
On an Anti-Ramsey
Problem of Burr, Erdős,
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Abstract: Given a graph L, in this article we investigate the anti-Ramsey
number χS (n,e,L), defined to be the minimum number of colors needed to
edge-color some graph G(n,e) with n vertices and e edges so that in every
copy of L in G all edges have different colors. We call such a copy of L totally
multicolored (TMC).

In [7] among many other interesting results and problems, Burr, Erdős,
Graham, and T. Sós asked the following question: Let L be a connected
bipartite graph which is not a star. Is it true then that

χS(n, αn2, L)/n → ∞ as n → ∞?
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In this article, we prove a slightly weaker statement, namely we show
that the statement is true if L is a connected bipartite graph, which is not a
complete bipartite graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 147–156, 2006
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1. INTRODUCTION

A. Notation and Definitions

We let V (G) and E(G) denote the vertex-set and the edge-set of the graph G, and
(A, B) or (A, B, E) denote a bipartite graph G = (V, E), where V = A ∪ B, and
E ⊂ A × B. In general, given any graph G and two disjoint subsets A, B of V (G),
the pair (A, B) is the graph restricted to A × B. N(v) is the set of neighbors of
v ∈ V . Hence the size of N(v) is |N(v)| = deg(v) = degG(v), the degree of v. For
a vertex v ∈ V and set U ⊂ V − {v}, we denote by NG(v, U) the neighbors of v

in U, degG(v, U) = |NG(v, U)|. P4 denotes the path with 4 vertices. We denote by
e(A, B) the number of edges of G with one endpoint in A and the other in B. For
non-empty A and B,

d(A, B) = e(A, B)

|A||B|
is the density of the graph between A and B.

Definition 1. The pair (A, B) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B|

imply

|d(X, Y ) − d(A, B)| < ε,

otherwise it is ε-irregular.

A graph L is embeddable into another graph G, if G has a subgraph isomorphic
to L, that is, if there is a one-to-one map (injection) φ : V (L) → V (G) such that
(x, y) ∈ E(L) implies (φ(x), φ(y)) ∈ E(G). Note that in this article subgraph does
not mean an induced subgraph. In a graph two edges are called strongly independent,
if they are disjoint and all four vertices span no other edge.

B. Anti-Ramsey Problems

In traditional Ramsey theory (see e.g. [9]) a typical question is the following. Given
a graph L and an integer r > 0, which graphs G have the property that, no matter
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how the edges of G are r-colored, there is a monochromatic copy of L, in other
words a subgraph of G isomorphic to L in which all edges have the same color.

In anti-Ramsey theory, we go in the opposite direction and we try to find edge-
colorings such that all copies of L have all edges of different colors. We call such a
copy of L totally multicolored (TMC). Anti-Ramsey numbers were introduced by
Erdős, Simonovits, and Sós [8] in the 1970s, and they have been actively studied
recently (see e.g. [1–4,6,7,13]).

The following extremal anti-Ramsey numbers were introduced and studied in [6]
and [7] (see also [10] and [11]). Define χS(n, e, L) to be the smallest integer r such
that there exists a graph G with n vertices and e edges that has an edge-coloring
in r colors such that every L in G is TMC. This notation comes from the fact that
the value we seek is also the strong chromatic number of the hypergraph which
has as its set of points the edges of G, with (hyper)edges consisting of the sets of
edges of G which form copies of L. It turns out that the determination of χS(n, e, L)
is surprisingly deep. It is closely related, for example, to the celebrated function
rk(n), the size of the largest subset of {1, 2, . . . , n} containing no k-term arithmetic
progression. Among many other interesting results and problems, in [6] and [7]
the authors proved the following result for bipartite L’s which contain two strongly
independent edges.

Theorem 1 ([16]). Suppose L is a bipartite graph having at least two strongly
independent edges, and maximum degree at least two. Then for any α > 0, if e >

αn2, we have

χS(n, e, L) > α′n2,

for some fixed positive constant α′ depending on α.

On the other hand, whenever L does not have two strongly independent edges
(even when L is not necessarily bipartite), χS(n, e, L) can be much smaller.

Theorem 2 ([6]). If no two edges of L are strongly independent and e < ( 1
2 − ε)n2

for some fixed ε > 0, then

χS(n, e, L) = O(n2/ log n).

For the special case L = P4, even stronger results were obtained.

Theorem 3 ([7]). We have

χS(n, cnr3(n), P4) ≤ n for a suitable c > 0.

For any α > 0, we have χS(n, αn2, P4) > cn for any c if n is sufficiently large.
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With this last result in mind, in [7] the authors asked the following question. Let
L be a connected bipartite graph which is not a star. Is it true that

χS(n, αn2, L)/n → ∞ as n → ∞?

Note that the statement is clearly not true for stars. In this article, we prove a slightly
weaker statement. Namely we show that the statement is true if L is a connected
bipartite graph which is not a complete bipartite graph.

Theorem 4. For any α, c > 0 there exists an n0 = n0(α, c) such that if n ≥ n0,
e > αn2 and L is a connected bipartite graph which is not a complete bipartite
graph, then

χS(n, e, L) > cn.

However, the original question still remains open for complete bipartite graphs
that are not stars, for instance for C4.

In the next section, we provide the tools, including the Regularity Lemma. Then
in Section 3 we prove the theorem by essentially reducing the general case to that
of P4.

2. TOOLS

In the proof the Regularity Lemma of Szemerédi [12] plays a central role. Here we
will use the following variation of the lemma.

Lemma 1 (Regularity Lemma – Degree form). For every ε > 0 there is an
M = M(ε) such that if G = (V, E) is any graph and d ∈ [0, 1] is any real num-
ber, then there is a partition of the vertex-set V into t + 1 sets (so-called clusters)
C0, C1, . . . , Ct , and there is a subgraph G′ = (V, E′) with the following properties:

• t ≤ M,
• |C0| ≤ ε|V |,
• all clusters Ci, i ≥ 1, are of the same size,
• degG′(v) > degG(v) − (d + ε)|V | for all v ∈ V ,
• G′|Ci

= ∅ i ≥ 1, (Ci are independent in G′),
• all pairs G′|Ci×Cj

, 1 ≤ i < j ≤ t, are ε-regular, each with density 0 or exceed-
ing d.

This form (see [10]) can easily be obtained by applying the original Regularity
Lemma (with a smaller value of ε), adding to the exceptional set C0 all clusters
incident to many irregular pairs, and then deleting all edges between any other
clusters where the edges either do not form a regular pair or they do but with a
density at most d.
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We will also use a simple lemma from [6].

Lemma 2. Let X be a set of N elements, 0 < β < 1, k = 
 2
β
�. Suppose that

B1, . . . , Bk ⊂ X satisfy |Bi| ≥ βN. Then there exist 1 ≤ i < j ≤ k with

|Bi ∩ Bj| >
β2N

5
.

Proof. Suppose the contrary and let us bound the size of the union of the sets.

N ≥ |B1 ∪ . . . ∪ Bk| ≥
k∑

i=1

|Bi| −
∑

1≤i<j≤k

|Bi ∩ Bj| ≥ kβN −
(

k

2

)
β2N

5

> 2N − 9

10
N > N,

which is a contradiction. �

3. PROOF OF THEOREM 4

Let c, α > 0 be fixed real numbers; assume that c ≥ 1 without loss of generality.
Write |V (L)| = l. Suppose that G is a graph with n vertices and e edges where
e > αn2 and n is sufficiently large. Suppose further that the edges of G are colored
by at most cn colors. We will show that there is a copy of L in G that is not TMC,
implying the theorem. Thus we want to find an embedding φ : V (L) → V (G) such
that the embedded copy of L is not TMC.

Let us denote the two color classes in the bipartition of L by A and B. Since L
is not a complete bipartite graph, it contains a vertex from A and a vertex from B
which are not adjacent. Furthermore, since L is connected there is an edge leaving
both of these vertices. Finally, the other endpoints of these two edges must be
connected by an edge because otherwise we have two strongly independent edges
in L, and then a much stronger result is true than Theorem 4 (see Theorem 1). Thus
by the above, there is an induced P4 in L, which we denote by (a1, b1, a2, b2) where
ai ∈ A, bi ∈ B, i = 1, 2. Denote the remaining vertices of L (if there are any) in A
by a3, . . . , a|A| and in B by b3, . . . , b|B|. First we will find an embedding of this P4

with a repeated color, then an arbitrary embedding of the rest of L, thus giving a
copy of L in G that is not TMC.

Let us apply the degree form of the Regularity Lemma (Lemma 1) for G with

d = α

2
and ε =

( α

14c

)15l

. (1)
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Denote

N = |C1| = . . . = |Ct| = n − |C0|
t

.

Let us remove first from G′ the vertices of C0 and all the edges incident to them.
Then we remove all exceptional edges (u, v) for which if u ∈ Ci, v ∈ Cj, i, j ≥ 1
then either we have

degG′(u, Cj) < (d − ε)N =
(α

2
− ε

)
N,

or

degG′(v, Ci) < (d − ε)N =
(α

2
− ε

)
N.

Let us denote the resulting graph by G′′.
By the ε-regularity of the pair G′|Ci×Cj

with density exceeding d, at most 2εN2

exceptional edges of the pair G′|Ci×Cj
are removed, and thus at most 2εn2 excep-

tional edges of G′ are removed in total which are not adjacent to C0.
Then using (1) we have

|E(G′′)| = 1

2

∑
v∈V (G′′)

degG′′(v) ≥ 1

2

∑
v∈V (G′′)

(degG′(v) − |C0|) − 2εn2

>
1

2

∑
v∈V (G′′)

(degG(v) − (d + ε)n − |C0|) − 2εn2

≥ 1

2

∑
v∈V (G′′)

degG(v) − d + 6ε

2
n2

= 1

2

∑
v∈V (G)

degG(v) − 1

2

∑
v∈C0

degG(v) − d + 6ε

2
n2

≥ |E(G)| − d + 7ε

2
n2 ≥ α

2
n2. (2)

Furthermore, in G′′ for every pair G′′|Ci×Cj
and X ⊂ Ci, Y ⊂ Cj, |X|, |Y | ≥

(ε)1/3N, if there is an edge between Ci and Cj in G′ (and so the density exceeds d ),
then by (1) and the ε-regularity of the pair G′|Ci×Cj

we have

dG′′(X, Y ) ≥ dG′(X, Y ) − 2εN2

|X||Y | ≥ d − ε − 2(ε)1/3 >
α

3
. (3)
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Finally, for any u ∈ Ci and Cj

degG′(u, Cj) ≥ (d − ε)N implies degG′′(u, Cj) ≥ (d − 2ε)N >
α

3
N. (4)

In the remainder of the proof we will first distinguish two cases. In both cases
we will first embed the P4 = (a1, b1, a2, b2) in L in such a way that the embedded
edges (φ(a1), φ(b1)), (φ(b1), φ(a2)), and (φ(a2), φ(b2)) will contain a repeated color
and for some pair (Ci, Cj) we will have

|NG′′(φ(a1), Cj) ∩ NG′′(φ(a2), Cj)| ≥ 1

5

(α

3

)2
N, (5)

and

|NG′′(φ(b1), Ci) ∩ NG′′(φ(b2), Ci)| ≥ 1

5

(α

3

)2
N. (6)

(5) and (6) guarantee that we will be able to finish the embedding of the rest of L,
and thus we will get a copy of L in G′′ (and thus in G) that is not TMC.

Case 1. There is a color class (say red) in G′′ which contains a star with at least
k = 
 6

α
� leaves. Let us consider this red star and denote the middle vertex by u and

the leaves by v1, v2, . . . , vk. Assume that u ∈ Cj. Apply Lemma 2 with X = Cj,
Bi = NG′′(vi, Cj), and β = α

3 . By (4) we have in fact

|Bi| ≥ α

3
N for every 1 ≤ i ≤ k.

Then we get two Bi’s, say for simplicity B1 and B2, such that

|B1 ∩ B2| ≥ 1

5

(α

3

)2
N. (7)

Assume that v1 ∈ Ci. Let us embed P4 in this case in the following way:

φ(a1) = v1, φ(b1) = u, φ(a2) = v2,

and let φ(b2) be a vertex w in B1 ∩ B2 for which we have

|NG′′(u, Ci) ∩ NG′′(w, Ci)| ≥
(α

3

)2
N. (8)

Using (3) with X = (B1 ∩ B2) \ {u} and Y = NG′′(u, Ci) guarantees that such a w
can be chosen.

The above embedding of P4 has a repeated color (red) and (7) and (8) imply that
it satisfies (5) and (6). Note that here actually we get somewhat more; the endpoints
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of P4 are also connected in the embedding, so in this case we can embed L even if
it is a complete bipartite graph.

Case 2. There is no monochromatic star with at least 
 6
α
� leaves.

However, this and (2) imply that in this case there is a monochromatic (say blue)
matching M in G′′ such that

|M| ≥ 1


 6
α
�

α
2 n2

cn
>

α2

14c
n. (9)

Write U = V (M) for the vertex set of M. (9) implies that

|U| >
α2

7c
n.

Write also Ui = U ∩ Ci. Define I = {i||Ui| > α2

14c
N}, and set U ′ = ∪i∈IUi and

U ′′ = U \ U ′. Clearly |U ′′| ≤ α2

14c
n. Since |U| > α2

7c
n, we have two verticesy, z ∈ U ′

adjacent in M. Let y ∈ Ci and z ∈ Cj. In G′′, we have at least one edge between Ci

and Cj, and hence by (3) we have

dG′′(Ui, Uj) >
α

3
. (10)

We will remove some additional exceptional edges from G′′|Ui×Uj
and then we

embed L in the remaining bipartite graph. For a vertex u covered by M, let us denote
its pair in M by u′. We will remove all exceptional edges (u, v) from G′′|Ui×Uj

for
which if u ∈ Ci, v ∈ Cj, then either we have

|NG′′(u, Cj) ∩ NG′′(v′, Cj)| <
(α

3

)2
N, (11)

or

|NG′′(v, Ci) ∩ NG′′(u′, Ci)| <
(α

3

)2
N. (12)

Note that if (u, v) is an edge in M then (u, v) is automatically an exceptional edge.
For a fixed u ∈ Ci, the number of exceptional edges violating (12) incident to
u is at most ε1/3N, since otherwise we get a contradiction with (3) by choosing
X = NG′′(u′, Ci) and Y to be the other endpoints of the exceptional edges. Thus the
total number of exceptional edges violating (12) is at most ε1/3N2. Similarly, the
total number of exceptional edges violating (11) is at most ε1/3N2.
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By (1) and (10), if we remove the exceptional edges, we still have more than

α

3
|Ui||Uj| − 2ε1/3N2 ≥

(
α

3

(
α2

14c

)2

− 2ε1/3

)
N2 > 0

edges in G′′|Ui×Uj
.

Let us take one such non-exceptional edge (u, v), then it does not belong to M,
and we embed φ(a1) = v′, φ(b1) = v, φ(a2) = u, and φ(b2) = u′. Again we have a
repeated color (blue), and the embedding satisfies (5) and (6) (since both (11) and
(12) do not hold).

To finish the embedding the rest of L, in both cases we do the following. We
embed the remaining vertices in L into a complete bipartite graph in the common
neighborhoods in (5) and (6).

We embed a3 into a vertex

u ∈ (NG′′(φ(b1), Ci) ∩ NG′′(φ(b2), Ci)) \ {φ(a1), φ(a2)}

such that

|NG′′(u, Cj) ∩ NG′′(φ(a1), Cj) ∩ NG′′(φ(a2), Cj)| ≥ 1

5

(α

3

)3
N.

(3) guarantees that such a u exists.
Continuing this way, we always embed ar, 3 < r ≤ |A| into a vertex

u ∈ (NG′′(φ(b1), Ci) ∩ NG′′(φ(b2), Ci)) \ ∪r−1
s=1φ(as)

such that

|NG′′(u, Cj) ∩ (∩r−1
s=1NG′′(φ(as), Cj)

) | ≥ 1

5

(α

3

)r

N.

(3) always guarantees that such a u exists.
Finally, we embed B \ {b1, b2} into vertices in

∩|A|
s=1NG′′(φ(as), Cj) \ {φ(b1), φ(b2)}.

This is an embedding of L into G′′ (and thus into G) which contains a repeated
color.

This completes the proof of Theorem 4. �
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