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The proof of stability of a cascade control using feedback linearization and pole placement in the case

of an elbow-like nonlinear limb model, similar to the one described in [2], is proposed in this article.

The proof is based on the backstepping technique described by van der Schaft in [8]. In the case of

regulation the feedback properties are examined. The controller structure is extended to the task of

trajectory following. Simulations are performed to test the theoretical basis for control design - in the

trajectory following case, a sinusoid trajectory should be followed.
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1 Introduction

Application of nonlinear control for biomechanical systems has appeared in the literature several
times in the past decades [6], [1], but the proof of stability for such nonlinear control methods
is not prevalent in the literature. The proof of stability in the case of nonlinear system and
control theory is always a challenge for systems with complex state-space models. In this case
the system described has a quite complex dynamics, but we can avoid some of these difficulties
by feedback linearization, and by the backstepping method.

Motivation and Aim:

Even the simplest limb model exhibits strongly nonlinear dynamic behavior that calls for the
application of the results of nonlinear systems and control theory. The control of musculoskele-
tal structures has considerable importance in the field of human locomotion control, designing
and controlling muscle prothesis and artificial limbs. Furthermore the techniques of FES (func-
tional electrical stimulation) - of patients with some kind of paralysis - can be improved with
appropriate control methods.

The aim of this study is to prove the stability of a nonlinear cascade control (via feedback
linearization [4] or [5]) for a simple limb model.

2 The simple nonlinear limb model

Material and Methods:

A nonlinear input-affine state-space model has been developed for a simple one-joint system
with a flexor and an extensor muscle (see figure 1) which is suitable for nonlinear system
analysis and control. The model takes the nonlinear properties of the force-length relation and
the force-contraction velocity relation into account.

Exerted forces depend linearly on the activation state of muscles, following the principles
in [10], [9] and [7]. In this case we use a simplifed version of the model described in [2], and do
not take the tendon dynamics into account, as described in [3]. The inputs of the model are
the normalized activation signal of muscles, the output is the joint angle, and the number of
state variables is 4.

Figure 1: The system
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As preliminary model analysis we performed stability, controllability and observability anal-
ysis of the linearized model around steady-state points. The result showed, that the stability
of the model strongly depends on the steady-state point. In this study we will examine a
steady-state point, which exhibits instable properties in open loop case. Utilizing the cascade
structure of the system (the muscle dynamics do not depend on the limb dynamics), a cascade
control (feedback linearization and pole-placement for the limb dynamics and expanding the
control to the muscle dynamics with backstepping) was designed.

2.1 Structure and signal flow of the model

As it can be seen in figure 2, the dynamics of the muscle activation do not depend on the
dynamics of the limb. So, the muscle activation states can be defined as inputs to the dynamics
of the segments.

Flexor
muscle

dynamics

Extensor
muscle

dynamics

Dynamics of
segments Joint angle

u1

u2

q1

q2

Figure 2: The cascade structure of the system
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2.2 Equations of the model

2.2.1 Segmental dynamics

The dynamics of the segments in open-loop case can be described with the following equations:

∂α
∂t

= ω

∂ω
∂t

= 1

Θ+ml2
COM

(Mm(q1, q2, α, ω) + mlCOMcos(α + ξ)g)
(1)

where α [rad] is the joint angle, ξ [rad] is the angle between the global coordinate-system’s x
axis, and the not-moving upper segment of the limb (in our model ξ is always equal to −π/2),
ω [rad/s] is the angle velocity, Θ [kgm2] is the moment of inertia defined to the mass-centre
point of the bone, m [kg] is the mass of the moving limb part, lCOM [m] is the distance between
the moving limb part’s center of mass point and the joint axis, Mm [Nm] is the resulting joint
torque of the muscles, and g [m/s2] is the vector of gravitational acceleration. q1 and q2 denotes
the activation states of the muscles.

If we study the model around α = π/2 joint angle, the forces of ligaments, bones and the
passive force of the muscles can be neglected, so we can write

Mm = F f
maxf

f
LM(α)f f

V M(α, ω)dfq1 + F e
maxf

e
LM(α)f e

V M(α, ω)deq2 (2)

where f f
LM and f e

LM denote the function of the force-length characteristics in the case of the
flexor and extensor muscle, f f

V M and f e
V M denote the function of the force-contraction velocity

characteristics in the case of the flexor and extensor muscle. These characteristics are fully
described in [3], and they can be seen in the next figures:
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df and de [m] denote the moment arms for the flexor and extensor muscle, the distance
between the axis of the joint and the point where the forces appear, and F f

max and F e
max denote

the maximal force of the flexor/extensor muscles.

2.2.2 Muscle dynamics

The differential equation of the muscle defines the connection between q(t), the activation state
of the muscle and the activation signal u(t). With u(t) ∈ [0, 1] the equation taken from Zajac
[10] is:

dq

dt
= −

(

1

τact

(β + [1 − β]u(t)

)

q +
1

τact

u(t) (3)

where τact [s] is the activation time, showing how quick the muscle reacts on the external
activation signal coming from the nerval system. β is a constant, describing the correlation
between the decrease of the activation state and the external activation signal. If β = 1 then
the external activation signal does not affect the decrease of the activation state, if β = 0 then
it strongly affects the decrease. q1(t) denotes the activation state of the flexor muscle, and q2(t)
denotes the activation state of the extensor muscle.

2.2.3 State-space equations

With the notation xi for the state-space variables (x1 = q1, x2 = q2, x3 = α, x4 = ω), the
equations are as follows:

dx1

dt
= −

(

1

τact
(β + [1 − β]uf (t))

)

x1 + 1

τact
u1(t)

dx2

dt
= −

(

1

τact
(β + [1 − β]ue(t))

)

x2 + 1

τact
u2(t)

dx3

dt
= x4

dx4

dt
= 1

Θ+ml2
COM

(Mm(x1, x2, x3, x4) + mlCOMcos(x3 + ξ)gy)

(4)

where the first two equations describe the dynamics of the muscles, and the second two describe
the dynamics of the limb. u1(t) denotes the activation signal of the flexor muscle, and u2(t)
denotes the activation signal of the extensor muscle.

If we rearrange equation 4 we can get the following general form of input-affine systems:

ẋ = f(x) +
∑m

i=1
gi(x)ui(t)

y = h(x)
(5)

where
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2.3 The cascade structure of the model

As we can also see in figure 2, the dynamics of the limb model has a cascade structure. The
complete dynamics of the limb can be divided into two parts:

• The activation dynamics of the muscles: This means two simple first order system, with
the activation signals as input and the activation states as output.

• The movement dynamics of the limb with the activation states as input and the joint
angle as output.

3 Regulation

3.1 Control structure design

We can utilize the cascade structure of the model, and design a controller for the limb dynamics,
and from it we derive an another one for the muscle. In this case the actuation signal of the
limb dynamics is defined for the muscle as reference signal.

3.2 Control of segments

In the case of the segments, we apply feedback linearization, and pole-placement. In this case
we use only the flexor muscle, as input to get a SISO structure. We apply the control to the
normalized variables around a steady-state point at α = π/2 joint angle. The coordinates of
the steady-state point are the following:

x1 = 0.14558374176266
x2 = 0.1
x3 = π/2
x4 = 0

As described in [4] for a nonlinear n-dimensional SISO system we need to apply the feedback

u =
1

LgL
n−1

f h(x)
(−Ln

fh(x) + v(t)) (6)

and a suitable nonlinear coordinate transformation to obtain: a linear system of order n which is
influenced by the input u - including the external input v(t). Lfh(x) denotes the Lie-derivative
of h(x) along f , Lgh(x) denotes the Lie-derivative of h(x) along g.

This means, that the state-space model of the feedback linearized closed loop system is the
following in the new coordinates:

ż1 = z2

ż2 = v

y = z1 (7)

where Lfh(x) denotes the Lie-derivative of h(x) along f . z1 and z2 can be determined by using
the coordinate-transformation zi = Li−1

f h(x).
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The state matrices of the new linear system have the following form:

A =

(

0 1
0 0

)

B =

(

0
1

)

For the system in the new co-ordinates we can design a pole-placement control:

v = −Kz (8)

where K is a suitable state-feedback vector. In this case the closed loop system has the Ljapunov
function V (z) = z2

1 + z2
2 in the new co-ordinates.

In fact, we can not act on the system at the point of muscle activation states, so we have
to define the value of equation 6 as reference signal for the flexor muscle.

3.2.1 Backstepping

As detailed in [8] if we have the system structure

ż = f(z) + g(z)ξ

ξ̇ = a(z, ξ) + b(z, ξ)u (9)

Figure 4: General structure for the backstepping method

and there exists a virtual feedback
ξ = α(z) (10)

such, that z = 0 is an asymptotically stable equilibrium of

ż = f(z) + g(z)α(z) (11)

with a Ljapunov function V that is positive definite at z = 0, then the system

Σ :
ż = f(z) + g(z)ξ

ξ̇ = a(z, ξ) + b(z, ξ)u
(12)

we define y1 = ξ −α(z), and prescribe the error dynamics ẏ1 = −A1y1 (where A1 is a speed
influencing constant), then we can write:

ẏ1 = ξ̇ − ˙α(z) = a(z, ξ) + b(z, ξ)u −
dα

dz
ż = −A1y1 = A1(α(z) − ξ) (13)
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we can rearrange the equation to get:

u = b−1(z, ξ)(A1(α(z) − ξ) − a(z, ξ) +
dα

dz
ż) (14)

leading to the feedback transformed system

ż = [f(z) + g(z)α(z)] + g(z)y1

ẏ1 = −A1y1 (15)

with storage function S1 = V (z) + 1

2
y2

1, satisfying

dS1

dt
≤ −‖y1‖

2. (16)

Remark

In our case ż = f(z) + g(z)ξ means the dynamics of the limb, and ξ̇ = a(z, ξ) + b(z, ξ)u
denotes the muscle dynamics. Furthermore a(z, ξ) and b(z, ξ) = a(ξ) and b(ξ). From equations
1 and 2 it can be easily seen, that the limb dynamics can also be transformed to the form of 15,
because q1 and q2, which are considered as inputs, appear linear in the state-space equation.
The α(z) virtual feedback means the feedback linearization and the pole placement in this case.
Furthermore we have to note that in this case the transformed co-ordinates are identical to the
original ones, so z1 = α, z2 = ω.

3.3 Muscle control

We have to use equation 14 for determining the muscle activation signal.
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3.4 Feedback properties

We can analyze the properties of the feedback law. At first we can depict the prescribed
reference signal for muscle activation at different joint angle, and joint angle velocity values:

1
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q
f re

f

Figure 5: The virtual feedback for q1

We can see that negative values for the prescribed activation state appear only at points
where the error of the joint angle and the value of the joint angle velocity are both quite large
positive.

Second, the final activation signal of the muscle depends also on q1, we can depict for
example this function at ω = 0.
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Figure 6: The activation signal

Negative activation signal appears only in the case of big activation states which are unusual
in normal functioning.
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3.5 Simulation results

Simulations were performed using MATLAB to determine the symbolic expressions needed for
the feedback computing, and numerically solving the differential equations. The poles were set
to [-15 -20], and A1 was set to -100. The starting values were the same as the co-ordinates of
the steady state point, except the joint angle (α = x3) which was 0.2. In the next figures, the
results can be seen:
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Figure 7: Muscle activation states, the reference signal for muscle activation and the error

As we can see, the error has stable linear dynamics.
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In figure 9 we can see, that the input does not brake the input constraint (u(t) ∈ [0, 1]),
even in this case, when the initial position is very far from the reference.
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Figure 9: Input: Activation signal of the flexor muscle
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4 Trajectory following

In the following we expand the control system further to be able to follow a trajectory. At first,
the control aim will be to follow a trajectory of the joint angle velocity. In this case we do not
use the centered variables around a steady-state point and we use only the activation signal of
the flexor muscle as input. The activation signal of the extensor muscle is constantly 0. We use
the same feedback-linearization technique, as in the case of regulation, but now instead of the
way of pole-placement in the transformed coordinates we use a different method to determnie
the external input v.

As we mentioned above, we have the system structure:

Figure 10: System structure

where

f =

(

f1

f2

)

g =

(

g1

g2

)

(17)

f2(z) + g2(z)ξref
.
= v (18)

ξref =
−f2(z)

g2(z)
+

1

g2(z)
v

.
= α(z) + β(z)v (19)

ż2 = v

We define the error of z2:
z2 = z2 − z2ref (20)

We define a stable linear dynamics for this error:

ż2 = ż2 − ż2ref = v − ż2ref
.
= −K1(z2 − z2ref ) (21)

v = ż2ref − K1(z2 − z2ref ) (22)

ξref = α(z) + β(z)(ż2ref − K1(z2 − z2ref ) (23)
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The error of ξ has the following form:

ξ = ξ − ξref (24)

And so we define:
ξ̇ = ξ̇ − ξ̇ref = −K2ξ (25)

= a(ξ) + b(ξ)u −
d

dt
[α(z) + β(z)(ż2ref − K1(z2 − z2ref ))] = a(ξ) + b(ξ)u−

δα(z)

δz
ż +

δβ(z)

δz
ż(z2ref − K1(z2 − z2ref )) + β(z)(z̈2ref − K1(ż2 − ż2ref )) = −K2(ξ − ξref ) (26)

An so we get the following expression for u:

u =
1

b(ξ)

[

δα(z)

δz
ż +

δβ(z)

δz
ż(z2ref − K1(z2 − z2ref )) + β(z)(z̈2ref − K1(ż2 − ż2ref )

]

+
1

b(ξ)
[β(z)(z̈2ref + K1(ż2 − ż2ref )) − a(ξ) + K2(ξ − ξref )] (27)

If we want to track a reference signal with the joint angle (α), and not with the joint angle
velocity (ω), the following method for example can be a solution:

4.1 Trajectory design in ω

If we have a reference signal αref (t) and α(0) starting condition, we can define the trajectory:

α1(t) = αref (t) + e−Ct(αref (0) − α(0))

where C is a constant, which can be tuned.
We can use the time-derivative of this expression for reference to ω, and the higher order

derivatives for further derivatives of the reference signal.
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4.2 Simulation results
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Figure 11: Muscle activation state, the reference signal for muscle activation during the whole
movement and at the beginning
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Figure 14: Input: Muscle activation signal during the whole movement and at the beginning

Because the joint angle velocity (ω) needs some time to reach the reference trajectory, a
small remaining error can be seen in the joint angle reference tracking in figure 17. In fact the
control performs even better if the starting conditions of ω and q1 are closer to the reference
trajectories:
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Figure 15: Muscle activation states, the reference signal for muscle activation during the whole
movement and at the beginning
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Figure 18: Input: Muscle activation signal during the whole movement and at the beginning

5 Conclusions and future work

We have shown that in the case of a simple nonlinear limb model utilizing of the cascade struc-
ture for control design can result in benefits of control performance, and for the closed-loop
structure stability can be shown. The controllers have several constants which can be further
tuned for better performance in the cases of various tasks.

The possible tasks for the future could be:

• Involve the input constraints to controller design.

• Involve some gamma-loop model in the mechanism of control as a load-estimator and
corrector structure.

• Compare the state trajectories of the closed-loop system with trajectories recorded in the
case of real movement patterns.

• Utilize both of the muscles for a MIMO control.



Research Report SCL-004/2006 18

References

[1] S.B. Abbot. Analysis of control strategies for a human skeletal system pedaling a bicycle.
Degree Thesis - University of Maryland, 1995.

[2] D. Csercsik. Analysis and control of a simple nonlinear limb model. Degree Thesis, Bu-
dapest University of Technology and Economics, Budapest, Hungary, 2005.

[3] D. Csercsik. Construction of simple dynamic models of the gamma-loop mechanism. Tech-
nical report of the Systems and Control Laboratory SCL-001/2006. Budapest, MTA SZ-
TAKI, Hungary, 2006.

[4] A. Isidori. Nonlinear Control Systems. Springer, 1999.

[5] B. Lantos. Irányitási Rendszerek Elmélete es Tervezése 1-2. Akadémiai kiadó, 2001.

[6] E. Sim, B. Ma, W. Levine, and G.E. Loeb. Some results on the neuromusclular controls
involved in pedaling a bicycle at maximum speed. Proceedings of the 1989 Automatic
Control Conference, 1989.

[7] A.J. Van Soest, P.A. Huijing, and M. Solomonow. Effect of tendon on on muscle force in
dynamic isometric contractions: a simulated study. Journal of Biomechanics, 28:801–807,
1995.

[8] Arjan van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Springer,
2000.

[9] H.E.J. Veeger, B. Yu, K.N. An, and R.H. Rozendal. Parameters for modelling the upper
extremity. J. Biomechanics, 30:647–652, 1997.

[10] F.E. Zajac. Muscle and tendon: Properties, models, scaling and application to biome-
chanics and motor control. CRC Critical Reviews in Biomedical Engineering, 17:359–411,
1989.


