. I showed by numerical
simulations that there is no significant difference in control performance of the different
complexity reduced TP models, whilst the computational complexity of the TP model is
reduced by 60% and the controller is 76% smaller than the original. It is also important to
emphasize that not only the complexity of the controller reduced significantly, but also the
complexity load of the whole control design process became much smaller as the decrease
of the linear time-invariant systems directly polynomially reduce the number of LMI terms.
Section 7.3.4 on page 68 gives more details information.

88



Nomenclature

A few comments are appropriate on the notation used in this dissertation. To facilitate
the distinction between scalars, vectors, matrices, and higher-order tensors, the type of a
given quantity will be reflected by its representation: scalars are denoted by lower-case
letters (a, b, . . . ;α, β, . . . ) (italic shaped), vectors are written as bold-face lower case letters
(a,b, . . . ), matrices correspond to bold-face capitals (A,B, . . . ), and tensors are written as
calligraphic letters (A,B, . . . ). This notation is consistently used for lower-order parts of a
given structure. For example, the entry with row index i and column index j in a matrix A,
i.e., (A)ij , is symbolized by aij (also (a)i = ai and (A)i1i2...iN = ai1i2...iN ); furthermore, the
ith column vector of a matrix A is denoted as ai, i.e., A = (a1a2 . . . ). To enhance the overall
readability, we have made one exception to this rule: as we frequently use the characters i, j,
r, and n to represent of indices (counters), I , J , R, and N will be reserved to denote the index
upper bounds, unless stated otherwise. The pseudo inverse of matrix A is indicated by A+.

Symbols used in the dissertation

• F = feedback gains of the vertex systems

• S(p(t)) = the system matrix of linear parameter-varying state-space model

• S = coefficient tensor of the finite element TP model constructed from the vertex
system

• σ = singular value

• Θ = discretization grid density

• u(t) = control value

• Un = matrix representation of the weighting functions

• w(p) = weighting function of the finite element TP model. The superscript of the
weighting functions w(p) shows its type, such as wSN(p), wNN(p), wNO(p), wCNO(p),
wINO(p), and wRNO(p) mean that the type of the weighting functions are SN, NN, NO,
CNO, INO, or RNO, respectively. The convex weighting functions that are at least SN
and NN types are indicated as wCO(p).

• x = state vector

• Ω = transformation space of the TP model transformation
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[P–16] Z. Petres, P. Korondi, and F. Kolonić. Practical application of tensor product model
transformation based control design. IFAC Control Engineering Practice, 2006.
(submitted).

[P–17] Z. Petres, P. Baranyi, and H. Hashimoto. Approximation and Complexity Trade-off
by TP model transformation in Controller Design: a Case Study of the TORA system.
Asian Journal of Control, 2005. (submitted).
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[11] P. Baranyi, L. Szeidl, P. Várlaki, and Y. Yam. Numerical reconstruction of the HOSVD-
based canonical form of polytopic dynamic models. In 10th International Conference
on Intelligent Engineering Systems, pages 196–201, London, UK, June 26-28 2006.

92



[12] P. Baranyi, D. Tikk, Y. Yam, and R. J. Patton. From differential equations to PDC
controller design via numerical transformation. Computers in Industry, Elsevier Science,
51:281–297, 2003.

[13] P. Baranyi, A. R. Varkonyi-Koczy, P. Varlaki, P. Michelberger, and R. J. Patton. Sin-
gular Value Based Model Approximation. World Scientific and Engineering Society
Press, Danvers, section in n. mastorakis (ed.) problems in applied mathematics and
computational intelligence, mathematics and computers in sci. and eng. edition, 2001.

[14] P. Baranyi, P. L. Várkonyi, and P. Korondi. Different affine decomposition of the
model of the prototypical aeroelastic wing section by TP model transformation. In
IEEE 9th International Conference on Intelligent Engineering Systems, pages 93–98,
Mediterranean Sea, September 16–19 2005.

[15] P. Baranyi and Y. Yam. Fuzzy rule base reduction, chapter Chapter 7 of Fuzzy IF-THEN
Rules in Computational Intelligence: Theory and Applications, pages 135–160. Kluwer,
2000.

[16] B. R. Barmish. Stabilization of uncertain systems via linear control. IEEE Transaction
on Automatic Control, AC-28:848–850, 1983.

[17] E. K. Blum and L. K. Li. Approximation theory and feedforward networks. Neural
Netwroks, 4(4):511–515, 1991.

[18] J. Bokor, P. Baranyi, P. Michelbereger, and P. Varlaki. Tp model transformation in
non-linear system control. In 3rd IEEE International Conference on Computational
Cybernetics (ICCC), pages 111–119, Mauritius, Greece, 13-16 April 2005.

[19] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing the H∞
norm of a transfer matrix related problems. Math. Contr. Sign. Syst., 2:207–219, 1989.

[20] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
Systems and Control Theory. SIAM books, Philadelphia, 1994.

[21] S. Boyd and Q. Yang. Structured and simultaneous Lyapunov functions for system
stability problems. International Journal on Control, 49:2215–2240, 1989.

[22] R. Bupp, D. S. Bernstein, and V. T. Coppola. A benchmark problem for nonlinear
control design. International Journal of Robust and Nonlinear Control, 8:307–310,
1998.

[23] R. Bupp, V. T. Coppola, and D. S. Bernstein. Vibration suppression of multi-modal
translational motion using a rotational actuator. In Proc. of the IEEE Int. Decision and
Control, pages 4030–4034, Orlando, FL, 1994.

[24] R. T. Bupp, D. S. Bernstein, and V. T. Coppola. A benchmark problem for nonlinear con-
trol design: Problem statement, experiment testbed and passive nonlinear compensation.
American Control Conference, Seattle, pages 4363–4367, 1995.

93



[25] J. L. Castro. Fuzzy logic controllers are universal approximators. IEEE Trans. on SMC,
25:629–635, 1995.

[26] M. Chilali and P. Gahinet. H∞ design with pole placement constraints: an LMI approach.
In Proceedings of Conference on Decision Control, pages 553–558, 1994.

[27] G. Cybenko. Approximation by superposition of sigmoidal functions. Mathematics of
Control, Signals and Systems, 2:303–314, 1989.

[28] E. F. Deprettere, editor. SVD and Signal Processing, volume Algorithms, Applications
and Architectures. North-Holland, Amsterdam, 1988.

[29] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis. State-space solutions to standard
H2 and H∞ control problems. IEEE Trans. Aut. Contr., AC-34:831–847, 1989.

[30] A. Edelmayer and J. Bokor. Optimal H2 and H∞ scaling for sensitivity optimization
detection filters. International Journal of Robust and Nonlinear Control, 12(8):749–760,
2002.

[31] G. Escobar, R. Ortega, and H. Sira-Ramirez. Output-feedback global stabilization
of a nonlinear benchmark system using a saturated passivity-based controller. IEEE
Transaction on Control System Technology, 7(2):289–293, 1999.

[32] E. Feron, P. Apkarian, and P. Gahinet. S-procedure for the analyisi of control systems
with parametric uncertanities via parameter-dependent lyapunov functions. Thrid SIAM
Conf. on Contr. and its Applic., 1995.

[33] P. Gahinet. Explicit controller formulas for lmi-based H∞ synthesis. Automatica and
also in Proc. Amer. Contr. Conf., pages 2396–2400, 1994.

[34] P. Gahinet and P. Apkarian. A linear matrix inequality approach to H∞ control. Interna-
tional Journal on Robust and Nonlinear Control, 4:421–448, 1994.

[35] P. Gahinet, P. Apkarian, and M. Chilali. Affine parameter-dependent Lyapunov functions
for real parametric uncertainty. In Proceedings of Conference on Decision Control,
pages 2026–2031, 1994.

[36] P. Gahinet and A. J. Laub. Reliable computation of γopt in singular H∞ control. SIAM J.
Contr. Opt., also in Proc. Conf. Dec. Contr., pages 1527–1532, 1994.

[37] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali. LMI Control Toolbox User’s
Guide. The MathWorks, Inc., 1995.
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