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Human locomotion control research strongly needs the understanding of the various feedback mech-

anisms, appearing in the human neuromuscular systems. For describing the effect of these feedback

mechanisms, the modeling of the system components, including the affected limb or joint is needed.

Two models of the gamma-loop mechanism based on different muscle spindle models are proposed in

this paper, for the investigation of this nonlinear feedback mechanism in human locomotion. The first

intuitive model is based only on the dynamical properties of the muscle spindles, while the second phys-

ical model is based on a simple spindle structure composed of a contractile and an elastic element. The

developed models are transformed into a standard nonlinear state-space model form by substituting the

algebraic equations into the differential ones. This form enables to apply standard control theoretic

methods for dynamic analysis of the partially controlled system. The effect of the gamma-loop mecha-

nism is studied on a simple, elbow-like nonlinear limb model, described in [2]. The first model is able

to describe the stretch reflex, and both model can describe the smoothing of movement, the appearing

muscle tone, and the alpha-gamma coactivation. Both models can be extended easily with a polysinaptic

feedback.
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1 Introduction

The importance of understanding the way in which sensorimotor feedback influences motor
control has increased significantly in the past decades. Several publications studied the role of
sensory feedback in motor control [6], [7], [10]. Also several studies deal with the properties of
the receptors, which provide the sensory information for this feedback [8], [14], [5]. In fact, the
integration of reflexes at the lower levels (spinal chord) of the central nervous system (CNS)
to sensorimotor control models is not prevalent in literature, only few studies are published on
this field [11], [9].

The aim of this work is to build simple models of the gamma loop mechanism to provide
a principle for future studies on human locomotion control. In these future researches we will
investigate how the gamma loop mechanism can be involved to control (in the case of a simple
nonlinear limb model), which control models involving the gamma loop mechanism provide
the best performance (in the case of various tasks) and which models are the closest to the
physiology of human motion control. To this aim, we investigate two simple models of the
muscle spindle. In both cases we investigate the muscle spindle, only as a part of the gamma
reflex loop, and not as a source of information about the state of the limb. In fact, we suppose
that the variables, who’s derivatives appear in the differential equations of the model (state
space variables), are fully available for a feedback controller.

2 A simple nonlinear limb model

Figure 1 shows the simplified limb model:

Figure 1: The simple limb model

For the description of the nonlinear dynamic properties of the limb and the working muscles,
we use a simplified version of the model described in [2]. In this simplified model we neglect
the dynamics of the tendon, and assume constant tendon lengths. This can be done in the case
of an elbow-like structure without validity problems. In this case the equations of the model
are the following:
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dq1

dt
= −

(

1
τact

(β + [1 − β]uf (t))
)

q1 + 1
τact

uf (t)

dq2

dt
= −

(

1
τact

(β + [1 − β]ue(t))
)

q2 + 1
τact

ue(t)

dα
dt

= ω

dω
dt

= 1
Θ+ml2

COM

(M(q1, q2, α, ω) + mlCOMcos(α + ξ)gy)

(1)

where q1(t) denotes the activation state of the flexor muscle, and q2(t) denotes the activation
state of the extensor muscle, τact [s] is the activation time, showing how quick the muscle reacts
on the external activation signal coming from the nerval system. β is a constant, describing the
correlation between the decrease of the activation state and the external activation signal. If β
= 1 then the external activation signal does not affect the decrease of the activation state, if β
= 0 then it strongly affects it. uf and ue denotes the activation signals of the muscles. α [rad]
denote the external joint angle. ξ [rad] is the angle between the global coordinate-system’s x
axis, and the not-moving upper segment of the limb (in our model ξ is always equal to −π/2),
ω [rad/s] is the angle velocity, Θ [kgm2] is the moment of inertia defined to the mass-center
point of the bone, m [kg] is the mass of the moving limb part, lCOM [m] is the distance between
the moving limb part’s center of mass point and the joint axis. M [Nm] is the resulting joint
torque, and g = [gx, gy] [m/s2] is the vector of gravitational acceleration.

With the notation xi for the state-space variables (x1 = q1, x2 = q2, x3 = α, x4 = ω), the
equations are as follows:

dx1

dt
= −

(

1
τact

(β + [1 − β]uf (t))
)

x1 + 1
τact

uf (t)

dx2

dt
= −

(

1
τact

(β + [1 − β]ue(t))
)

x2 + 1
τact

ue(t)

dx3

dt
= x4

dx4

dt
= 1

Θ+ml2
COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

(2)

The parametrization of the model is the same as in [2] except the maximal active force of
the muscles which is in this case 500 N, and the force-length characteristics (the function is the
same, but the ideal muscle lengths are now defined as lengths belonging to α = π/6). These
parameters were changed to these more realistic values.

We have to note, that the linearized open-loop model can be instable or at the edge of
stability, depending on the steady state-point, the muscle characteristics, and the values of the
model parameters (for example, the optimal length of the muscles).
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3 The gamma loop

3.1 Muscle spindles

To understand the functioning of the gamma-loop mechanism, we have to know some facts
about one of the main components of the system: the muscle spindles.

Muscle spindles are found within the fleshy portions of muscles, embedded in so-called
extrafusal muscle fibers, aligned parallel to them (unlike Golgi tendon organs, which are oriented
in series). The ends of the fusiform spindles, which vary in length from 5 to 10 mm, attach to
the intramuscular connective tissue. The spindles are composed of 3-10 intrafusal muscle fibers
(of which there are two types, nuclear bag fibers (8-10 mm long) and nuclear chain fibers) and
the axons of sensory neurons. Intrafusal muscle fibers are essentially a collection of miniature
skeletal muscle fibers enclosed in a connective tissue capsule.

The muscle spindle has both sensory and motor components. As a sensory receptor, the
muscle spindle has an afferent supply of different afferents, over which the action potentials are
transmitted to the Central Nervous System (CNS), providing the sensory component of the
structure via stretch-sensitive excitatory ion-channels of the axons. There are two subtypes
of the nuclear bag fiber, which have different elastic properties, and correspondingly, different
functions. The dynamic bag fiber is sensitive mainly to changes in muscle length. The other,
the static bag fiber, signals only a change in muscle length [4].

The efferent input to the intrafusal fibers of the muscle spindle are the endings of gamma
(γ) and beta (β) motoneurons. In general, skeletal muscle fibers are innervated by three groups
of motoneurons, which can be distinguished by size, and by the type of the muscle that they
innervate. The alpha (α) motoneurons are the largest and innervate the extrafusal muscle
fibers. Gamma (γ) motoneurons are the smallest, and connect exclusively to intrafusal muscle
fibers. Beta (β) motoneurons are intermediate in size, and innervate both type of muscle fibers
[3].

Figure 2: Muscle spindles (figure taken from [3])

The activation of the gamma motoneurons causes the contraction of the equatorial region,
and the appearing stretch heightens the sensitivity of the muscle spindles [3].

3.2 The servomechanical gamma-loop

The length of the muscle spindles on the one hand serve as a sensory input for the central
nervous system, providing information about the length of the muscle, and so the state of the
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joints too.
On the other hand they serve as a component for the servomechanical γ-loop. Inside the

muscle spindles are muscle fibers, thinner and shorter than the working muscle fibers, which
provide the majority of the force, doing most of the muscle work. These muscle fibers inside
the muscle spindles are innervated by the γ-nerves originating from the γ-neurons in the spinal
marrow. In general case the γ-neurons regulate the length of the muscle spindles to match the
actual length and stretch state of the working muscle.

The servomechanical gamma loop effect:

If the γ-neurons (denoted with green in figure 3) are stimulated by the impulses from the
descending tracts in the spinal marrow (magenta), the muscle fibers inside the muscle spindle
(yellow) contract, providing difference between the stretch state of the working muscle and
the muscle spindles, which is instantly detected by the receptors of the muscle spindle, in-
nervated by neurons transferring the signal back to the spinal marrow (denoted with green).
Consequently the α-motoneurons in the spinal marrow (red) stimulate the working muscle to
contract. Because the impulses from the descending tracts through the γ-neurons first reach
the muscle spindle, then return to the spinal marrow, and then reach the working muscle, we
call this loop-like path the gamma loop. The consequence is that the central nervous system
does not need nerves descending to all of the muscle fibers, furthermore the impulses of the
central nervous system can affect the activation of the muscle in a way that the final effect
depends on the actual state (length) of the muscle. [12]

Figure 3: The servomechanical γ-loop
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Polysynaptic Control:

The gamma-afferents connect not only to the spinal (alpha-efferent) motoneuron innervating
the agonist muscle (here: the same muscle, in which the spindle is located), but through an
inhibitory synapsis, they connect also to the motoneuron of the antagonist muscle, and block
it’s functioning [13].

Alpha-gamma coactivation:

Consider the situation in which a muscle is contracting actively against a load. Because a
muscle spindle attached parallel to the adjacent extrafusal fibers, one might erroneously infer
that its overall length is determined (approximately only) by the length of the surrounding
muscle; when the muscle contracts, the spindle shortens, and the activity of the afferent (sen-
sory) neurons decrease. This is not so; if the intrafusal fibers remained passive during extrafusal
muscle fiber contraction, the shortening of the muscle would relax the equatorial region of the
intrafusal fibers, and the afferent neurons would cease firing. This slack inactive muscle would
be use less for reporting muscle dynamics. In reality, the spindle retains its sensitivity, because
when the brain signals the α-motoneuron to initiate muscle contraction, it sends parallel im-
pulses to the gamma neurons to cause the intrafusal fibers to contract. Therefore, when the
extrafusal muscle fibers shorten, the intrafusal fibers also shorten, because their gamma mo-
tor neurons are activated at the same time, and the equatorial regions of the intrafusal fibers
remain under nearly constant tension. This phenomenon is called alpha-gamma coactivation
[4].
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4 Modeling the gamma loop

In general case, the signal flow diagram of the system including the gamma loop mechanism
can be seen in the following figure (4).

Figure 4: The Signal flow diagram of the gamma loop mechanism and the controller

In figure 4 ud means the direct activation signal of the extrafusal (working) muscles, origi-
nating from the CNS, us denotes the activation signal of the intrafusal muscle fibers, ug denotes
the activation signal of the extrafusal muscles, originating from the gamma-loop mechanism,
uα denotes the total (summated) activation signal of the extrafusal muscle fibers, x denotes
the state-space variables of the simple nonlinear limb model. The state-space variables of the
simple nonlinear limb model affect the muscle spindle dynamics via t(x) (form the state-space
variables, the lengths of the (extrafusal) muscles can be computed, which necessary appears in
the input of the muscle spindle dynamics).

4.1 The first simplified model of the Gamma-loop

Simplifying assumptions

• In the model, we are interested only in the motor component of the system. In our case
the a controller, which will be developed in the future, will be modeling the adequate
functions of the CNS.
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• The one muscle spindle in the model refers to the summation of the spindles.

• In the case of the spindles, only gamma innervation is modeled.

• We take only the static bag fibers into account: The receptors of the muscle spindles can
sense only the length difference between the muscle fibers inside the muscle spindles (ls),
and the surrounding muscle fibers, of which length are commensurable to the working
muscle length (lCE). In this case, this is also the simple model of the alpha-gamma
coactivation. In our model we suppose the normalized length of the surrounding muscle
fibers always equal to the normalized length of the working muscle (lCE). Therefore the
length difference detected by the muscle spindles is lCE − ls. However, we have to note,
that the first model is sensitive for quick changes of muscle length, as we will see it later.

• The activation signal generated by the spinal neurons (denoted with ug) is sigmoid in the
measured difference. This is shown in figure 5.

• At first we do not model polysynaptic control.

4.1.1 Model equations

In this case, we can extend our model with two more state-space variables: With the normalized
lengths of the muscle fibers of the spindles (lfs in the case of the flexor muscle, and les in the
case of the extensor muscle).

If we suppose, that the normal length of the muscle spindles (and the surrounding muscle
fibers) is always equal to the working muscle, we can describe the behavior of the new variables
with the following equations:

dlfs
dt

= cP (lfCE − lfs ) − cGuf
s (t)

dles
dt

= cP (leCE − les) − cGue
s(t) (3)

where cP [1/s] is a constant showing how quick the length of the muscle spindles (and the
muscle fibers inside the muscle spindles) follows the length of the working muscle (lfCE, leCE),
cG is a constant showing how sensitive the muscle spindle is to the external activation signal of
the descending tracts, and us(t) is the activation signal of the descending tracts acting on the
the muscle fibers inside the muscle spindles (uf

s (t) in the case of flexor, and uf
s (e) in the case

of extensor muscle).
If we make these assumptions, we have to modify (expand) the model described in [2].
The complete activation signal of the muscles in this case can be computed on the one hand

from the direct activation signal ud, on the other hand the activation signal originating from
the gamma loop mechanism (ug). ug can be computed from the actual difference between the
lengths of lCE and ls (both as normalized value).
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Figure 5: The activation signal generated by the gamma loop mechanism

We can rearrange the first two state-space equations in [2] as follows:

dx1

dt
= −

(

1

τact

(β + (1 − β)uf (t))

)

x1 +
1

τact

uf (t)

= −
1

τact

βx1 +

(

−
1

τact

(1 − β)x1 +
1

τact

)

uf (t) (4)

and

dx2

dt
= −

(

1

τact

(β + (1 − β)ue(t))

)

x2 +
1

τact

ue(t)

= −
1

τact

βx2 +

(

−
1

τact

(1 − β)x2 +
1

τact

)

ue(t) (5)

where u1 and u2 are replaced by uf and ue referring to the fact that the total flexor and extensor
activation signal is composed on the one hand from the direct activation signal and on the other
hand from the effect of the gamma-loop.

With the notation of x1,x2,...,x6 for state space variables the equations are as follows:
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ẋ1 = −
1

τact
βx1 +

(

−
1

τact
(1 − β)x1 + 1

τact

)

uf (t)

ẋ2 = −
1

τact
βx2 +

(

−
1

τact
(1 − β)x2 + 1

τact

)

ue(t)

ẋ3 = x4

ẋ4 = 1
Θ+ml2

COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

ẋ5 = cP (lfCE(x3) − x5) − cGuf
s

ẋ6 = cP (leCE(x3) − x6) − cGue
s

(6)

where uf (t) is the total activation signal of the flexor muscle, ue(t) is the total activation signal
of the extensor muscle, uf

s is the activation signal of the flexor muscle’s spindle and ue
s is the

activation signal of the extensor muscle’s spindle.

Let us define the following notation:
Let u1 ∈ [0, 1] be the direct activation signal of the flexor muscle (uf

d) (not originating from the
gamma loop mechanism), u2 ∈ [0, 1] the direct activation signal of the extensor muscle (ue

d), u3

∈ [0, 1] the activation signal of the flexor muscle’s spindle (uf
s ), u4 ∈ [0, 1] the activation signal

of the extensor muscle’s spindle (ue
s).

With this notations uf
g can be computed as:

uf
g = f f

gas(x3, x5)
.
= (sigm2[(lfCE(x3) − x5) − 0.11])6 (7)

where sigm2(x) stands for the function 1
1+e−100x . This function is depicted in figure 5.

uf = uf
g + uf

d = uf
g + u1 (8)

and

ue
g = f e

gas(x3, x5)
.
= (sigm2[(leCE(x3) − x6) − 0.11])6 (9)

ue = ue
g + ue

d = ue
g + u2 (10)

(lfCE(x3) denotes the flexor muscle’s length, as a function of the joint angle (leCE(x3) denotes
the extensor’s length).

We can substitute these expressions in equation (6), to get the following form:

ẋ1 = −
1

τact

βx1 +

(

−
1

τact

(1 − β)x1 +
1

τact

)

(f f
gas(x3, x5) + u1)

ẋ2 = −
1

τact

βx2 +

(

−
1

τact

(1 − β)x2 +
1

τact

)

(f e
gas(x3, x6) + u2)
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ẋ3 = x4

ẋ4 =
1

Θ + ml2COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

ẋ5 = cP (lfCE(x3) − x5) − cGu3

ẋ6 = cP (leCE(x3) − x6) − cGu4 (11)

If we rearrange the equation (11) we can get the following general form of input-affine
systems:

ẋ = f(x) +
∑m

i=1 gi(x)ui(t)

y = h(x)
(12)

where:

f(x) =
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1

τact
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(

−
1

τact
(1 − β)x1 + 1
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)

(f f
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βx2 +
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(1 − β)x2 + 1
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(f e
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x4
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g3(x) =
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g4(x) =
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0

0

0

0
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We have to note, that the effect of the gamma-loop in the phase of model construction was
treated as an input, but in this form it appears as a part of f , because here, we describe the
complete system.
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4.1.2 Model verification

At first, we analyze the behavior of the model without any controller, only with the feedback
provided only by the gamma-loop mechanism as detailed above.

First simulation

At first we expect the gamma-loop mechanism to provide a more smooth movement of the
limb, because it acts as a slow-down mechanism at big limb accelerations, which cause quick
changes in muscle length. We suppose a situation, when the limb descends from α = π/2 to
α = 0. In the following figures, we can see the simulation results in the case, if uf

d = ue
d = uf

s =
ue

s = 0, and there isn’t any feedback to the system (uf = ue = 0).
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Figure 6: Muscle activation states, and muscle lengths, α and ω without gamma-loop feedback

The oscillations around 0 rad are caused by the passive forces of the muscles, and by the
the forces of ligaments.
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Second simulation

In the following figures, we can see the simulation results of the system with the passive
gamma-loop feedback, in the case, if uf

d = ue
d = uf

s = ue
s = 0.
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Figure 7: Muscle activation states, and muscle lengths
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Figure 8: α, ω, uf
g and ue

g with passive gamma-loop feedback

We can see in the figures in the significant values of ω, that the movement became a bit
smoother, and the descending of the limb takes a bit more time.
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Third simulation

In the following figures, we can see the simulation results of the system with the active
gamma-loop feedback, in the case, if uf

d = ue
d = 0, uf

s = ue
s = 0.2. In this case the sensitivity of

the spindles increase, because of the properties of the function depicted in 5.
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Figure 9: Muscle activation states, and muscle lengths
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Figure 10: α, ω, uf
g and ue

g with active gamma-loop feedback

We can see, that the movement became more smooth, and a constant tone is appearing in
the muscles.
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Fourth simulation

Similar to the patellar reflex, we can encroach into the dynamics of the limb, and make a
very good example of the gamma-loop’s functioning. We can increase the muscle length by
artificial ways (i.e. without change in the joint angle), and analyze the reaction of the system.
In this simulation we generated an extra increment in the flexor muscle’s length, at α = 0 joint
angle, approximately at the time t = 1.3s. The simulation results are depicted in the figures
below:
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Figure 11: Muscle activation states, and muscle lengths
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4.2 The second simplified model of the gamma-loop

In the second model of the muscle spindle an intrafusal fiber is composed of a linear elastic
element representing the sensory part (the equatorial region) and a muscle fiber representing
the muscular part (the polar region), as it can be seen in the next figure 13.

Figure 13: The second model of the muscle spindle

where lIM denotes the length of the muscular part, lS denotes the length of the spring, lR
denotes the length of the whole system, which is determined by the length of the surrounding
fibers of the working muscle (which depend only on α = x3). FIM is the notation of the force
generated by the muscle fiber, FS is the force of the spring. These two forces are always equal
in our model.

Simplifying assumptions

• In the model, we are only interested in the motor component of the system. We suppose,
that by sensory ways all the state-space variables are available for a controller. In our
case the controller models the adequate functions of the CNS.

• The muscle spindle in the model refers to the summation of the spindles.

• The force generated by the muscular part of the spindle depends only on it’s activation
state (we neglect the force-length, and the force-contraction velocity characteristics in the
intrafusal case).

• In the case of the spindles, only gamma innervation is modeled.

• Only static bag fibers are taken into account: The activation signal originating from the
gamma-loop effect in this case is a sigmoid function of ∆L = LS − LS0 (LS0 denotes the
natural length of the spring).

• At first we do not model alpha-gamma coactivation.

• At first, we do not model polysynaptic control.
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4.2.1 Model equations

We can describe the functioning of the model with the following equations:

FS = D(LS − LS0) (13)

where D denotes the spring constant, LS0 denotes the natural length of the spring.

FIM = qIMFmax
IM + FIPE(LIM) (14)

In this equation qIM denotes the activation state of the intrafusal muscle, FIM is the maxi-
mum of the active force and FIPE(LIM) is the passive force generated by the intrafusal muscle.
This function can be seen in figure 14
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Figure 14: The passive force generated by the intrafusal muscle

Furthermore we can write:

LS + LIM = LR ⇒ LS = LR − LIM (15)

So we can write:

D(LR − LIM − LS0) = qIMFmax
IM + FIPE(LIM) (16)

qIMFmax
IM + FIPE(LIM) − D(LR − LIM − LS0) = 0 (17)

If we take the time-derivative of the equation 17 (see [1]), and define z = LIM , we get:

q̇IMFmax
IM +

dFIPE(z)

dz
ż − D(

dLR(x3)

dx3

ẋ3 − ż) = 0 (18)

If we rearrange the equation above, we get an equation which can be fit to our state-space
model with z as the new state-space variable.
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ż =
q̇IMFmax

IM − D dLR(x3)
dx3

x4

−(D + dFIPE(z)
dz

)
(19)

If we define zf = x7 for the flexor muscle and ze = x8 for the extensor muscle, and we

suppose first order activation dynamics for the muscular part of the spindles, the state-space

equations will take the following form:

ẋ1 = −
1

τact
βx1 +

(

−
1

τact
(1 − β)x1 + 1

τact

)

uf(t)

ẋ2 = −
1

τact
βx2 +

(

−
1

τact
(1 − β)x2 + 1

τact

)

ue(t)

ẋ3 = x4

ẋ4 = 1
Θ+ml2COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

ẋ5 = −
1

τact
βx5 +

(

−
1

τact
(1 − β)x5 + 1

τact

)

uf
s (t)

ẋ6 = −
1

τact
βx6 +

(

−
1

τact
(1 − β)x6 + 1

τact

)

ue
s(t)

ẋ7 =
ẋ5F

max
IM −D

dL
f
R

(x3)

dx3
x4

−(D+
dFIPE(x7)

dx8
)

ẋ8 =
ẋ6F

max
IM −D

dLe
R(x3)

dx3
x4

−(D+
dFIPE(x8)

dx8
)

(20)

where uf (t) denotes the total activation signal of the flexor muscle, ue(t) denotes the total
activation signal of the extensor muscle, uf

s denotes the activation signal originating from the
spindle of the flexor muscle and ue

s denotes the activation signal originating from the spindle of
the extensor muscle.

uf = uf
d + uf

g (21)

where uf
d denotes the direct activation signal of the flexor muscle, and uf

g denotes the activation
signal, which originates from the gamma-loop mechanism.
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Let us define the following notation once more:
Let u1 be the direct activation signal of the flexor muscle (uf

d) (not originating from the gamma
loop mechanism), u2 the direct activation signal of the extensor muscle (ue

d), both ∈ [0, 1], u3

the activation signal of the flexor muscle’s spindle (uf
s ), u4 the activation signal of the extensor

muscle’s spindle (ue
s)

In this case the gamma-feedback depends only on the actual length of the spring in the
model.

With this notation for example uf
g can be computed as:

uf
g = f f

gas2(x3, x7)
.
= 1 −

1

(1 + exp(10000(Lf
R(x3) − x7) − 61))30

∗ UGmax (22)

LR denotes the total length of the muscle and the spring, and depends only on x3. UGmax

is the maximal value of the gamma-loop based activation signal. Of course in the case of the
extensor muscle the equations are similar.

The function [22] can be seen in the next figure:
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Figure 15: The activation signal generated by the gamma loop mechanism as a function of the
spring’s length
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We can substitute these expressions in equation (6) to get the following form:

ẋ1 = −
1

τact

βx1 +

(

−
1

τact

(1 − β)x1 +
1

τact

)

(f f
gas2(x3, x5) + u1)

ẋ2 = −
1

τact

βx2 +

(

−
1

τact

(1 − β)x2 +
1

τact

)

(f e
gas2(x3, x6) + u2)

ẋ3 = x4

ẋ4 =
1

Θ + ml2COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

ẋ5 = −
1

τact

βx5 +

(

−
1

τact

(1 − β)x5 +
1

τact

)

uf
s (t)

ẋ6 = −
1

τact

βx6 +

(

−
1

τact

(1 − β)x6 +
1

τact

)

ue
s(t)

ẋ7 =

(

−
1

τact
βx5 +

(

−
1

τact
(1 − β)x5 + 1

τact

)

uf
s (t)

)

Fmax
IM − D

dL
f
R

(x3)

dx3
x4

−(D + dFIPE(x7)
dx7

)

ẋ8 =

(

−
1

τact
βx6 +

(

−
1

τact
(1 − β)x6 + 1

τact

)

ue
s(t)

)

Fmax
IM − D

dLe
R(x3)

dx3
x4

−(D + dFIPE(x8)
dx8

)

(23)

If we rearrange the equation (25) we can get the following general form of input-affine systems:

ẋ = f(x) +
∑m

i=1 gi(x)ui(t)

y = h(x)
(24)

where:
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f(x) =
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4.2.2 Model verification

Because the properties of the second model differ from the first and it does not include the
alpha-gamma coactivation mechanism we get different results for the simulation tasks.

If we study the system with passive gamma-loop feedback, we get the following result: (in
this case uf

d = ue
d = uf

s = ue
s = 0).
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Figure 16: Muscle activation states, and muscle lengths

Because this model is not sensitive to quick changes in muscle length the gamma-feedback
does not slow the descent of the limb in passive, or in active case.
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g and ue

g with passive gamma-loop feedback

4.3 Alpha-gamma coactivation

In this subsection we try to create a solution for the alpha-gamma coactivation problem appear-
ing in the case of the second model. As we mentioned above, in the case of the first model this
problem does not appear, because the intrafusal muscle length always follows the extrafusal
length automatically (with a small delay).

In the case of the second model, the aim of the alpha-gamma coactivation is to keep the
spring in the same length state, while the limb itself is moving, and the length of the intrafusal,
and extrafusal muscles are changing. For this we have to determine the activation signal of the
intrafusal muscles. But this signal depends not only in the position of the limb, but on the state
of the muscle spindle model itself. This means if we are to keep a higher tone (what means, we
need to keep the spring in a more stretched state), we need a completely different activation
signal for the same movement pattern. So the explicit expression of the needed activation signal
would be very difficult.

For this reason, we use the following method:

• We analyze only the effect of the alpha-gamma coactivation - because we suppose that it
plays a key role in control mechanism, which has to be investigated in the future.

• We do not care about which way the the correct activation signal in physiological terms
is determined (anyway a similar simple negative neural feedback with a reference signal
is imaginable).

• We modify (expand) the model with two more differential equations, which are only to
calculate the needed activation signal of the intrafusal muscles. The new state space
variables (x9, x10) are the activation signals of the intrafusal muscles, and the new inputs
(u3, u4) are the desired spindle lengths.
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The equations are, as follows:

ẋ1 = −
1

τact

βx1 +

(

−
1

τact

(1 − β)x1 +
1

τact

)

(f f
gas2(x3, x5) + u1)

ẋ2 = −
1

τact

βx2 +

(

−
1

τact

(1 − β)x2 +
1

τact

)

(f e
gas2(x3, x6) + u2)

ẋ3 = x4

ẋ4 =
1

Θ + ml2COM

(M(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

ẋ5 = −
1
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βx5 +
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−
1
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(1 − β)x5 +
1

τact

)

x9

ẋ6 = −
1
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−
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ẋ7 =
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βx5 +
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−
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(1 − β)x5 + 1
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)

x9

)

Fmax
IM − D

dL
f
R

(x3)

dx3
x4

−(D + dFIPE(x7)
dx7

)

ẋ8 =

(

−
1

τact
βx6 +

(

−
1

τact
(1 − β)x6 + 1

τact

)

x10
)

Fmax
IM − D

dLe
R(x3)

dx3
x4

−(D + dFIPE(x8)
dx8

)

ẋ9 = cg(u3 − (Lf
R(x3) − x7)

˙x10 = cg(u4 − (Le
R(x3) − x8)

(25)

We can easily determine f and gi-s in this case:
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g3(x) =
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4.4 Simulation results

In the following figures a simulation of a simple descending movement can be seen, applying
the alpha-gamma coactivation model.
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Figure 18: Muscle activation states, and the activation signals of the intrafusal muscles
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As we can see in the figures above, in the case of a simple descending movement, the length
of the springs stay in the close range of the desired spring lengths (0.005575 and 0.0055 m),
and the intrafusal activation signal changes. The beginning oscillation is caused by the value
of Cg - if we choose a lesser value, less oscillation can be seen, but the length of the spring
convergates with less speed to the prescribed value.
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5 Discussion

The properties of the two model show some important differences:

• The first model is more simple, but takes more dynamical properties into account (the
alpha-gamma coactivation is included in the basic model, and because of the length of the
intrafusal fibers follow the length of the extrafusal ones with delay, some more dynamical
properties appear). Due to its simplicity external interventions, as an external change in
the muscle length (in the case of the stretch-reflex), can be easily done. This would be
more difficult in the case of the second model, because the state-space equations which
describe the length of the intrafusal fibers (equation 19) contain terms which are derived
from the function which describes the muscle length in normal conditions. In a such case,
all these functions have to be modified. In fact in the case of the first model there is no
information about the stretch and the forces inside the intrafusal fibers.

• The second model is based on the real physical properties of the muscle spindle (and so
we can suppose, that the parameters of the model can be more easily measured), but
becomes more sophisticated as more dynamical properties are taken into account (alpha-
gamma coactivation, etc.). In fact it is more realistic and it can describe the stretch
states and the forces inside the intrafusal fibers. Moreover the muscle spindle works also
as a receptor of stretch-difference between the intrafusal and the extrafusal fiber. Due to
this, if in future studies a model will be constructed which also takes the the spindle as
a receptor into account, it will be probably based on the second model.

Taking it all round, the first model can more easily show the dynamical properties which are
to investigate in control-design researches, but the second model can describe the functioning of
any actuation or control method in a more accurate way, and it is more suitable for extending
the model with receptor functions.



Research Report SCL-001/2006 29

6 Conclusions and future work

In this short article two different models of the gamma-loop mechanism were constructed. The
models take the phenomenon of the spinal chord feedback, originating from the signals of static
bag fibers, and the alpha-gamma coactivation into account. The aim of the work described in
this article was to propose a principle model for future research, which aim will be to investigate
the role of the gamma-loop mechanism in human locomotion control.

6.1 Future work

• The models can be easily expanded to deal with polysynaptic control.

• The models can be expanded with the equations describing the functioning of dynamic
bag fibers.

• The physical model of the muscle spindle can be improved, to better describe the prop-
erties of a real spindle. Parameters of such models can be identified with in-vitro experi-
ments.

• The dynamic properties of the models have to be analyzed for future control purposes.

• The models can be completed with a controller, which describes the adequate functions
of the higher level structures of the CNS (Cerebellum, Cortex, etc.).

• The models can be extended with the equations describing the receptor functions of the
muscle spindles, and the Golgi tendon organs.
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