

Enhanced Debugging Methods
for Parallel and Metacomputing Applications

Based on Macrosteps

PhD theses

Written by Róbert Lovas

Advisor: Péter Kacsuk (MTA SZTAKI)

Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics

Budapest

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48288886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

I. Introduction

Correctness debugging of non-deterministic parallel programs is a time-consuming
and tedious task, particularly in interactive way. In this case, the software engineers
must face the probe effect, the irreproducibility, the completeness problem, and also
the large state-space to be discovered during the debugging phase of software
development cycle. Moreover, emerging high-performance applications require the
ability to exploit heterogeneous and geographically distributed resources as well,
which poses new challenges for application development tools.

While the importance of debugging (and testing) is highly accepted in the software
engineering domain, there is still a lack of widespread and user-friendly debugging
methods and tools. This work tries to overcome the limitation of existing debugging
methods and combines the debugging methods with automated modelling and formal
verification of parallel and metacomputing programs.

The presented work is strongly tied to two software development frameworks; P-
GRADE parallel programming environment (developed by MTA SZTAKI), and
HARNESS metacomputing system (developed by Emory University, Oak Ridge
National Laboratory, and University of Tennesse).

P-GRADE [4] provides an integrated, graphical solution for development and
execution of parallel applications on clusters, supercomputers, and Grid systems. P-
GRADE significantly accelerates the reengineering procedure of sequential and
legacy programs including hierarchical design with a hybrid graphical language
(GRAPNEL), debugging, testing, on-line monitoring, performance analysis, and
visualization phases. P-GRADE's run-time environment provides dynamic load
balancing for long-running GRAPNEL applications based on fully automatic
checkpointing and migration mechanisms using Parallel Virtual Machine (PVM).

On the other hand, HARNESS [K] is a metacomputing system that attempts to
overcome the limited flexibility of traditional distributed computing software
frameworks (such as PVM [AA]) by defining a simple but powerful architectural
model based on the concept of a software backplane. The fundamental abstraction in
the Harness metacomputing framework is the Distributed Virtual Machine (DVM),
where not only the number of resources can be reconfigured but the services itself
offered by the DVM.

II. Related works
According to the literature [A], the distributed debugging methodologies can be
classified according to the level of support they provide to the software developer
concerning the activities of global predicate specification and detection, and the
search for the causes of the distributed program bugs.

The “Interactive debugging of remote sequential processes” method is based on an
extension of traditional sequential debugging commands. This basic approach allows
the individual online observation and control of the execution of remote sequential
processes. This feature is supported by almost all existing commercial and academic
distributed debuggers.

 2

In order to address the non-reproducibility issue the “Trace, replay and debugging”
approach is based on collecting a trace of the relevant events generated by a
distributed computation, during a first run of the program. If one or more erroneous
situations are found, the distributed program can be re-executed under the control of a
supervisory mechanism. The trace and replay technique has been in focus of intensive
research in the past decades, mostly concerning the reduction of the perturbation
(probe effect) and of the volume of the traced information. However, not all
debuggers include such a facility. From the user’s point of view, there is an important
drawback in the “Trace, replay and debugging” approach, since it does not provide
support for the analysis of other distributed computation paths besides the actually
traced one.

 Approaches

Tools

Interactive
debugging
of remote
sequential
processes

Trace, replay
and

debugging

Integrated
testing,

active control
and

debugging

Automated
detection
of global

predicates,
active

control and
debugging

DDT [I] �
����

 conditional
breakpoints and
synchronization

����
 conditional

breakpoints and
synchronization

����
 cross-
process

comparison

TotalView
[J] �

�
checkpoint on
SGI/IRIS &
IBM/AIX

����
 barrier and
evaluation

point

����

 evaluation
point

MAD
[B][C][F] � �

with NOPE
�

with NOPE

�
under

development

DDBG &
STEPS
[G][H]

�
with DDBG

�
with STEPS

�
with STEPS

����
evaluation
functions,
off-line
analysis

P2D2 [D] � �
����

control sets

����
custom grid

display
editor

P-GRADE
[E][4]

�
with DIWIDE

debugger

�
with macrostep

engine

�
with GRSIM

(CPN)
simulator

�
with TLC
temporal

logic checker

Notes: � Fully supported � Not supported � Limited support1

1 The user is responsible for appropriate use of the enrolled basic features.

 3

The “Integrated testing, active control and debugging” attempts to overcome the
above-mentioned limitation of a simple passive trace and replay approach. Multiple
authors have proposed approaches for the active control of distributed program
execution for distributed debugging purposes [L][M][N].

The “Automated detection of global predicates, active control and debugging”
approach is an attempt to help the user increasing the confidence on the results of the
previous approach, by allowing the specification of the correctness criteria in terms of
global predicates. Such global predicates are then automatically evaluated by
detection algorithms, working off-line or online.

The following table compares some of the most sophisticated debugger tools
according to their supports for the four main debugging approaches. At the end of the
table the P-GRADE environment is also enrolled. In my theses, the main goal is to
give user-friendly and automated solutions for all approaches by means of the tools
integrated in P-GRADE; such as DIWIDE distributed debugger, macrostep engine,
GRSIM simulator and TLC temporal logic checker engine. I also address the
generalisation of these elaborated methods towards metacomputing applications.

III. Methods for investigation

The first aim of my work was to prove the correctness of the new macrostep-based
execution (an active control mechanism) of GRAPNEL programs in P-GRADE
environment applying formal methods from the field of model verification.

In the first thesis, the formalism of coloured Petri-nets (CPN) [R][S][T] was chosen
for modelling GRAPNEL programs from debugging aspects. The transformation to
CPN is based on the class representation of GRAPNEL programs following its
hierarchical design concept. The generated CPN model is specified by the XML
description of a widespread CPN simulation tool.

The formal description of the macrostep-based execution relies on the state-space
(Occurrence graph) of the introduced Petri-net model. Then, the correctness of
macrostep concept has been proven formally by the help of partial ordering Kripke-
structures [O][P][Q], which are derived from the state-space of the CPN model in case
of uncontrolled running as well as macrostep-based execution.

As the second goal, the macrostep-based debugging methodology was improved,
where further model checking techniques [Y] have been utilized in the field of parallel
debugging. The introduced support for run-time evaluation of temporal logic
specifications (detection of global predicates) [Z] has been defined by state machine
description. The Petri-net simulation tool [V][W][X] can steer and optimise the
traversal of state-space during the macrostep-based execution, a static analyser (a
partitioning algorithm) classifies the processes into subclasses, and Rayleigh error-
model is applied for the estimation of fault density in GRAPNEL applications.

Finally, the macrostep-based execution was generalised towards metacomputing
applications. The described approach followed the novel design methods of the
HARNESS metacomputing framework, and an adaptive and open architecture has
been introduced for debugging of metacomputing applications. After the investigation

 4

of the available debugging tools and the requirement analysis for debugging of
metacomputing applications, new debugging mechanisms have been developed for
the unification of local and remote method calls, for transferring the consistent global
states of individual processes between arbitrary debugging tools, and for the
macrostep-based execution of metacomputing applications.

IV. New scientific results2

1 Macrostep-based debugging technique for GRAPNEL
applications

In P-GRADE development environment, the parallel applications are constructed
based on the syntax and semantics of GRAPNEL hybrid programming language.
GRAPNEL provides language elements to express graphically the parallelism, the
distribution, the concurrency, and the communication between processes at
different hierarchical design levels. Meanwhile the sequential code can be
inherited from legacy sequential applications.

The goal of the first thesis is to define a formal framework for the proof the
correctness of macrostep-based execution of GRAPNEL programs.

1. I introduced new limitation rules and language elements in the GRAPNEL
language in order to automatically create its hierarchical coloured Petri-net
model for debugging purposes. Then, my transformation methods for each
element of this new GRAPNEL* language are described by coloured Petri-net
patterns. Based on the transformation steps, I proved that a coloured Petri-net
model exists and can be generated for any GRAPNEL* programs for
debugging purposes.

Relevant section in the dissertation: 2.1

Related publications: [1][2][5][7][9] (GRAPNEL) [3][22][25][27] (CPN)

2. In order to handle the non-deterministic behaviour of the GRAPNEL*
programs in different debugging sessions, I presented the formal description
for a novel, automatic generation of successive global consistent states, called
“macrostep-based” execution. The traversal of the state-space with
macrosteps (generation of the Execution Tree) is also introduced, and my
formal description is based on the Occurrence graph of the Petri-net model. I
presented that the traversal rules of Occurance graph can be formally
defined as the selection of representative sets of state transitions, which
result the macrostep-based execution of any GRAPNEL* program. Thus, the
software developer can apply an execution mechanism for the GRAPNEL*

2 The claims related to the theses are emphasized with bold characters.

 5

parallel programs, which is similar to step-by-step execution of traditional
sequential programs.

Relevant section in the dissertation: 2.2

Related publications: [8][13][27]

3. In this thesis, I presented the correctness of the macrostep based debugging
methodology. As the first step, both the Execution Tree (the result of
macrostep-based execution) and the Occurrence Graph (corresponding to the
entire state space of GRAPNEL* program) are transformed into Kripke
structures; KSe and KSp. Then, I proved that the macrostep-based selection
algorithm of representative state transitions is a kind of partial ordering on
the Kripke structure KSp, and the Kripke structures KSe and KSp are
stuttering equivalents to each other. Therefore, the software developer gets
successive global states (macrosteps) without losing any relevant information
about the behaviour of observed system.

Relevant section in the dissertation: 2.3

Related publication: [27]

2 Model checking methods in parallel debugging

Temporal logic (TL) and coloured Petri-net (CPN) have proved as adequate
frameworks for describing the dynamic behaviour of a system (program)
consisting of multiple asynchronously executing components (processes).

The main goal of this thesis is to improve the efficiency and usability of original
macrostep-based debugging methodology by the automatic comparison of the
expected and the observed behaviour of GRAPNEL* programs. Thus, the novel
methodology combines ideas from parallel debugging methods and from model
checking algorithms as well.

1. Relying on the theoretical background of temporal logic specifications, I
described a method for the integration of a new debugging framework, where
the actual GRAPNEL* program runs controlled by the macrostep-based
debugger as the universe in which the user-defined temporal logic formulas
are checked. My method includes the initialisation phase of the framework,
the way of insertion and detection of run-time temporal logic assertions, the
support for the evaluation of atomic predicates referenced by temporal logic
formulas, and the communication protocol with a general purpose TL checker
using state machine description. Based on these achievements, I presented that
a particular class of temporal logic expressions (LTL-x) can be evaluated on
the paths of Execution Tree during macrostep based execution. In this way,
the required user-interaction (to detect erroneous situations) can be radically
reduced by temporal logic assertions.

Relevant section in the dissertation: 3.1

Related publications: [14][25][27][33][34]

 6

2. In this thesis, the integration of a coloured Petri-net (CPN) simulation engine
into the debugging framework is described relying on the CPN model of
GRAPNEL* programs. I presented that the CPN simulation engine is able to
steer the macrostep-based traversal of state-space (the building of the
Execution Tree) towards erroneous situations during the debugging phase,
and to detect the already traversed execution paths. The presented method
can assist the software developer to find programming bugs by its simulation
& steering techniques.

As a part of my work the following techniques are also proposed and
investigated in order to enhance the debugger framework. (1) A reduced CPN
model for GRAPNEL programs if the program does not meet the limitation
rules. (2) Some methods for the partitioning GRAPNEL programs in order to
split up the application to deterministic and non-deterministic parts, making
the debugging cycle more efficient. (3) A distributed configuration, where
more execution paths (test scenarios) can be executed simultaneously. (4) An
analyser tool based on Rayleigh model for estimation of error density, where
the analyser is able to recommend the release of parallel software when the
program’s reliability achieves the satisfied level. (5) A method that can
improve the reliability of the released program in certain cases forcing its
states remaining inside the already tested state-space.

Relevant sections in the dissertation: 3.2

Related publications: [25][27]

3 Debugging of metacomputing applications

Emerging high-performance applications require the ability to exploit
heterogeneous and geographically distributed resources. These applications use
networks to integrate supercomputers, large databases, visualization devices, and
scientific instruments to form networked virtual supercomputers or
metacomputers, which can be accessed from simple desktop computers. While the
underlying physical infrastructure to build metacomputing systems is becoming
more and more widespread, the heterogeneous and dynamic nature of the
metacomputing environment poses new challenges for application development
and debugging tools.

The major aim of this thesis is to generalise the macrostep-based debugging
methodology towards metacomputing applications.

1. I presented an adaptive debugger framework (metadebugger) for HARNESS
metacomputing applications following a software backplane approach that is
able handle the dynamic behaviour of metacomputing systems during the
debugging phase. For this purpose, the metadebugger is equipped with
“export” and “import” functionalities in order to transfer the consistent process
states of multi-threaded applications between debuggers hence, the invocation
of third-party debuggers becomes available in the heterogeneous environment.
I introduced several novel features including the automatic context

 7

management (i.e. “step into”) mechanism for remote method invocations
(RMI) that unifies the debugging mechanism for local and remote calls even if
the application is executed on a metacomputing platform. Relying on this RMI
support, a monitoring and visualisation subsystem are also developed for
metacomputing applications as a part of my work.

Relevant sections in the dissertation: 4.1

Related publications: [11][13][28][29]

2. This thesis focuses on the non-deterministic behaviour and architecture
dependencies of metacomputing applications from the debugging point of
view. For this purpose, I presented the way how the macrostep-based
debugging methodology can be generalised towards HARNESS
metacomputing applications. The new methodology is based on modified
collective breakpoints, macrosteps, and resource-translation tables but some
limitation rules have been introduced regarding the communication
possibilities of metacomputing applications. I developed further the
architecture of metadebugger framework with a macrostep controller plug-in,
which relies on the monitoring facilities of the metadebugger. A resource-
translation mechanism is also developed as a part of my work due to the
irreproducibility of execution environment as well as an algorithm for testing
the environment dependencies of metacomputing applications.

Relevant sections in the dissertation: 4.2

Related publications: [10][28]

V. Dissemination of the results

The results described in the theses are published in conference proceedings,
journals, and demonstrated at several scientific forums and exhibitions.

On the other hand, P-GRADE development environment is gaining more and
more attention from universities and IT companies from the EU and USA. P-
GRADE has been also applied successfully in meteorology for parallelising an
ultra-short range weather prediction system (Hungarian Meteorology Service)
[3][12][15], in engineering for simulation of urban traffic (University of
Westminster), and in chemistry for modelling of reaction-diffusion systems
(Eötvös Loránd University of Budapest) [23][26][30].

Most of the presented scientific results have been already implemented in P-
GRADE environment, and the software developers are able to take the advantages
of these new debugging methods in order to increase the reliability of their
software products. Recently, P-GRADE has been further developed to support the
seamless migration from traditional parallel and distributed platforms towards grid
environments [17][20] and workflow-based complex applications [4][16]
[18][21][24]. Therefore the designed and debugged application can be deployed
on these new platforms as well providing even more new opportunities for the
end-users.

 8

The results, related to metacomputing applications, can be applied in other
metacomputing or grid computing frameworks (such as [19]), which are finding
acceptance as standard platforms for high performance and data intensive
applications.

VI. Publications

Journal papers
[1] P. Kacsuk, G. Dózsa, T. Fadgyas and R. Lovas: GRADE: a Graphical

Programming Environment for Multicomputers, Journal of Computers and
Artificial Intelligence, Slovak Academy of Sciences, Vol. 17, No. 5, pp. 417-
427, 1998

[2] P. Kacsuk, G. Dózsa, T. Fadgyas and R. Lovas: The GRED Graphical
Editor for the GRADE Parallel Program Development Environment, Journal
of Future Generation Computer Systems, Vol. 15, No. 3, pp. 443-452,
Elsevier Science, 1999

[3] R. Lovas, P. Kacsuk, A. Horvath, A. Horanyi: Application of P-
GRADE Development Environment in Meteorology, Distributed and Parallel
Systems. Special issue of Scalable Computing: Practice and Experience. Vol.
6, No. 2, pp. 13-22. 2005 July (ISSN 1895-1767)

[4] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
G. Gombás: P-GRADE: a Grid Programming Environment, Journal of Grid
Computing, Volume 1, Issue 2, 2004, Pages 171 - 197

Book chapter
[5] P. Kacsuk, G. Dózsa, R. Lovas: The GRADE Graphical Parallel

Programming Environment, In the book: Parallel Program Development for
Cluster Computing: Methodology, Tools and Integrated Environments
(Chapter 10), Editors: P. Kacsuk, J.C. Cunha and S.C. Winter, pp. 231-247,
Nova Science Publishers New York, 2001

Conference papers
[6] A. Bäcker, D. Ahr, O. Krämer-Fuhrmann, R. Lovas, H. Mierendorff,

H. Schwamborn, J. G. Silva, K. Wolf: WINPAR, Windows-Based Parallel
Computing, In: Parallel Computing: Fundamentals, Applications and New
Directions, Series of Advances in Parallel Computing, Vol. 12, pp. 495-502,
Elsevier Science, 1998

[7] P. Kacsuk, G. Dózsa, T. Fadgyas and R. Lovas: The GRED Graphical
Editor for the GRADE Parallel Program Development Environment, In:
High-Performance Computing and Networking, Lecture Notes in Computer
Science, Vol. 1401, pp. 728-737, Springer Verlag, 1998

[8] P. Kacsuk, R. Lovas, J. Kovács: Systematic Debugging of Parallel
Programs in DIWIDE Based on Collective Breakpoints and Macrosteps, In:
EuroPar '99 Parallel Processing, Lecture Notes in Computer Science, Vol.
1685, pp. 90-97, Springer-Verlag, 1999

[9] G. Dózsa, D. Drótos, R. Lovas: Translation of a High-Level
Graphical Code to Message-Passing Primitives in the GRADE Programming
Environment, In: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Lecture Notes in Computer Science, Vol. 1908, pp. 258-
265, Springer-Verlag, 2000

 9

[10] R. Lovas, V. Sunderam: Extension of macrostep debugging
methodology towards metacomputing applications, In: Computational
Science - ICCS 2001, Lecture Notes in Computer Science, Vol. 2074, p. 263-
272, Springer Verlag, 2001

[11] R. Lovas, V. Sunderam: A Metadebugger Prototype for the
HARNESS Metacomputing Framework, Proc. of the Tenth IEEE International
Symposium on High Performance Distributed Computing, pp. 427-428, San
Francisco, CA, USA, 2001

[12] Lovas R., Horváth Á.: Ultrarövidtávú meteorológiai elırejelzı
rendszer párhuzamosítása a P-GRADE fejlesztıkörnyezettel, Proc. of
NETWORKSHOP '2002, pp. 56 + CD-ROM, Eger, Hungary, 2002

[13] R. Lovas, V. Sunderam: Debugging of Metacomputing Applications,
Proc. of the 16th International Parallel and Distributed Processing
Symposium (IPDPS-JPDC), pp. 119 + CD-ROM, Fort Lauderdale, FL, USA,
2002

[14] J. Kovacs, G. Kusper, R. Lovas, W. Shreiner: Integrating Temporal
Assertions into a Parallel Debugger, In: EuroPar 2002 Parallel Processing,
Lecture Notes in Computer Science, vol. 2400, pp. 113-120, Springer-Verlag,
2002

[15] R. Lovas, P. Kacsuk, A. Horvath, A. Horanyi: Application of P-
GRADE Development Environment in Meteorology, In: Distributed and
Parallel Systems, Cluster and Grid Computing, pp. 109-116, Kluwer
Academic Publishers, 2002

[16] P. Kacsuk, R. Lovas, J. Kovacs, G. Dozsa, N. Podhorszki:
Metacomputing Support by P-GRADE, GGF8 Workshop on Grid
Applications and Programming Tools, 2003

[17] P. Kacsuk, R. Lovas, J. Kovács, F. Szalai, G. Gombás, N. Podhorszki,
A. Horváth, A. Horányi, I. Szeberényi, T. Delaitre, G. Terstyánszky, A.
Gourgoulis: Demonstration of P-GRADE job-mode for the Grid, In: Euro-
Par 2003 Parallel Processing, Lecture Notes in Computer Science, Vol. 2790,
pp. 1281-1286, Springer-Verlag, 2003

[18] G. Dozsa, P. Kacsuk, Sz. Illes, Cs. Nemeth, Gy. Rabai, Z. Farkas, G.
Gombas, R. Lovas: Constructing and executing Grid workflow applications
by Grid portal technology, IEEE International Conference on Cluster
Computing, pp. 19-22, Hong Kong, 2003

[19] Z. Juhasz, R. Lovas, and P. Kacsuk: JGrid: A Jini-based Service
Grid, IEEE International Conference on Cluster Computing, pp. 28-30, Hong
Kong, 2003

[20] R. Lovas, J. Kovacs, G. Gombas, N. Podhorszki, Z. Balaton, P.
Kacsuk, I. Szeberenyi, T. Delaitre, and A. Gourgoulis: Migration and
monitoring of P-GRADE parallel jobs in the Grid, IEEE International
Conference on Cluster Computing, pp. 8-11, Hong Kong, 2003

[21] R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos: Workflow
Support for Complex Grid Applications: Integrated and Portal Solutions, In:
Grid Computing – Second European AcrossGrids Conference, AxGrids 2004,
Nicosia, Cyprus, Lecture Notes in Computer Science, Vol. 3165, pp. 129-
138, Springer-Verlag, 2004

 10

[22] B. Vécsei, R. Lovas: Debugging method for parallel programs based
on Petri-net representation, Proceedings of MicroCAD 2004, Miskolc,
Hungary, pp. 413-420, 2004

[23] R. Lovas, P. Kacsuk, I. Lagzi, T. Turányi: Unified development
solution for cluster and grid computing and its application in chemistry, In:
Computational Science and Its Applications – ICCSA 2004: International
Conference, Assisi, Italy, Lecture Notes in Computer Science, Vol. 3044, pp.
226-235, Springer-Verlag, 2004

[24] Cs. Németh, G. Dózsa, R. Lovas and P. Kacsuk: The P-GRADE Grid
portal, In: Computational Science and Its Applications – ICCSA 2004:
International Conference, Assisi, Italy, Lecture Notes in Computer Science,
Vol. 3044, pp. 10-19, Springer-Verlag, 2004

[25] R. Lovas, B. Vécsei: Integration of formal verification and debugging
methods in P-GRADE environment, In: Distributed and Parallel Systems:
Cluster and Grid Computing, Kluwer International Series in Engineering and
Computer Science, Vol. 777, pp. 83-92, 2004

[26] I. Lagzi, R. Lovas, T. Turányi: Development of a grid enabled
chemistry application, In: Distributed and Parallel Systems: Cluster and Grid
Computing, Kluwer International Series in Engineering and Computer
Science, Vol. 777, pp. 137-144, 2004

Conference/workshop presentations and posters
[27] R. Lovas, P. Kacsuk: Enhanced Macrostep-based Debugging

Methodology for Parallel Programs, The Third Conference of PhD Students
in Computer Science, pp. 72, Szeged, Hungary, 2002 (honored with Excellent
Talk Award)

[28] R. Lovas: A Debugger for Metacomputing Applications, 2nd
US/Hungarian Workshop on Cluster Computing, Metacomputing and Grid
Computing, Budapest, February 6, 2002

[29] R. Lovas: Debugging and Visualization in the Harness
Metacomputing Framework, 1st US/Hungarian Workshop on Cluster
Computing, Metacomputing and Grid Computing, Madison, Wisconsin,
USA, March 15, 2001

[30] T. Turányi, F. Izsák, R. Lovas, P. Kacsuk: Parallelisation of an
algorithm for reaction-diffusion systems applying P-GRADE environment,
Workshop 5 of the ESF Programme “REACTOR”, Prague, Czech Republic,
2004

Non-refereed workshop papers
[31] P. Kacsuk, G. Dózsa, R. Lovas, T. Fadgyas: Enhancing GRADE

towards a professional parallel programming environment, Proc. of the 3rd
Workshop of Stimulation of European Industry Through High Performance
Computing, Madrid, 1998

Technical reports
[32] Gabor Dozsa, Robert Lovas and Peter Kacsuk: A Target Set of

Parallel Architectures for the Design of the Semi-Automatic Urine Analyser,

 11

http://www.cpc.wmin.ac.uk/~ahmed/reports.html, AHMED/3 project report,
October 1997.

[33] Gabor Kusper, Wolfgang Schreiner, Robert Lovas: Integrating
Temporal Specifications as Runtime Assertions into Parallel Debugging
Tools, RISC-Linz Report Series No. 02-07, http://www.risc.uni-
linz.ac.at/library/, March 2002

[34] Jozsef Kovacs, Gabor Kusper, Robert Lovas, Wolfgang Schreiner:
Integrating Temporal Assertions into a Parallel Debugger, RISC-Linz
Report Series No. 02-12, http://www.risc.uni-linz.ac.at/library/, May 2002

VII. REFERENCES
[A] José C. Cunha, João Lourenço, Vitor Duarte: Debugging of Parallel and Distributed

Programs. In the book: Parallel Program Development for Cluster Computing:
Methodology, Tools and Integrated Environments (Chapter 5), pp. 101-136, Nova
Science Publishers New York, 2001

[B] Dieter Kranzlmüller, Axel Rimnac: Parallel Program Debugging with MAD - A
Practical Approach. International Conference on Computational Science 2003, pp.
201-212

[C] D. Kranzlmüller and J. Volkert. NOPE: A Nondeterministic Program Evaluator. In P.
Zinterhof et al., editors, Parallel Computation, Proceedings of ACPC'99, 4th
International ACPC Conference, volume 1557 of Lecture Notes in Computer Science,
pages 490-499, Salzburg, Austria, February 16-18, 1999. Springer, Berlin.

[D] Robert Hood. The p2d2 project: building a portable distributed debugger.
Proceedings of the SIGMETRICS symposium on Parallel and distributed tools, May
22 - 23, 1996, Philadelphia, PA USA

[E] J. Kovacs, P. Kacsuk. The DIWIDE Distributed Debugger on Windows NT and
UNIX Platforms, Distributed and Parallel Systems, From Instruction Parallelism to
Cluster Computing, Eds.: P. Kacsuk and G. Kotsis, Cluwer Academic Publishers,
2000.

[F] D. Kranzlmüller, S. Grabner, J. Volkert. Event Graph Visualization for Debugging
Large Applications. Proc. SPDT'96, ACM SIGMETRICS Symp. on Parallel and
Distr. Tools, Philadelphia, USA, pp. 108-117, 1996

[G] Henryk Krawczyk, Piotr Kuzora, Marcin Neyman, Jerzy Proficz and Bogdan
Wiszniewski: STEPS - a Tool for Structural Testing of Parallel Software. In the book:
Parallel Program Development for Cluster Computing: Methodology, Tools and
Integrated Environments (Chapter 16), pp. 334-354, Nova Science Publishers New
York, 2001

[H] José C. Cunha, João Lourenço and Vitor Duarte: The DDBG Distributed Debugger.
In the book: Parallel Program Development for Cluster Computing: Methodology,
Tools and Integrated Environments (Chapter 13), pp. 292-303, Nova Science
Publishers New York, 2001

[I] Allinea Software Ltd.: Distributed Debugger Tool v1.8, User Guide, 2004

[J] Etnus, LLC. TotalView debugger. Available online at
http://www.etnus.com/TotalView/MPI.html

[K] M. Migliardi, V. Sunderam, A.Geist, J. Dongarra. Dynamic Reconfiguration and
Virtual Machine Management in the Harness Metacomputing System, Proc. of
ISCOPE98, pp. 127-134, Santa Fe', New Mexico (USA), December 8-11, 1998.

 12

[L] A. Tarafdar and V. K. Garg: Predicate control for active debugging of distributed
programs, Proceedings of the 1st Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing (IPPS/SPDP-
98), pages 763-769, Los Alamitos, March 30-April 3 1998

[M] João Lourenço, José C. Cunha: Fiddle: A Flexible Distributed Debugging
Architecture, ICCS 2001, San Francisco, CA, USA, 2001, pp. 821-830

[N] Frey and Oberhuber, M.: Testing and Debugging Parallel and Distributed
Programs with Temporal Logic Specifications, Proc. of Second Workshop on
Parallel and Distributed Software Engeneering 1997, pages 62-72, Boston, May
1997

[O] Alberto Lluch-Lafuente, Stefan Leue and Stefan Edelkamp: Partial Order
Reduction in Directed Model Checking, In: Proceedings of the 9th International
SPIN Workshop on Model Checking Software, Springer LNCS, Grenoble, April
2002

[P] E. M. Clarke, O. Grumberg, M. Minea, D. Peled. State space reduction using
partial order techniques. Software Tools for Technology Transfer, vol. 3, no. 1,
Springer Verlag, 1999, pp. 279-287.

[Q] R. Kurshan, V. Levin, M. Minea, D. Peled, H. Yenigün. Static partial order
reduction. Proceedings of the 4th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Lisbon, Portugal,
March/April 1998, pp. 345-357

[R] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science,
Springer-Verlag, 1992

[S] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science,
Springer-Verlag, 1994

[T] M. Software “Desgin/CPN. A Tool Package Supporting the Use of Colored Petri
Nets” Tech. Rep., Meta Software Corporation, Cambridge, MA, USA, 1991

[U] P. Rondogiannis, M.H.M Cheng. Petri-net-based deadlock analysis of Process
Algebra programs. Science of Computer Programming, 1994. Vol. 23 (1), pp. 55-89

[V] Matthew B. Dwyer, Lori A. Clarke, and Kari A. Nies. A compact petri net
representation for concurrent programs. Technical Report TR 94-46, University of
Massachusetts, Amherst, 1994

[W] Jim Greene: Ensuring Delivery of Highly Reliable, Complex Software Releases,
QSM White Paper, October 2003

[X] I. Majzik, A. Pataricza and A. Bondavalli: Stochastic Dependability Analysis of
System Architecture Based on UML Models. In R. de Lemos, C. Gacek and A.
Romanovsky (eds.): Architecting Dependable Systems, LNCS-2667, Springer Verlag,
Berlin, 2003, pp 219-244

[Y] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

[Z] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems Specification. Springer, Berlin, 1992.

[AA] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Mancheck and V.
Sunderam. PVM: Parallel Virtual Machine a User’s Guide and Tutorial for
Networked Parallel Computing, MIT Press, Cambridge, MA, 1994.

