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Abstract

Improving a result of Erdős, Gyárfás and Pyber for large n we show that for every integer r � 2 there
exists a constant n0 = n0(r) such that if n � n0 and the edges of the complete graph Kn are colored with
r colors then the vertex set of Kn can be partitioned into at most 100r log r vertex disjoint monochromatic
cycles.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Vertex partitions by monochromatic cycles

Assume that Kn is a complete graph on n vertices whose edges are colored with r colors
(r � 2). How many monochromatic cycles are needed to partition the vertex set of Kn? Through-
out the paper, single vertices and edges are considered to be cycles. Let p(r) denote the minimum
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number of monochromatic cycles needed to partition the vertex set of any r-colored Kn. It is not
obvious that p(r) is a well-defined function. That is, it is not obvious that there is always a parti-
tion whose cardinality is independent of the order of the complete graph. However, in [5] Erdős,
Gyárfás and Pyber proved that there exists a constant c such that p(r) � cr2 log r (throughout this
paper log denotes natural logarithm). Furthermore, in [5] (see also [6]) the authors conjectured
the following.

Conjecture 1. p(r) = r .

The special case r = 2 of this conjecture was asked earlier by Lehel and for n � n0 was proved
by Łuczak, Rödl and Szemerédi [13]. Let us also note that the above problem was generalized for
complete bipartite graphs (see Haxell [8]) and for vertex partitions by monochromatic connected
k-regular subgraphs (see Sárközy and Selkow [16]).

In this paper we give a significant improvement on the above mentioned result of Erdős,
Gyárfás and Pyber for large n.

Theorem 1. For every integer r � 2 there exists a constant n0 = n0(r) such that if n � n0 and
the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be
partitioned into at most 100r log r vertex disjoint monochromatic cycles.

Since Theorem 1 is probably far from best possible, we make no attempt at optimizing the
constant 100 in the theorem.

1.2. Sketch of the proof of Theorem 1

A matching in a graph G is called connected if its edges are all in the same connected compo-
nent of G. To prove Theorem 1 we apply the edge-colored version of the Regularity Lemma to
an r-colored Kn. Then we introduce the so-called reduced graph GR , the graph whose vertices
are associated to the clusters and whose edges are associated to ε-regular pairs. The edges of the
reduced graph will be colored with a color that appears on most of the edges between the two
clusters. Then we study large monochromatic connected matchings in the reduced graph. That
was initiated in [12] and played an important role in our recent paper [7] where we determined
the three-color Ramsey numbers of paths for large n.

Generalizing the proof technique in [5], we establish the bound on p(r) in the following steps:

• Step 1: We find a sufficiently large monochromatic (say red), dense (more precisely half-
dense in a sense explained later), connected matching M in GR .

• Step 2: We remove the vertices of M from GR and we go back to the original graph (instead
of the reduced graph). We greedily remove a number (depending on r) of vertex disjoint
monochromatic cycles from the remainder in Kn until the number of leftover vertices is
much smaller than the number of vertices associated to M .

• Step 3: Using a lemma about cycle covers of r-colored unbalanced complete bipartite graphs
(Lemma 6 that may be of independent interest) we combine the leftover vertices with some
vertices of the clusters associated with vertices of M .

• Step 4: Finally after some adjustments through alternating paths with respect to M , we find
a red cycle spanning the remaining vertices of M .
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The improvement of Theorem 1 over the result in [5] comes from two factors. First, the match-
ing M plays the role of the triangle cycle in [5], and we are able to find a larger M than the triangle
cycle found there. Second, our Lemma 6 in step 3 improves a similar lemma from [5].

The organization of the paper follows this outline. After giving the definitions and tools, we
discuss each step one by one.

1.3. Notation and definitions

For basic graph concepts see the monograph of Bollobás [2]. Disjoint union of sets will be
sometimes denoted by +. V (G) and E(G) denote the vertex-set and the edge-set of the graph G.
(A,B,E) denotes a bipartite graph G = (V ,E), where V = A + B , and E ⊂ A × B . Kn is
the complete graph on n vertices, K(n1, . . . , nk) is the complete k-partite graph with classes
containing n1, . . . , nk vertices, Pn (Cn) is the path (cycle) with n vertices. G(n1, . . . , nk) is a
k-partite graph with classes containing n1, . . . , nk vertices. For a graph G and a subset U of its
vertices, G|U is the restriction to U of G. Γ (v) is the set of neighbors of v ∈ V . Hence the size of
Γ (v) is |Γ (v)| = deg(v) = degG(v), the degree of v. δ(G) stands for the minimum, and Δ(G)

for the maximum degree in G. For a vertex v ∈ V and set U ⊆ V − {v}, we write deg(v,U)

for the number of edges from v to U . When A, B are disjoint subsets of V (G), we denote by
eG(A,B) the number of edges of G with one endpoint in A and the other in B . A multi-coloring
of a graph G is a coloring where each edge may receive more than one color. For non-empty A

and B ,

dG(A,B) = eG(A,B)

|A||B|
is the density of the graph between A and B .

Definition 1. The bipartite graph G = (A,B,E) is (ε,G)-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply
∣∣dG(X,Y ) − dG(A,B)

∣∣ < ε,

otherwise it is (ε,G)-irregular. Furthermore, (A,B,E) is (ε, δ,G)-super-regular if it is (ε,G)-
regular and

degG(a) > δ|B| ∀a ∈ A, degG(b) > δ|A| ∀b ∈ B.

1.4. Tools

In the proof an r-color version of the Regularity Lemma and the Blow-up Lemma play a
central role.

Lemma 1 (Regularity Lemma [17]). For every positive ε and positive integer m there are positive
integers M and n0 such that for n � n0 the following holds. For all graphs G1,G2, . . . ,Gr with
V (G1) = V (G2) = · · · = V (Gr) = V , r � 2, |V | = n, there is a partition of V into l + 1 classes
(clusters)

V = V0 + V1 + V2 + · · · + Vl

such that
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• m � l � M;
• |V1| = |V2| = · · · = |Vl |;
• |V0| < εn;
• apart from at most ε

(
l
2

)
exceptional pairs, the pairs {Vi,Vj } are (ε,Gs)-regular for s =

1,2, . . . , r .

For an extensive survey on different variants of the Regularity Lemma see [11]. We will also
use the following property of (ε, δ,G)-super-regular pairs.

Lemma 2. For every δ > 0 there exist an ε > 0 and m0 such that the following holds. Let G

be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that |V1| = |V2| = m � m0, and let
the pair (V1,V2) be (ε, δ,G)-super-regular. Then for every pair of vertices v1 ∈ V1, v2 ∈ V2,
G contains a Hamiltonian path connecting v1 and v2.

A lemma somewhat similar to Lemma 2 is used by Łuczak in [12] and by Haxell in [8].
Lemma 2 is a special case of the much stronger Blow-up Lemma (see [9,10]).

We will also use the following simple lemma of Mader [14] (see also [2,3]) on the existence
of highly connected subgraphs.

Lemma 3. Every graph of average degree at least 4k has a k-connected subgraph.

We will use the following consequence of this lemma. A matching M in a graph G is
called k-half dense if one can label its edges as x1y1, . . . , x|M|y|M| so that each vertex of
X = {x1, . . . , x|M|} (called the strong end points) is adjacent in G to at least k vertices of
Y = {y1, . . . , y|M|}.

Lemma 4. Every graph G of average degree at least 8k has a connected k-half dense matching.

Proof. Using a well-known remark of Erdős, G has a bipartite subgraph H of average degree at
least 4k. Using Lemma 3, H has a k-connected subgraph F = [A,B], in particular, the minimum
degree of F is at least k. Let M be a maximum matching of F , set A1 = A ∩ M , B1 = B ∩ M .
Clearly M is connected. If A1 = A then M is k-half dense (with X = B1, Y = A1). Otherwise
consider the set A2 ⊆ A1 which can be reached from A \ A1 by an alternating path in F with
respect to M . Let B2 denote the other endpoints of the edges of M incident to A2. Set A3 =
A1 \ A2, B3 = B1 \ B2. Observe that (from the definition of A2) no edges of F are in [A2,B3],
[A \ A1,B3] and (from M being maximum), no edges of F are in [A2,B \ B1] either. Therefore
M with X = A2 ∪ B3 is a k-half dense matching in F ⊆ G. �

It is possible that Lemma 4 can be generalized from half dense matchings to dense matchings
where each vertex of Y is also adjacent to at least k vertices of X.

Finally we need the following lemma about dense directed graphs.

Lemma 5. Let �G = �G(V,E) be a directed graph with |V | = n sufficiently large and minimum
out-degree d+(x) � cn for some constant 0 < c � 0.001. Then there are subsets X,Y ⊆ V such
that
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• |X|, |Y | � cn/2;
• from every x ∈ X there are at least c6n internally vertex disjoint paths of length at most c−3

to every y ∈ Y (denoted by x ↪→ y).

Proof. The relative minimum out-degree (rmo) of a directed graph �G is the fraction

minx∈V d+(x)

|V | .

We show that if x 
↪→ y for some high in-degree vertex y then we can always choose a subgraph
of �G with significantly higher rmo. Iterating this argument at most c−1.5 times will give the
required sets.

Let �G0 = �G, X0 = V and Y0 = {x ∈ V ( �G0): d−(x) � cn/3}. |X0| = n and

|Y0|n + (
n − |Y0|

)
cn/3 � cn2

follows from the degree condition. Therefore, |Y0| � (2cn/3)/(1−(c/3)) > cn/2, i.e., X0 and Y0
satisfy the size requirement. So if x ↪→ y for every x ∈ X0 and y ∈ Y0 then the procedure stops.
Else ∃x ∈ X0 and y ∈ Y0 s.t. x 
↪→ y.

Given �Gi−1, Xi−1, Yi−1 satisfying the size requirement, the procedure stops if x ↪→ y for
every x ∈ Xi−1 and y ∈ Yi−1. Otherwise for some x, y, x 
↪→ y, and we define �Gi , Xi , Yi as
follows. Select a maximal system of short (at most c−3 long) pairwise internally vertex disjoint
paths between x and y. Obtain first �G′

i by deleting all internal vertices in these short paths.
Notice that fewer than c−3c6n = c3n vertices are removed and there is no short path in �G′

i from
x to y. In �G′

i find a breadth first search tree Ti with T 0
i = {x}, T 1

i , T 2
i . . . , where T �

i is the set
of vertices of distance � from x in �G′

i . Observe that there must be some 1 � j � (2c3)−1 with

|T j+1
i | � 2c3n. Otherwise∣∣∣∣∣

(2c3)−1⋃
�=0

T �
i

∣∣∣∣∣ �
(
2c3)−12c3n = n,

i.e., we can reach from x all vertices of �G′
i , including y and its in-neighbors, via paths of length

at most (2c3)−1 � c−3 − 1, a contradiction. Let �Gi be the graph spanned by
⋃j

�=0 T �
i in �G′

i ,

Xi = V ( �Gi) and Yi = {
x ∈ V ( �Gi): d−(x) � cn/3 in �Gi

}
.

Note that |V ( �Gi)| � |V ( �Gi−1)| − cn/3 since none of the at least cn/3 in-neighbors of y lies
in �Gi . (This will be used in (2).)

Let di (ri ) be the minimum out-degree (rmo) in �Gi . For i � c−1.5

di � di−1 − c6c−3n − 2c3n = di−1 − 3c3n � d0 − c−1.53c3n = cn − 3c1.5n. (1)

Moreover,

|Yi | � cn/2,

otherwise∣∣V ( �Gi)
∣∣(cn − 3c1.5n

)
�

∣∣E( �Gi)
∣∣ <

cn

2

∣∣V ( �Gi)
∣∣ +

(∣∣V ( �Gi)
∣∣ − cn

2

)
cn

3
,

which leads to |V ( �Gi)|(1 − 18c0.5) � −cn. The RS is negative and the first factor of the LS
is positive, implying 1 − 18c0.5 � 0, i.e., c � 18−2 > 0.001, a contradiction. So if the proce-
dure terminates in at most c−1.5 steps the sizes |Xi | and |Yi | satisfy the requirements of the
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lemma. Now we finish by showing that the procedure indeed terminates in at most c−1.5 steps.
For i � c−1.5

ri = di

|V ( �Gi)|
� di−1 − 3c3n

|V ( �Gi−1)| − cn
3

= di−1

|V ( �Gi−1)|
1 − (3c3n)/di−1

1 − (cn)/(3|V ( �Gi−1)|)
(2)

= ri−1
1 − (3c3n)/di−1

1 − (cn)/(3|V ( �Gi−1)|)
� ri−1

1 − (3c3n)/(cn − 3c1.5n)

1 − (cn)/(3n)
(3)

� ri−1
1 − (3c3n)/(cn − cn/2)

1 − (cn)/(3n)
= ri−1

1 − 6c2

1 − c/3
� ri−1

(
1 + c

4

)
. (4)

Here in (2) we utilized that in each step of our algorithm the out-degrees may decrease by
at most 3c3n and the number of the vertices must decrease by at least cn/3. In (3) we used the
lower bound (1) for the out-degrees in this range and |V ( �Gi−1)| � n. The last two inequalities
in (4) hold for c � 1/36 and c � 1/71, respectively. Both of these are certainly true if c < 0.001.
Therefore, by c < 0.001

1 > ri � r0

(
1 + c

4

)i

� c

(
1 + c

4

)i

� ce(ic/4.3),

which gives

i < 4.3c−1 log c−1 � c−1.5

concluding the proof. �
Since in the proof we showed that Y ⊆ X, the following corollary is straightforward.

Corollary 1. Let �G = �G(V,E) be a directed graph with |V | = n and minimum out-degree
d+(x) = cn for some constant 0 < c � 0.001. Then there exists Y ⊆ V such that

• |Y | � cn/2;
• from every x ∈ Y there are at least c6n internally vertex disjoint paths of length at most c−3

to every y ∈ Y .

2. Proof of Theorem 1

2.1. Step 1

We will assume that n is sufficiently large. We will use the following main parameters:

0 < ε  δ  1, (5)

where a  b means that a is sufficiently small compared to b. In order to present the results
transparently we do not compute the actual dependencies, although it could be done. Although
our proof works for r = 2, by the result of [13] we assume throughout that r � 3.

Consider an r-edge coloring (G1,G2, . . . ,Gr) of Kn. Apply the r-color version of the Regu-
larity Lemma (Lemma 1), with ε as in (5) and get a partition of V (Kn) = V = ⋃

0�i�l Vi , where

|Vi | = m, 1 � i � l. We define the reduced graph GR : The vertices of GR are p1, . . . , pl , and we
have an edge between vertices pi and pj if the pair {Vi,Vj } is (ε,Gs)-regular for s = 1,2, . . . , r .
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Thus we have a one-to-one correspondence f :pi → Vi between the vertices of GR and the clus-
ters of the partition. Then,

∣∣E(
GR

)∣∣ � (1 − ε)

(
l

2

)
,

and thus GR is a (1 − ε)-dense graph on l vertices.
Define an edge-coloring (GR

1 ,GR
2 , . . . ,GR

r ) of GR by r colors in the following way. The
edge pipj is colored with a color s that contains the most edges from K(Vi,Vj ), thus clearly
|EGs (Vi,Vj )| � 1

r
|Vi ||Vj |. Let us take the color class in this coloring that has the most edges.

For simplicity assume that this is GR
1 and call this color red. Clearly, we have

∣∣E(
GR

1

)∣∣ � (1 − ε)
1

r

(
l

2

)
,

and thus using (5) the average degree in GR
1 is at least (1 − ε)(l − 1)/r � l/2r . Using Lemma 4

we can find a connected l/16r-half dense matching M in GR
1 . Say M has size

|M| = l1 � l

16r
,

and the matching M = {e1, e2, . . . , el1} is between the two sets of end points U1 and U2, where
U1 contains the strong end points, i.e., the points in U1 have at least l/16r neighbors in U2.
Furthermore, define f (ei) = (V i

1 ,V i
2 ) for 1 � i � l1, where V i

1 is the cluster assigned to the
strong end point of ei , and V i

2 is the cluster assigned to the other end point. Hence we have our
large, red, half-dense, connected matching M as desired in step 1.

We need to do some preparations on the matching M . First we will find connecting paths
between the edges of the matching M . Since M is a connected matching in GR

1 we can find a
connecting path P R

i in GR
1 from f −1(V i

2 ) to f −1(V i+1
1 ) for every 1 � i � l1 −1. Note that these

paths in GR
1 may not be internally vertex disjoint. From these paths P R

i in GR
1 we can construct

vertex disjoint connecting paths Pi in G1 connecting a typical vertex vi
2 of V i

2 to a typical vertex
vi+1

1 of V i+1
1 . More precisely we construct P1 with the following simple greedy strategy. Denote

P R
1 = (p1, . . . , pt ), 2 � t � l, where according to the definition f (p1) = V 1

2 and f (pt ) = V 2
1 .

Let the first vertex u1 (= v1
2) of P1 be a vertex u1 ∈ V 1

2 for which degG1
(u1, f (p2)) � (1/r −ε)m

and degG1
(u1,V

1
1 ) � (1/r − ε)m. By (ε,G1)-regularity most of the vertices satisfy this in V 1

2 .
The second vertex u2 of P1 is a vertex u2 ∈ (f (p2) ∩ NG1(u1)) for which degG1

(u2, f (p3)) �
(1/r − ε)m. Again by (ε,G1)-regularity most vertices satisfy this in f (p2)∩NG1(u1). The third
vertex u3 of P1 is a vertex u3 ∈ (f (p3) ∩ NG1(u2)) for which degG1

(u3, f (p4)) � (1/r − ε)m.
We continue in this fashion, finally the last vertex ut (= v2

1) of P1 is a vertex ut ∈ (f (pt ) ∩
NG1(ut−1)) for which degG1

(ut ,V
2
2 ) � (1/r − ε)m.

Then we move on to the next connecting path P2. Here we follow the same greedy procedure,
we pick the next vertex from the next cluster in P R

2 . However, if the cluster has occurred already
on the path P R

1 , then we just have to make sure that we pick a vertex that has not been used
on P1.

We continue in this fashion and construct the vertex disjoint connecting paths Pi in G1, 1 �
i � l1 − 1. These will be parts of the final cycle in G1. We remove the internal vertices of these
paths from G1. Furthermore, we remove some more vertices from each (V i,V i), 1 � i � l1, to
1 2
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achieve super-regularity in all of these pairs. From V i
1 we remove all exceptional vertices v1 for

which

degG1

(
v1,V

i
2

)
<

(
1

r
− ε

)
m,

and from V i
2 all exceptional vertices v2 for which

degG1

(
v2,V

i
1

)
<

(
1

r
− ε

)
m.

(ε,G)-regularity guarantees that at most ε|V i
j | vertices are removed from each cluster V i

j .
By doing this we may create some discrepancies in the cardinalities of the clusters of this con-
nected matching. We remove some more vertices from each cluster V i

j of the matching to assure
that now we have the same number of vertices left in each cluster of the matching. For simplicity
we still keep the notation f (ei) = (V i

1 ,V i
2 ) for the modified clusters. The removed vertices are

added to the leftover vertices in Kn \ f (M).
Note that at this point we could have a red cycle spanning almost all vertices of f (M). Indeed,

by applying Lemma 2 for 1 � i � l1, we get a path in G1|f (ei ) connecting vi
1 and vi

2 that contains
all of the remaining vertices of f (ei) (in case of i = 1 we just select a Hamiltonian path of
f (e1) starting from v1

2 and in case of i = l1, we select a Hamiltonian path of f (el1) starting
from v

l1
1 ). However, for technical reasons we postpone the construction of this cycle until the end

of step 4, since in step 3 we will use some of the vertices in f (M), and we will have to make
some adjustments first in step 4.

2.2. Step 2

Here we will use the easy fact that an r-colored Kn contains a monochromatic cycle of length
at least n/r . Indeed, we can use the most frequent color of Kn and apply the Erdős–Gallai
extremal theorem for cycles (see [4] or [2]).

We go back from the reduced graph to the original graph and we remove the vertices assigned
to the matching M , i.e., f (M). We apply repeatedly the above fact to the r-colored complete
graph induced by Kn \ f (M). This way we choose t vertex disjoint monochromatic cycles in
Kn \ f (M). Define the constant c = 1/350r . We wish to choose t such that the remaining set B

of vertices in Kn \ f (M) not covered by these t cycles has cardinality at most c12n. Since after
t steps at most

(
n − ∣∣f (M)

∣∣)(1 − 1

r

)t

vertices are left uncovered, we have to choose t to satisfy

(
n − ∣∣f (M)

∣∣)(1 − 1

r

)t

� c12n.

This inequality is certainly true if(
1 − 1

r

)t

� c12,

which in turn is true using 1 − x � e−x if

e− t
r � c12.
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This shows that we can choose t = 12r�log 350r�.
We may assume that the number of remaining vertices in B is even by removing one more

vertex (a degenerate cycle) if necessary.

2.3. Step 3

The key to this step is the following lemma about r-colored complete unbalanced bipartite
graphs that may be interesting on its own. We will assume r � 3.

Lemma 6. There exists a constant n0 such that the following is true. Assume that the edges of
the complete bipartite graph K(A,B) are colored with r colors. If |A| � n0, |B| � |A|/r2, then
B can be covered by at most (6r�log r� + 2r) vertex disjoint monochromatic cycles.

We have the connected, red matching M of size l1 between U1 and U2. Define the auxiliary
directed graph �G on the vertex set U1 as follows. We have the directed edge from V i

1 to V
j

1 ,

1 � i, j � l1 if and only if (V i
1 ,V

j

2 ) ∈ GR
1 . The fact that M is l/16r-half dense implies that in �G

for the minimum out-degree we have

min
x∈U1

d+(x) � l

16r
� |U1|

16r

(
� |U1|

350r

)
.

Thus applying Lemma 5 for �G with c = 1
350r

(< 0.001), there are subsets X1, Y1 ⊂ U1 such that

• |X1|, |Y1| � c|U1|/2;
• from every x ∈ X1 there are at least c6|U1| internally vertex disjoint paths of length at most

c−3 to every y ∈ Y1 (x ↪→ y).

Let X2, Y2 denote the set of the other endpoints of the edges of M incident to X1, Y1, respec-
tively. Note that a path in �G corresponds to an alternating path with respect to M in GR

1 .
In each cluster V i

1 ∈ Y1 let us consider an arbitrary subset of c8|V i
1 | vertices. Let us denote

by A1 the union of all of these subsets. Similarly we denote by A2 the union of arbitrary subsets
of V

j

2 ∈ X2 of size c8|V j

2 |. Then we have

|A1|, |A2| � c8
∣∣f (Y1)

∣∣ � c8 c

2

∣∣f (U1)
∣∣ � c8 c

2

n

16r
� c10n.

Let us divide the remaining vertices in B (B was defined in step 2) into two equal sets B1 and B2.
Thus we have |B1|, |B2| � |B| � c12n. We apply Lemma 6 in K(A1,B1) and in K(A2,B2).
The conditions of the lemma are satisfied by the above since |Bi | � |Ai |/r2 for i = 1,2. Let us
remove the at most 6r�log r�+2r � 8r�log r� vertex disjoint monochromatic cycles covering B1
in K(A1,B1) and the at most 8r�log r� cycles covering B2 in K(A2,B2). By doing this we may
create discrepancies in the number of remaining vertices in the two clusters of a matching edge.
In the next step we have to eliminate these discrepancies with the use of the many alternating
paths.

2.4. Step 4

By removing the vertex disjoint monochromatic cycles covering B1 in K(A1,B1) we have
created a “surplus” of |B1| vertices in the clusters of Y2 compared to the remaining number of
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vertices in the corresponding clusters of Y1. Similarly by removing the cycles covering B2 in
K(A2,B2) we have created a “deficit” of |B2| (= |B1|) vertices in the clusters of X2 compared
to the number of vertices in the corresponding clusters of X1. The natural idea is to “move” the
surplus from Y2 through an alternating path to cover the deficit in X2.

Take an arbitrary cluster V i
2 ∈ Y2 that has a surplus of 0 < s (� c8|V i

2 |) vertices and an ar-

bitrary cluster V
j

2 ∈ X2 that has a deficit of 0 < d (� c8|V j

2 |) vertices (there must be one such
a cluster since the total surplus is equal to the total deficit). Assume s � d and we will move a
surplus of size s from V i

2 to V
j

2 . Otherwise in case s > d we will only move a surplus of size d .
By the construction there is an alternating path

V
j

2 , V
j

1 , V
j1
2 , V

j1
1 , . . . , V

jk

2 , V
jk

1 , V i
2

such that k < c−3. We extend the red (G1) connecting path Pj−1 (defined in step 1) first by a
path of length 2 in the bipartite graph G1|V j

1 ×V
j
2

in such a way that the new endpoint has many

neighbors in V
j1
2 (ε-regularity makes this possible), and then by a path of length 2s in the bipartite

graph G1|
V

j
1 ×V

j1
2

. Similarly we extend by a path of length 2s +2 the red connecting paths Pj1−1,

Pj2−1, etc. Finally we extend the red connecting path Pjk−1 first by a path of length 2 in the
bipartite graph G1|

V
jk
1 ×V

jk
2

, and then by a path of length 2s in the bipartite graph G1|
V

jk
1 ×V i

2
.

The overall effect of these extensions is that we moved the surplus of size s from V i
2 to V

j

2
without changing any of the other relative sizes in the edges of the matching. This way we came
closer to eliminating the discrepancies, and by iterating this procedure we can totally eliminate
them.

However, we have to pay attention again that during this process we never use up to many
vertices from any given cluster. It is not hard to see from the construction that we can guarantee
that during the whole process with these extensions we use up at most 5c2-fraction of any given
cluster. Indeed, the total number of vertices along these extensions is at most

2c−3c12n = 2c9n. (6)

We declare an alternating path forbidden if there is a cluster along the path from which we used
up at least a 4c2-fraction already with these extensions. Then by (6) the total number of vertex
disjoint forbidden alternating paths during the whole process is at most c7

2 l, and thus by Lemma 5

we have plenty of non-forbidden alternating paths to choose from between any V
j

2 and V i
2 .

Hence after the whole process the remaining vertices in any matching edge f (ei) = (V i
1 ,V i

2 )

still form a super-regular balanced pair with somewhat weaker parameters (say (2ε,1/2r)-super-
regular). Then as we mentioned at the end of step 1 we can close the red cycle to span all the
remaining vertices of f (M).

Thus the total number of vertex disjoint monochromatic cycles we used to partition the vertex
set of Kn is at most

12r
⌈

log(350r)
⌉ + 8r�log r� + 8r�log r� + 2 � 100r�log r�,

finishing the proof of Theorem 1.

2.5. Cycle cover lemmas for unbalanced bipartite graphs; proof of Lemma 6

Lemma 6 clearly follows from the following two lemmas.
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Lemma 7. There exists a constant n0 such that the following is true. Assume that the edges
of the complete bipartite graph K(A,B) are colored with r colors. If |A| � n0, |B| � |A|/r2,
then apart from a set B ′ ⊂ B of at most |A|/2(8r)8(r+1) vertices B can be covered by at most
6r�log r� vertex disjoint monochromatic cycles.

Lemma 8. There exists a constant n0 such that the following is true. Assume that the edges of the
complete bipartite graph K(A,B) are colored with r colors. If |A| � n0, |B| � |A|/(8r)8(r+1),
then B can be covered by at most 2r vertex disjoint monochromatic cycles.

We will also use the following simple lemma about the case when B is significantly smaller
than A.

Lemma 9. Assume that the edges of the complete bipartite graph K(A,B) are colored with r

colors. If (|B| − 1)r |B| < |A|, then B can be covered by at most r vertex disjoint monochromatic
cycles.

Let us start with the simple proof of this last lemma.

Proof of Lemma 9. Denote the vertices of B by {b1, b2, . . . , b|B|}. To each vertex v ∈ A we
assign a vector (v1, v2, . . . , v|B|) of colors, where vi is the color of the edge (v, bi). The total
number of distinct color vectors possible is r |B|. Since we have |A| > (|B| − 1)r |B| vectors, by
the pigeon-hole principle we must have a vector that is repeated at least

|A|
r |B| � |B|

times. In other words, there are at least |B| vertices in A for which the colorings of the edges
going to {b1, b2, . . . , b|B|} are exactly the same. It is easy to see that this gives a covering of B

by at most r vertex disjoint monochromatic cycles (in fact complete bipartite graphs can be used
instead cycles). �
Proof of Lemma 7. This lemma in turn will use the Regularity Lemma as well. We proceed
similarly as in step 1. Consider an r-edge coloring (G1,G2, . . . ,Gr) of K(A,B). We know that
|A| is sufficiently large and |B| > |A|/(8r)8(r+1), since otherwise we are done by Lemma 8.
Then we can apply the bipartite r-color version of the Regularity Lemma (see, e.g., [15]), with ε

as in (5). By standard arguments we may assume that for each cluster that is not V0, all vertices
of the cluster belong to the same partite class. Thus we get a partition A = V 0

A + V 1
A + · · ·+ V

lA
A ,

B = V 0
B + V 1

B + · · · + V
lB
B , where |V j1

A | = |V j2
B | = m, 1 � j1 � lA, 1 � j2 � lB and |V 0

A| � ε|A|,
|V 0

B | � ε|B|. We define again the reduced graph GR : The vertices of GR are AR = {pj1
A | 1 �

j1 � lA} and BR = {pj2
B | 1 � j2 � lB}, and we have an edge between vertices p

j1
A and p

j2
B , if the

pair {V j1
A ,V

j2
B } is (ε,Gs)-regular for s = 1,2, . . . , r . Thus we have a one-to-one correspondence

f : {pj
A,p

j
B} → {V j

A,V
j
B } between the vertices of GR and the non-exceptional clusters of the

partition. Then GR = (AR,BR) is a (1 − ε)-dense bipartite graph. Define an r-edge coloring
(GR

1 ,GR
2 , . . . ,GR

r ) of GR in the following way. The edge between the clusters V
j1
A and V

j2
B is

colored with a color s that contains the most edges from K(V
j1,V

j2).
A B
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For each p
j
B ∈ BR , 1 � j � lB , and for each color class that contains at most |lB | edges

incident to p
j
B , we delete the edges in this color incident to p

j
B . Thus the number of remaining

edges is at least

(1 − ε)lAlB − rl2
B = lAlB

(
(1 − ε) − r

lB

lA

)
. (7)

Then (7) implies that there must be a vertex p
j
A ∈ AR that has at least

lB

(
(1 − ε) − r

lB

lA

)
(8)

neighbors in BR . From the definition of edge deletion, the neighbors of p
j
A in each color can

be covered by at most r vertex disjoint monochromatic matchings in GR . Furthermore, these
matchings will be connected through p

j
A. Similarly as in step 1, going back to the original graph,

from these monochromatic connected matchings we can construct monochromatic cycles that
cover most of the clusters belonging to these connected matchings. Thus using (8) we have at
most r vertex disjoint monochromatic cycles that cover B apart from at most

3ε|B| + r

1 − ε

|B|2
|A| (9)

vertices. Remove the above at most r cycles from (A,B) and denote the resulting sets by
(A1,B1) (where A0 = A, B0 = B). Then using (9), (5) and

|A1| � |A| − |B| �
(

1 − 1

r2

)
|A|

we get

|B1|
|A1| � 3ε

|B|
|A1| + r

1 − ε

|B|2
|A||A1| � 3εr2

r2 − 1

|B|
|A| + r3

(1 − ε)(r2 − 1)

( |B|
|A|

)2

� 3ε

r2 − 1
+ 1

r(1 − ε)(r2 − 1)
� 2

r3
.

We apply repeatedly the above procedure in (A1,B1). After k iterations we have

|Bk|
|Ak| � 1

4

(
2

r

)2k+1

.

This implies that after 6�log r� iterations (and so with 6r�log r� cycles) we covered B apart from
at most

1

4

(
2

r

)r6+1

|A| � |A|
2(8r)8(r+1)

vertices (using r � 3 and some calculation), and thus finishing Lemma 7. �
Proof of Lemma 8. We proceed similarly as in the proof of Lemma 7. Consider an r-edge
coloring (G1,G2, . . . ,Gr) of K(A,B). A is sufficiently large and we may assume that B is
sufficiently large as well, since otherwise we are done by Lemma 9. We may assume that

|A| = (8r)8(r+1)|B| (10)
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by keeping a subset of A of this size and deleting the rest. We apply the bipartite r-color version
of the Regularity Lemma and similarly as in the proof of Lemma 7 we get the reduced graph
GR = (AR,BR) that is an (1 − ε)-dense bipartite graph. However, here we will use a multi-
coloring in GR . Define an r-edge multi-coloring (GR

1 ,GR
2 , . . . ,GR

r ) of GR in the following

way. The edge between the clusters V
j1
A and V

j2
B has color s for all s such that∣∣EGs

(
V

j1
A ,V

j2
B

)∣∣ � δ
∣∣V j1

A

∣∣∣∣V j2
B

∣∣.
Claim 1. There exists a color (say G1, called red) such that GR

1 = (AR,BR) contains a con-
nected (A′′R,B ′′R) satisfying the following:∣∣A′′R∣∣ � 1

4(4r)4
lA and

∣∣B ′′R∣∣ � 1

2(4r)2
lB, (11)

degGR
1

(
p

j
B,AR

)
� 1

4r
lA ∀p

j
B ∈ B ′′R, (12)

degGR
1

(
p

j
A,B ′′R)

� 1

2(4r)2
lB ∀p

j
A ∈ A′′R. (13)

Proof. There must be a color (say GR
1 , called red) for which∣∣E(

GR
1

)∣∣ � 1 − ε

r
lAlB � 1

2r
lAlB. (14)

Then there must be a subset B ′R ⊂ BR such that∣∣B ′R∣∣ � 1

4r
lB

and for every p
j
B ∈ B ′R we have

degGR
1

(
p

j
B

)
� 1

4r
lA.

Indeed, otherwise we get∣∣E(
GR

1

)∣∣ =
∑

p
j
B∈BR

degGR
1

(
p

j
B

)
<

1

4r
lAlB + 1

4r
lAlB = 1

2r
lAlB,

a contradiction with (14). Thus∣∣E(
GR

1

∣∣
(AR,B ′R)

)∣∣ � 1

(4r)2
lB lA.

Similarly, there must be a subset A′R ⊂ AR such that∣∣A′R∣∣ � 1

2(4r)2
lA

and for every p
j
A ∈ A′R we have

degGR
1

(
p

j
A,B ′R)

� 1

2(4r)2
lB .

Now it is not hard to see that we can pick a connected component (A′′R,B ′′R) of (A′R,B ′R)

which satisfies the requirements of the claim. Indeed, define the auxiliary graph GA on the
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vertex set A′R as follows. For x, y ∈ A′R , xy is an edge of GA if and only if NGR
1
(x,B ′R) ∩

NGR
1
(y,B ′R) 
= ∅.

Fact 1. The maximum number of pairwise non-adjacent vertices in GA is at most 2(4r)2.

Then clearly there is a connected component A′′R in GA of size at least

1

2(4r)2

∣∣A′R∣∣ � 1

4(4r)4
lA.

With the choice B ′′R = NGR
1
(A′′R) ∩ B ′R we get the connected component (A′′R,B ′′R) of GR

1
proving the claim. �

We modify B ′′R in the following way. We add any vertex p
j
B ∈ (BR \ B ′′R) to B ′′R for which

we have

degGR
1

(
p

j
B,A′′R)

� 2

(8r)8(r+1)
lA (� lB). (15)

For simplicity we keep the notation B ′′R for the resulting set. Thus now we may assume that for
any p

j
B ∈ (BR \ B ′′R) inequality (15) does not hold.

Then using (12) and (15) by Hall’s theorem we can find a monochromatic (red) connected
matching M covering the vertices B ′′R (note that the other endpoints of the matching edges may
not be in A′′R for the original vertices of B ′′R).

Denote the found M = {e1, e2, . . . , el1} and f (ei) = (V i
A,V i

B) for 1 � i � l1 (where
l1 = |B ′′R|). Similarly as in step 1 we make the pairs of clusters belonging to the edges in M

super-regular (in red). The exceptional vertices removed from the clusters in B are added to V 0
B .

Again, similarly as in step 1 we find the connecting red paths between the super-regular pairs be-
longing to edges of M and we make the partite sets equal inside one super-regular pair. However,
we postpone the closing of the red cycle inside each pair of clusters belonging to edges of M .
First we need some technical steps. We go back to the original graph and we consider the set of
remaining vertices in B:

B1 = V 0
B + f

(
BR \ B ′′R)

.

Consider those vertices v ∈ B1 for which

degG1

(
v,f

(
A′′R))

� 4

(8r)5(r+1)
|A| (

� |B|). (16)

These vertices are removed from B1 and they will be inserted into the red cycle. (For simplic-
ity we will keep the notation B1 for the remaining vertices.) For this purpose first we need an
estimate on the number of vertices satisfying (16). We have |V 0

B | � 2ε|B|. Let us consider a

p
j
B ∈ BR \B ′′R . Using (5), the definition of the coloring in GR and the fact that for p

j
B (15) does

not hold, the number of red edges between f (p
j
B) and f (A′′R) is at most

2

(8r)8(r+1)
lAm2 + δlAm2 �

(
2

(8r)8(r+1)
+ δ

)
|A|m � 4

(8r)8(r+1)
|A|m.

This clearly implies that we can have at most 1
(8r)3(r+1) m vertices in f (p

j
B) satisfying (16). Thus

altogether the number of vertices satisfying (16) is at most∣∣V 0
B

∣∣ + 1
3(r+1)

∣∣f (
BR \ B ′′R)∣∣ � 2ε|B| + 1

3(r+1)
|B| � 2

3(r+1)
|B|. (17)
(8r) (8r) (8r)
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To handle the vertices satisfying (16) we are going to extend some of the red connecting paths
Pi connecting the edges of M so now they are going to include these vertices. Take the first
vertex v satisfying (16). Then clearly there is a cluster p

j
A ∈ A′′R that is not covered by M for

which

degG1

(
v,f

(
p

j
A

))
� δm.

Take an arbitrary neighbor of p
j
A in B ′′R (there must be many by (13)). Then this neighbor is

covered by the matching M , say by the edge ei , 1 � i � l1, where f (ei) = (V i
A,V i

B). Consider
the red connecting path Pi−1 between f (ei−1) and f (ei) ending at the vertex vi

1 ∈ V i
A. Extend

this path by a red path of length 6 such that the third vertex is v and the other vertices come from
the following clusters (in this order):

V i
B, f

(
p

j
A

)
, v, f

(
p

j
A

)
, V i

B, V i
A.

For simplicity we still denote the new endpoint (a typical vertex of V i
A) by vi

1.
We repeat the same procedure for all the other vertices satisfying (16). However, we have to

pay attention to several technical details. First, of course in repeating this procedure we always
consider the remaining free vertices in each cluster; the internal vertices of the connecting paths
are always removed. Second, we make sure that we never use up too many vertices from any
cluster. It is not hard to see (using (13), (16) and (17)) that we can guarantee that we use up
at most half of the vertices from every cluster. Finally, since we are removing vertices from a
pair (V i

A,V i
B), we might violate the super-regularity. Note that we never violate the ε-regularity.

Therefore, we do the following. After using up, say, �δ2m� vertices from a pair (V i
A,V i

B), we
update the pair as follows. In the pair (V i

A,V i
B) we remove all vertices u from V i

A (and similarly
from V i

B ) for which deg(u,V i
B) < (δ − ε)|V i

B | (again, we consider only the remaining vertices).
We add the at most εm vertices removed from V i

B to V 0
B , check whether they satisfy (16) and if

they do, we process them with the above procedure.
This way we can handle all the vertices satisfying (16). Now by applying Lemma 2 we can

close the red cycle inside each super-regular edge of M such that it covers all the remaining
vertices in V i

B . Indeed, by the above procedure the number of remaining vertices in V i
B is less than

the number of remaining vertices in V i
A, since in each extending path of length 6, we remove 2

vertices from V i
B and only one from V i

A.
Remove this red cycle. Denote the resulting sets by B1 in B and by A1 in f (A′′R). Put A0 = A

and B0 = B . By (10), (11) and the fact that the relative proportions in the original graph are
almost the same as in the reduced graph we certainly have

|A1| � 1

(8r)4
|A0|. (18)

We will apply repeatedly the above procedure in (A1,B1). However, we consider only the
(r − 1)-edge multi-coloring (G2, . . . ,Gr) in K(A1,B1), the edges in G1 are deleted. Notice
that |A1| is still sufficiently large. We have three cases depending on the size B1.

Case 1. (|B1| − 1)r |B1| < |A1|.

In this case we are done by Lemma 9 since we have a covering of B by r + 1 (� 2r) vertex
disjoint monochromatic cycles. Thus we may assume that this case does not hold.



870 A. Gyárfás et al. / Journal of Combinatorial Theory, Series B 96 (2006) 855–873
Case 2. (8r)8(r+1)|B1| � |A1| � (|B1| − 1)r |B1|.

In this case we may run into the problem that the removed cycle may contain almost all
vertices of B , i.e., |B1| = o(|A1|). In this case the reduced graph might become empty. To avoid
this we keep a subset of A1 of size (8r)8(r+1)|B1| (denoted again by A1) and we delete the rest.
By the fact that (16) does not hold we know that before this deletion all vertices in B1 have small
degrees in the color removed (red). But then it may happen that the relative degree (the fraction
of the degree and the “new” |A1|) of some vertices in the trimmed B1 in red will not be small
any more, i.e., similarly to (16)

degG1
(v,A1) � 4

(8r)5(r+1)
|A1|. (19)

To avoid this we choose a random subset of A1 of this size (denoted again by A1 for simplicity).
Then the relative degrees of the vertices of B1 will be roughly the same as before the deletion of
the superfluous vertices. To make this precise we claim the following.

Claim 2. Let Vn = {v1, . . . , vn} with n sufficiently large, F = {S1, . . . Sm} with Si ⊆ Vn, |Si | � cn

for some constant 0 < c � 1. Then for arbitrary k > 3
c

logm there exists a T ⊆ Vn such that

• |T | = k;
• |Si ∩ T | � 2ck ∀i.

Proof. Clearly, by adding arbitrary elements to Si (and then deleting from the intersection) we
may also assume that |Si | = cn ∀i. We will use a Chernoff bound, see, e.g. [1]:

Pr
(
Bin(n,p) � (1 + λ)np

)
� e−λ2np/3 for 0 � λ � 1. (20)

Choose uniformly T ⊆ Vn of size k. Let 1x∈T be the indicator variable, and

|Si ∩ T | =
∑
x∈Si

1x∈T .

Now Pr(x ∈ T ) = k/n and so |Si ∩ T | is dominated by Bin(cn, k/n) for every i. Using (20) we
see that

Pr
(|Si ∩ T | � 2ck

)
� e−ck/3.

Therefore,

Pr

(
m∨

i=1

(|Si ∩ T | � 2ck
))

�
m∑

i=1

Pr
(|Si ∩ T | � 2ck

)
� me−ck/3. (21)

If the right-hand side of (21) is less than one then the claimed T must exist, i.e.,

e−ck/3 < (m)−1, i.e., (22)

k >
3

c
logm, (23)

which is a requirement of the claim. �
We will apply Claim 2 with the following choices. Let n = |A1|, Vn = A1, m = |B1|, Si =

NG1(vi,A1) for vi ∈ B1. Then from (18) and the fact that (16) does not hold it follows that we
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can select

c = degG1
(vi,A1)

|A1| <
4

(8r)5(r+1)

|A|
|A1| � 4(8r)4

(8r)5(r+1)
. (24)

Clearly all the conditions of the claim are satisfied so we can select the desired subset of A1 of
size (8r)8(r+1)|B1|.

Case 3. |A1| < (8r)8(r+1)|B1|.

In this case we continue with A1 with no modifications.
Now we are ready to repeat the above procedure in (A1,B1). Note that in Case 3 technically

we have a somewhat weaker condition for |A1| in terms of |B1| compared to the original |A0| =
(8r)8(r+1)|B0|, but that does not create any difficulties, the procedure still goes through.

We will treat Cases 2 and 3 simultaneously. We apply the bipartite (r − 1)-color version of
the Regularity Lemma for the (r − 1)-colored bipartite graph between A1 and B1. Using the fact
that in B1 (16) does not hold and Claim 2 in Case 2, in both Cases 2 and 3 in (7) we still have the
1
2r

lA1 lB1 lower bound for a color, say GR
2 . In Case 3, the above procedure goes through exactly

the same way for (A1,B1). Note that in Case 3 in (15) we keep the original

2

(8r)8(r+1)
lA

lower bound (and we do not use lA1 instead of lA), and similarly in (16) we keep the

4

(8r)5(r+1)
|A|

lower bound (and we do not use |A1| instead of |A|). However, in Case 2 we replace lA with lA1

in (15) and |A| with |A1| in (16). Thus in both cases similarly to (18) we have

|A2| � 1

(8r)4
|A1|,

and furthermore if we had Case 3 for (A1,B1), then using (18) we have

|A2| � 1

(8r)4
|A1| � 1

(8r)8
|A0|.

However, note that if we had Case 2 for (A1,B1), then this last inequality might not hold as the
“new” |A1| might be significantly smaller than 1

(8r)4 |A0|.
In general let us consider the situation after k iterations in (Ak,Bk). Assume that the last time

Case 2 occurred was at k′ (� k). If Case 2 never occurred we put k′ = 0. The above procedure
goes through exactly the same way for (Ak,Bk) but we replace lA with lAk′ in (15) and |A| with
|Ak′ | in (16).

If the procedure terminates after k (� r) iterations with no more vertices remaining in B , then
we have a cover of B with at most 2r vertex disjoint monochromatic cycles, as desired. Assuming
that the procedure does not terminate after r iterations, so Br 
= ∅, we will get a contradiction.
Indeed, let us examine the maximum degree to the set Ar in any color for each vertex v ∈ Br .
For G1 since (16) does not hold we have

degG1
(v,A0) <

4
5(r+1)

|A0|.

(8r)
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Then as we saw in (24) in case we have Case 3 for (A1,B1) we have

degG1
(v,A1) <

4(8r)4

(8r)5(r+1)
|A1|,

and in case we have Case 2 for (A1,B1) using Claim 2 we have to multiply by an extra factor of
2 to get

degG1
(v,A1) <

8(8r)4

(8r)5(r+1)
|A1|.

We continue in this fashion, in each iteration we have to multiply the coefficient of |Ai | by a
factor of (8r)4 and in addition if it was an iteration where we applied Case 2, then we have to
multiply by another factor of 2. Thus for each vertex v ∈ Br we have

degG1
(v,Ar) <

4(2)r (8r)4r

(8r)5(r+1)
|Ar | < |Ar |

r
.

In this upper bound we assumed the worst possible case when we have a Case 2 application in
each iteration and that is why we get the extra factor of 2r . Note also that we have this upper
bound for the other colors as well, and thus for each vertex v ∈ Br and color 1 � i � r we have

degGi
(v,Ar) <

|Ar |
r

,

a contradiction, since in at least one of the colors we must have at least |Ar |/r edges from v

to Ar . This finishes the proof of Lemma 8. �
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