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I. Introduction 
  

Correctness debugging of non-deterministic parallel programs is a time-consuming 
and tedious task, particularly in interactive way. In this case, the software engineers 
must face the probe effect, the irreproducibility, the completeness problem, and also 
the large state-space to be discovered during the debugging phase of software 
development cycle. Moreover, emerging high-performance applications require the 
ability to exploit heterogeneous and geographically distributed resources as well, 
which poses new challenges for application development tools. 

While the importance of debugging (and testing) is highly accepted in the software 
engineering domain, there is still a lack of widespread and user-friendly debugging 
methods and tools. This work tries to overcome the limitation of existing debugging 
methods and combines the debugging methods with automated modelling and formal 
verification of parallel and metacomputing programs. 

The presented work is strongly tied to two software development frameworks;  P-
GRADE parallel programming environment (developed by MTA SZTAKI), and 
HARNESS metacomputing system (developed by Emory University, Oak Ridge 
National Laboratory, and University of Tennesse). 

P-GRADE [4] provides an integrated, graphical solution for development and 
execution of parallel applications on clusters, supercomputers, and Grid systems. P-
GRADE significantly accelerates the reengineering procedure of sequential and 
legacy programs including hierarchical design with a hybrid graphical language 
(GRAPNEL), debugging, testing, on-line monitoring, performance analysis, and 
visualization phases. P-GRADE's run-time environment provides dynamic load 
balancing for long-running GRAPNEL applications based on fully automatic 
checkpointing and migration mechanisms using Parallel Virtual Machine (PVM).  

On the other hand, HARNESS [K] is a metacomputing system that attempts to 
overcome the limited flexibility of traditional distributed computing software 
frameworks (such as PVM [AA]) by defining a simple but powerful architectural 
model based on the concept of a software backplane. The fundamental abstraction in 
the Harness metacomputing framework is the Distributed Virtual Machine (DVM), 
where not only the number of resources can be reconfigured but the services itself 
offered by the DVM. 

II.      Related works 
According to the literature [A], the distributed debugging methodologies can be 
classified according to the level of support they provide to the software developer 
concerning the activities of global predicate specification and detection, and the 
search for the causes of the distributed program bugs. 

The “Interactive debugging of remote sequential processes” method is based on an 
extension of traditional sequential debugging commands. This basic approach allows 
the individual online observation and control of the execution of remote sequential 
processes. This feature is supported by almost all existing commercial and academic 
distributed debuggers. 
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In order to address the non-reproducibility issue the “Trace, replay and debugging” 
approach is based on collecting a trace of the relevant events generated by a 
distributed computation, during a first run of the program. If one or more erroneous 
situations are found, the distributed program can be re-executed under the control of a 
supervisory mechanism. The trace and replay technique has been in focus of intensive 
research in the past decades, mostly concerning the reduction of the perturbation 
(probe effect) and of the volume of the traced information. However, not all 
debuggers include such a facility. From the user’s point of view, there is an important 
drawback in the “Trace, replay and debugging” approach, since it does not provide 
support for the analysis of other distributed computation paths besides the actually 
traced one. 

 Approaches 
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1 The user is responsible for appropriate use of the enrolled basic features. 
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The “Integrated testing, active control and debugging” attempts to overcome the 
above-mentioned limitation of a simple passive trace and replay approach. Multiple 
authors have proposed approaches for the active control of distributed program 
execution for distributed debugging purposes [L][M][N]. 

The “Automated detection of global predicates, active control and debugging” 
approach is an attempt to help the user increasing the confidence on the results of the 
previous approach, by allowing the specification of the correctness criteria in terms of 
global predicates. Such global predicates are then automatically evaluated by 
detection algorithms, working off-line or online. 

The following table compares some of the most sophisticated debugger tools 
according to their supports for the four main debugging approaches. At the end of the 
table the P-GRADE environment is also enrolled. In my theses, the main goal is to 
give user-friendly and automated solutions for all approaches by means of the tools 
integrated in P-GRADE; such as DIWIDE distributed debugger, macrostep engine, 
GRSIM simulator and TLC temporal logic checker engine. I also address the 
generalisation of these elaborated methods towards metacomputing applications. 

 

III. Methods for investigation 
 

The first aim of my work was to prove the correctness of the new macrostep-based 
execution (an active control mechanism) of GRAPNEL programs in P-GRADE 
environment applying formal methods from the field of model verification.  

In the first thesis, the formalism of coloured Petri-nets (CPN) [R][S][T] was chosen 
for modelling GRAPNEL programs from debugging aspects. The transformation to 
CPN is based on the class representation of GRAPNEL programs following its 
hierarchical design concept. The generated CPN model is specified by the XML 
description of a widespread CPN simulation tool. 

The formal description of the macrostep-based execution relies on the state-space 
(Occurrence graph) of the introduced Petri-net model. Then, the correctness of 
macrostep concept has been proven formally by the help of partial ordering Kripke-
structures [O][P][Q], which are derived from the state-space of the CPN model in case 
of uncontrolled running as well as macrostep-based execution.  

As the second goal, the macrostep-based debugging methodology was improved, 
where further model checking techniques [Y] have been utilized in the field of parallel 
debugging. The introduced support for run-time evaluation of temporal logic 
specifications (detection of global predicates) [Z] has been defined by state machine 
description. The Petri-net simulation tool [V][W][X] can steer and optimise the 
traversal of state-space during the macrostep-based execution, a static analyser (a 
partitioning algorithm) classifies the processes into subclasses, and Rayleigh error-
model is applied for the estimation of fault density in GRAPNEL applications. 

Finally, the macrostep-based execution was generalised towards metacomputing 
applications. The described approach followed the novel design methods of the 
HARNESS metacomputing framework, and an adaptive and open architecture has 
been introduced for debugging of metacomputing applications. After the investigation 
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of the available debugging tools and the requirement analysis for debugging of 
metacomputing applications, new debugging mechanisms have been developed for 
the unification of local and remote method calls, for transferring the consistent global 
states of individual processes between arbitrary debugging tools, and for the 
macrostep-based execution of metacomputing applications. 

 

IV. New scientific results2 
 

1 Macrostep-based debugging technique for GRAPNEL 
applications 

 

In P-GRADE development environment, the parallel applications are constructed 
based on the syntax and semantics of GRAPNEL hybrid programming language. 
GRAPNEL provides language elements to express graphically the parallelism, the 
distribution, the concurrency, and the communication between processes at 
different hierarchical design levels. Meanwhile the sequential code can be 
inherited from legacy sequential applications. 

The goal of the first thesis is to define a formal framework for the proof the 
correctness of macrostep-based execution of GRAPNEL programs. 

 

1. I introduced new limitation rules and language elements in the GRAPNEL 
language in order to automatically create its hierarchical coloured Petri-net 
model for debugging purposes. Then, my transformation methods for each 
element of this new GRAPNEL* language are described by coloured Petri-net 
patterns. Based on the transformation steps, I proved that a coloured Petri-net 
model exists and can be generated for any GRAPNEL* programs for 
debugging purposes. 

Relevant section in the dissertation: 2.1 

Related publications: [1][2][5][7][9] (GRAPNEL)      [3][22][25][27] (CPN) 

 

2. In order to handle the non-deterministic behaviour of the GRAPNEL* 
programs in different debugging sessions, I presented the formal description 
for a novel, automatic generation of successive global consistent states, called 
“macrostep-based” execution.  The traversal of the state-space with 
macrosteps (generation of the Execution Tree) is also introduced, and my 
formal description is based on the Occurrence graph of the Petri-net model. I 
presented that the traversal rules of Occurance graph can be formally 
defined as the selection of representative sets of state transitions, which 
result the macrostep-based execution of any GRAPNEL* program. Thus, the 
software developer can apply an execution mechanism for the GRAPNEL* 

                                                 
2 The claims related to the theses are emphasized with bold characters. 
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parallel programs, which is similar to step-by-step execution of traditional 
sequential programs. 

Relevant section in the dissertation: 2.2 

Related publications: [8][13][27] 

 

3. In this thesis, I presented the correctness of the macrostep based debugging 
methodology. As the first step, both the Execution Tree (the result of 
macrostep-based execution) and the Occurrence Graph (corresponding to the 
entire state space of GRAPNEL* program) are transformed into Kripke 
structures; KSe and KSp. Then, I proved that the macrostep-based selection 
algorithm of representative state transitions is a kind of partial ordering on 
the Kripke structure KSp, and the Kripke structures KSe and KSp are 
stuttering equivalents to each other. Therefore, the software developer gets 
successive global states (macrosteps) without losing any relevant information 
about the behaviour of observed system.   

Relevant section in the dissertation: 2.3 

Related publication: [27] 

 

2 Model checking methods in parallel debugging 
 

Temporal logic (TL) and coloured Petri-net (CPN) have proved as adequate 
frameworks for describing the dynamic behaviour of a system (program) 
consisting of multiple asynchronously executing components (processes).  

The main goal of this thesis is to improve the efficiency and usability of original 
macrostep-based debugging methodology by the automatic comparison of the 
expected and the observed behaviour of GRAPNEL* programs.  Thus, the novel 
methodology combines ideas from parallel debugging methods and from model 
checking algorithms as well.  

1. Relying on the theoretical background of temporal logic specifications, I 
described a method for the integration of a new debugging framework, where 
the actual GRAPNEL* program runs controlled by the macrostep-based 
debugger as the universe in which the user-defined temporal logic formulas 
are checked. My method includes the initialisation phase of the framework, 
the way of insertion and detection of run-time temporal logic assertions, the 
support for the evaluation of atomic predicates referenced by temporal logic 
formulas, and the communication protocol with a general purpose TL checker 
using state machine description. Based on these achievements, I presented that 
a particular class of temporal logic expressions (LTL-x) can be evaluated on 
the paths of Execution Tree during macrostep based execution. In this way, 
the required user-interaction (to detect erroneous situations) can be radically 
reduced by temporal logic assertions. 

Relevant section in the dissertation: 3.1 

Related publications: [14][25][27][33][34] 
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2. In this thesis, the integration of a coloured Petri-net (CPN) simulation engine 
into the debugging framework is described relying on the CPN model of 
GRAPNEL* programs. I presented that the CPN simulation engine is able to 
steer the macrostep-based traversal of state-space (the building of the 
Execution Tree) towards erroneous situations during the debugging phase, 
and to detect the already traversed execution paths. The presented method 
can assist the software developer to find programming bugs by its simulation 
& steering techniques. 

As a part of my work the following techniques are also proposed and 
investigated in order to enhance the debugger framework.  (1) A reduced CPN 
model for GRAPNEL programs if the program does not meet the limitation 
rules. (2) Some methods for the partitioning GRAPNEL programs in order to 
split up the application to deterministic and non-deterministic parts, making 
the debugging cycle more efficient. (3) A distributed configuration, where 
more execution paths (test scenarios) can be executed simultaneously. (4) An 
analyser tool based on Rayleigh model for estimation of error density, where 
the analyser is able to recommend the release of parallel software when the 
program’s reliability achieves the satisfied level. (5) A method that can 
improve the reliability of the released program in certain cases forcing its 
states remaining inside the already tested state-space. 

Relevant sections in the dissertation: 3.2 

Related publications: [25][27] 

 

3 Debugging of metacomputing applications 
 

Emerging high-performance applications require the ability to exploit 
heterogeneous and geographically distributed resources. These applications use 
networks to integrate supercomputers, large databases, visualization devices, and 
scientific instruments to form networked virtual supercomputers or 
metacomputers, which can be accessed from simple desktop computers. While the 
underlying physical infrastructure to build metacomputing systems is becoming 
more and more widespread, the heterogeneous and dynamic nature of the 
metacomputing environment poses new challenges for application development 
and debugging tools. 

The major aim of this thesis is to generalise the macrostep-based debugging   
methodology towards metacomputing applications. 

1. I presented an adaptive debugger framework (metadebugger) for HARNESS 
metacomputing applications following a software backplane approach that is 
able handle the dynamic behaviour of metacomputing systems during the 
debugging phase.  For this purpose, the metadebugger is equipped with 
“export” and “import” functionalities in order to transfer the consistent process 
states of multi-threaded applications between debuggers hence, the invocation 
of third-party debuggers becomes available in the heterogeneous environment. 
I introduced several novel features including the automatic context 
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management (i.e. “step into”) mechanism for remote method invocations 
(RMI) that unifies the debugging mechanism for local and remote calls even if 
the application is executed on a metacomputing platform. Relying on this RMI 
support, a monitoring and visualisation subsystem are also developed for 
metacomputing applications as a part of my work. 

Relevant sections in the dissertation: 4.1 

Related publications: [11][13][28][29] 

 

2. This thesis focuses on the non-deterministic behaviour and architecture 
dependencies of metacomputing applications from the debugging point of 
view. For this purpose, I presented the way how the macrostep-based 
debugging methodology can be generalised towards HARNESS 
metacomputing applications. The new methodology is based on modified 
collective breakpoints, macrosteps, and resource-translation tables but some 
limitation rules have been introduced regarding the communication 
possibilities of metacomputing applications. I developed further the 
architecture of metadebugger framework with a macrostep controller plug-in, 
which relies on the monitoring facilities of the metadebugger. A resource-
translation mechanism is also developed as a part of my work due to the 
irreproducibility of execution environment as well as an algorithm for testing 
the environment dependencies of metacomputing applications.  

Relevant sections in the dissertation: 4.2 

Related publications: [10][28] 

 

V. Dissemination of the results 
 

The results described in the theses are published in conference proceedings, 
journals, and demonstrated at several scientific forums and exhibitions.   

On the other hand, P-GRADE development environment is gaining more and 
more attention from universities and IT companies from the EU and USA. P-
GRADE has been also applied successfully in meteorology for parallelising an 
ultra-short range weather prediction system (Hungarian Meteorology Service) 
[3][12][15], in engineering for simulation of urban traffic (University of 
Westminster), and in chemistry for modelling of reaction-diffusion systems 
(Eötvös Loránd University of Budapest) [23][26][30].   

Most of the presented scientific results have been already implemented in P-
GRADE environment, and the software developers are able to take the advantages 
of these new debugging methods in order to increase the reliability of their 
software products. Recently, P-GRADE has been further developed to support the 
seamless migration from traditional parallel and distributed platforms towards grid 
environments [17][20] and workflow-based complex applications [4][16] 
[18][21][24]. Therefore the designed and debugged application can be deployed 
on these new platforms as well providing even more new opportunities for the 
end-users.  
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The results, related to metacomputing applications, can be applied in other 
metacomputing or grid computing frameworks (such as [19]), which are finding 
acceptance as standard platforms for high performance and data intensive 
applications.  
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