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Abstract In this paper we consider the problem of finding a near-optimal policy in a contin-
uous space, discounted Markovian Decision Problem (MDP) by employing value-function-
based methods when only a single trajectory of a fixed policy is available as the input. We
study a policy-iteration algorithm where the iterates are obtained via empirical risk mini-
mization with a risk function that penalizes high magnitudes of the Bellman-residual. Our
main result is a finite-sample, high-probability bound on the performance of the computed
policy that depends on the mixing rate of the trajectory, the capacity of the function set
as measured by a novel capacity concept (the VC-crossing dimension), the approximation
power of the function set and the controllability properties of the MDP. Moreover, we prove
that when a linear parameterization is used the new algorithm is equivalent to Least-Squares
Policy Iteration. To the best of our knowledge this is the first theoretical result for off-policy
control learning over continuous state-spaces using a single trajectory.
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1 Introduction

In many industrial control problems collecting data of the controlled system is often sep-
arated from the learning phase: The data is collected in “field-experiments”, whence it is
taken to the laboratory where it is used to design a new optimized controller. A crucial fea-
ture of these problems is that the data is fixed and new samples cannot be generated at will.
Often, the data is obtained by observing the controlled system while it is operated using an
existing controller, also called the behavior policy (Sutton and Barto 1998, Chap. 5.6).

In this paper we are interested in designing learning algorithms with provable perfor-
mance guarantees for infinite-horizon expected total discounted reward Markovian Decision
Problems with continuous state-variables and finite action-spaces.

The algorithm that we study is an instance of fitted policy iteration: the main loop com-
putes the evaluation function of the policy of the previous step in an approximate manner
by minimizing some risk functional. This new function is then used to compute the next,
improved policy. To avoid the need of learning a model, action-value evaluation functions
are employed making the policy improvement step trivial, just like how it is done in the
Least-Squares Policy Iteration (LSPI) algorithm of Lagoudakis and Parr (2003). However,
while LSPI builds on Least-Squares Temporal Difference (LSTD) learning due to Bradtke
and Barto (1996), we base our algorithm on the idea of minimizing Bellman-residuals. The
idea of minimizing Bellman-residuals is not new by any means. In fact, it goes back at least
to the work of Schweitzer and Seidmann (1985), who proposed this idea for computing ap-
proximate state-value functions assuming the full knowledge of a finite-state, finite-action
MDP.

For both LSTD and Bellman-residual minimization (BRM) the user must select a func-
tion class to represent the potential action-value functions that can be used in the algorithm.
Obviously, the space of all potential value-functions is too big when the state space is con-
tinuous and so one typically works with a small subset of this space. One popular choice is
to use linearly parameterized functions, but the results of this paper apply equally to other,
richer classes.

In the BRM approach one aims at picking a function that minimizes the so-called
Bellman-residual. The Bellman-residual arises when the fixed-point equation for the pol-
icy’s value function is rewritten so that one side of the equation equals zero. Formally, the
fixed point equation then reads T πQπ − Qπ = 0, where Qπ is the policy’s action-value
function and T π is the policy’s evaluation operator (T π , Qπ , just like the other MDP ob-
jects used below will be fully defined in the next section). If Qπ is replaced by some other
function Q, the left-hand side, T πQ − Q, becomes non-zero. A reasonable goal to get a
good approximation to Qπ is to control the magnitude of the Bellman-residual, such as its
weighted squared 2-norm.

While in BRM one aims directly at minimizing such a term, LSTD does this in an indi-
rect manner. In order to explain the idea underlying LSTD let us rewrite the above reordered
fixed-point equation in terms of the samples: If {Xt } is a sequence of states, {Rt } is a se-
quence of rewards and {At } is a sequence of actions encountered while following policy π

then the reordered fixed-point equation can be written as

E[Rt + γQπ(Xt+1,π(Xt+1))− Qπ(Xt ,At )|(Xt ,At ) = (x, a)] = 0,
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where (x, a) is any state-action pair. Here Rt + γQ(Xt+1,π(Xt+1)) − Q(Xt,At ) is called
the t th temporal difference. In LSTD one works with linear parameterizations of the action-
value functions and the idea is to find a function Q such that the average of the temporal
differences when correlated with the basis functions underlying the linear parameterization
is zero. This is expected to work since averages approximate expectations and if the corre-
lation of a function with a sufficiently rich set of functions is zero then the function must be
zero (almost everywhere).

However, from the statistical point of view this algorithm is not straightforward to ana-
lyze. This is because unlike most machine learning algorithms, LSTD is not derived from
a risk minimization principle, hence existing tools of machine learning and statistics, most
of which are geared towards the analysis of risk minimization algorithms, cannot be ap-
plied directly to its analysis. This makes the Bellman-residual minimization approach more
attractive, at least for the first sight. However, one major obstacle to (direct) Bellman-
residual minimization is that the natural candidate of the empirical risk, the average of the
squared temporal differences computed along a trajectory does not give rise to an unbi-
ased estimate of the squared L2-norm of the Bellman-residual (e.g., Sutton and Barto 1998,
p. 220).

Here we propose to overcome the biasedness of this empirical risk by modifying the loss
function minimized. The novel loss function depends on an auxiliary function whose job
is to make sure that the empirical loss is an unbiased estimate of the population-based loss
(Lemma 1). In addition, it turns out that in the case of a linear parameterization, the mini-
mizer of the new loss function and the solution returned by LSTD coincide (Proposition 2).
In this sense our new BRM minimization algorithm generalizes LSTD, while the new policy
iteration algorithm generalizes LSPI to a richer set of functions.

The main result of the paper (Theorem 4) shows that if the input trajectory is sufficiently
representative then the performance of the policy returned by our algorithm improves at a
rate of 1/N1/4 up to a limit set by the choice of the function set (here N is the length of the
trajectory). To the best of our knowledge this is the first result in the literature where finite-
sample error bounds are obtained for an algorithm that works for continuous state-space
MDPs, uses function approximators and considers control learning in an off-policy setting,
i.e., learning from a single trajectory of some fixed behavior policy.

One major technical difficulty of the proof is that we have to deal with dependent sam-
ples. The main condition here is that the trajectory should be sufficiently representative and
rapidly mixing. For the sake of simplicity, we also require that the states in the trajectory
follow a stationary distribution, though we believe that with some additional work this con-
dition could be relaxed. The mixing condition, on the other hand, seems to be essential for
efficient learning. The particular mixing condition that we use is exponential β-mixing, used
earlier, e.g., by Meir (2000) for analyzing nonparametric time-series prediction or by Baraud
et al. (2001) for analyzing penalized least-squares regression. This mixing condition allows
us to derive polynomial decay rates for the estimation error as a function of the sample size.
If we were to relax this condition to, e.g., algebraic β-mixing (i.e., mixing at a slower rate),
the estimation error-bound would decay with the logarithm of the number of samples, i.e.,
at a sub-polynomial rate. Hence, learning is still possible, but it could be very slow. Let us
finally note that for Markov processes, geometric ergodicity implies exponential β-mixing
(see Davidov 1973; or Doukhan 1994, Chap. 2.4), hence for such processes there is no loss
of generality in assuming exponential β-mixing.

In order to arrive at our bound, we introduce a new capacity concept which we call the
VC-crossing dimension. The VC-crossing dimension of a function set F is defined as the
VC-dimension of a set-system that consists of the zero-level sets of the pairwise differences
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of functions from F . The intuitive explanation is that in policy iteration the action taken by
the next policy at some state is obtained by selecting the action that yields the best action-
value. When solving the fixed-point equation for this policy, the policy (as a function of
states to actions) is composed with the action-value function candidates. In order to control
variance, one needs to control the capacity of the resulting function set. The composite
functions can be rewritten in terms of the zero-level sets mentioned above, and this is where
the VC-dimension of this set-system comes into play. The new concept is compared to
previous capacity concepts and is found to be significantly different from them, except for
the case of a set of linearly parameterized functions whose VC-crossing dimension equals
the number of parameters, as usual (Proposition 3).

Similarly to bounds of regression, our bounds depend on the approximation power of
the function set, too. One major difference is that in our case the approximation power of a
function set is measured differently from how it is done in regression. While in regression,
the approximation power of a function set is characterized by the deviation of the target
class from the considered set of functions, we use error measures that quantify the extent to
which the function set is invariant with respect to the policy evaluation operators underlying
the policies in the MDP. This should come as no surprise: If for some policy encountered
while executing the algorithm no function in the chosen set has a small Bellman-residual,
the performance of the final policy could be very poor.

The bounds also depend on the number of steps (K) of policy iteration. As expected,
there are two terms involving K that behave inversely: One term, that is familiar from pre-
vious results, decays at a geometric rate (the base being γ , the discount factor of the MDP).
The other term increases proportionally to the logarithm of the number of iterations. This
term comes from the reuse of the data throughout all the iterations: Hence we see that data
reuse causes only a slow degradation of performance, a point that was made just recently by
Munos and Szepesvári (2006) in the analysis of approximate value iteration. Interestingly,
the optimal value of K depends on, e.g., the capacity of the function set, the mixing rate, and
the number of samples, but it does not depend on the approximation-power of the function
set.

In order to arrive at our results, we need to make some assumptions on the controlled
system. In particular, we assume that the state space is compact and the action space is
finite. The compactness condition is purely technical and can be relaxed, e.g., by making
assumptions about the stability of the system. The finiteness condition on the action space,
on the other hand, seems to be essential for our analysis to go through. We also need to make
a certain controllability (or rather uncontrollability) assumption. This particular assumption
is used in the method proposed by Munos (2003) for bounding the final weighted-norm error
as a function of the weighted-norm errors made in the intermediate steps of the algorithm.
If we were to use an L∞-analysis then the controllability assumption would not be needed,
but since in the intermediate steps the algorithm targets to minimize the L2-norm of errors,
we may expect difficulties in controlling the final error.

The particular controllability assumption studied here requires that the maximum rate at
which the future-state distribution can be concentrated by selecting some non-stationary
Markov policy is sub-exponential. In general, this holds for systems with “noisy” tran-
sitions, but the condition can also hold for deterministic systems (Munos and Szepesvári
2006).

The organization of the paper is as follows: In the next section (Sect. 2) we introduce
the basic concepts, definitions and symbols needed in the rest of the paper. The algorithm
along with its motivation is given in Sect. 3. This is followed by some additional definitions
necessary for the presentation of the main result. The main result is given at the beginning of
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Sect. 4. The rest of this section is divided into three parts, each devoted to one major step of
the proof. In particular, in Sect. 4.1 a finite-sample bound is given on the error of the policy
evaluation procedure. This bound makes the dependence on the complexity of the function
space, the mixing rate of the trajectory, and the number of samples explicit. In Sect. 4.2
we prove a bound on how errors propagate throughout the iterations of the procedure. The
proof of the main result is finished in Sect. 4.3. We discuss the main result, in the context
of previous work in Sect. 5. Finally, our conclusions are drawn and possible directions for
future work are outlined in Sect. 6.

2 Definitions

As we shall work with continuous spaces we will need a few simple concepts of analy-
sis. These are introduced first. This is followed by the introduction of Markovian Decision
Problems (MDPs) and the associated concepts and the necessary notation. The unattributed
statements of this section can be found in the book of Bertsekas and Shreve (1978).

For a measurable space with domain S, we let M(S) denote the set of probability mea-
sures over S. For p ≥ 1, a measure ν ∈M(S), and a measurable function f : S → R we let
‖f ‖p,ν denote the Lp(ν)-norm of f :

‖f ‖p
p,ν =

∫
|f (s)|pν(ds).

We shall also write ‖f ‖ν to denote the L2(ν)-norm of f . We denote the space of bounded
measurable functions with domain X by B(X ), and the space of measurable functions
with bound 0 < K < ∞ by B(X ;K). We let ‖f ‖∞ denote the supremum norm: ‖f ‖∞ =
supx∈X |f (x)|. The symbol I{E} shall denote the indicator function: For an event E, I{E} = 1
if and only if E holds and I{E} = 0, otherwise. We use 1 to denote the function that takes on
the constant value one everywhere over its domain and use 0 to denote the likewise function
that takes zero everywhere.

A discounted MDP is defined by a quintuple (X ,A,P ,S, γ ), where X is the (possibly
infinite) state space, A = {a1, a2, . . . , aM} is the set of actions, P : X × A → M(X ) is
the transition probability kernel, P (·|x, a) defining the next-state distribution upon taking
action a in state x, S(·|x, a) gives the corresponding distribution of immediate rewards, and
γ ∈ (0,1) is the discount factor. Note that M denotes the number of actions in the MDP.

We make the following assumptions on the MDP:

Assumption 1 (MDP Regularity) X is a compact subspace of the s-dimensional Euclidean
space. We assume that the random immediate rewards are bounded by R̂max and the expected
immediate rewards r(x, a) = ∫

rS(dr|x, a) are bounded by Rmax: ‖r‖∞ ≤ Rmax. (Note that
Rmax ≤ R̂max.)

A policy is defined as a (measurable) mapping from past observations to a distribution
over the set of actions. A policy is called Markov if the distribution depends only on the last
state of the observation sequence. A policy is called stationary Markov if this dependency
does not change by time. For a stationary Markov policy, the probability distribution over the
actions given some state x will be denoted by π(·|x). A policy is deterministic if the prob-
ability distribution concentrates on a single action for all histories. Deterministic stationary
Markov policies will be identified with mappings from states to actions, i.e., functions of
the form π : X →A.
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The value of a policy π when it is started from a state x is defined as the total expected
discounted reward that is encountered while the policy is executed:

V π(x) = Eπ

[ ∞∑
t=0

γ tRt

∣∣∣∣∣X0 = x

]
.

Here Rt denotes the reward received at time step t ; Rt ∼ S(·|Xt,At ) and Xt evolves ac-
cording to Xt+1 ∼ P (·|Xt,At ) where At is sampled from the distribution assigned to the
past observations by π . For a stationary Markov policy π , At ∼ π(·|Xt), while if π is de-
terministic stationary Markov then we write At = π(Xt). The function V π is also called the
state-value function of policy π . Closely related to the state-value functions are the action-
value functions, defined by

Qπ(x, a) = Eπ

[ ∞∑
t=0

γ tRt

∣∣∣∣∣X0 = x,A0 = a

]
.

In words, the action-value function underlying π assigns to the pair (x, a) the total expected
discounted return encountered when the decision process is started in state x, the first action
is a while all the subsequent actions are determined by the policy π . It is easy to see that for
any policy π , the functions V π , Qπ are bounded by Rmax/(1 − γ ).

Given an MDP, the goal is to find a policy that attains the best possible values,

V ∗(x) = sup
π

V π(x),

for all states x ∈ X . Function V ∗ is called the optimal value function. A policy is called
optimal if it attains the optimal values V ∗(x) for any state x ∈X , i.e., if V π(x) = V ∗(x) for
all x ∈X .

In order to characterize optimal policies it will be useful to define the optimal action-
value function, Q∗(x, a):

Q∗(x, a) = sup
π

Qπ(x, a).

Further, we say that a (deterministic stationary) policy π is greedy w.r.t. an action-value
function Q ∈ B(X ×A) and write

π = π̂(·;Q),

if, for all x ∈ X and a ∈A,

π(x) ∈ argmax
a∈A

Q(x,a).

Since A is finite, a greedy policy always exists no matter how Q is chosen. Greedy policies
are important because any greedy policy w.r.t. Q∗ is optimal. Hence, to find an optimal
policy it suffices to determine Q∗ and the search for optimal policies can be restricted to
deterministic, stationary, Markov policies. In what follows we shall use the word ’policy’ to
mean policies of this class only.

In the policy iteration algorithm (Howard 1960), Q∗ is found by computing a series of
policies, each policy being greedy w.r.t. the action-value function of the previous policy.
The algorithm converges at a geometric rate. The action-value function of a policy can be
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found by solving a fixed-point equation. For a (deterministic stationary Markov) policy π ,
we define the operator T π : B(X ×A) → B(X ×A) by

(T πQ)(x, a) = r(x, a)+ γ

∫
Q(y,π(y))P (dy|x, a).

It is easy to see that T π is a contraction operator w.r.t. the supremum-norm with index γ :
‖T πQ − T πQ′‖∞ ≤ γ ‖Q − Q′‖∞. Moreover, the action-value function of π is the unique
fixed point of T π :

T πQπ = Qπ. (1)

For our analysis we shall need a few more operators. We define the projection operator
Eπ : B(X ×A) → B(X ) by

(EπQ)(x) = Q(x,π(x)), Q ∈ B(X ×A).

Next, we define two operators derived from the transition probability kernel P as follows:
The right-linear operator, P · : B(X ) → B(X ×A), is defined by

(PV )(x, a) =
∫

V (y)P (dy|x, a).

Hence, for a function V , PV represents an action-value function such that (PV )(x, a) is
the expected value of choosing action a in state x if the future states are evaluated via V

and there are no immediate rewards. The left-linear operator, ·P :M(X ×A) →M(X ), is
defined by

(ρP )(dy) =
∫

P (dy|x, a)ρ(dx, da). (2)

This operator is also extended to act on measures over X via

(ρP )(dy) = 1

M

∑
a∈A

∫
P (dy|x, a)ρ(dx).

For a measure ρ defined over the set of state-action pairs, ρP represents the distribution of
the state of the process after one step in the MDP if the initial state and action are sampled
from ρ.

By composing P and Eπ , we define P π :

P π = PEπ.

Note that this equation defines two operators: a right- and a left-linear one. The interpretation
of the right-linear operator is as follows: For the action-value function Q, PEπQ gives the
expected values of future states when the future values of the actions are given by the action-
value function Q and after the first step policy π is followed. The left-linear operator, ·P π :
M(X ×A) →M(X ×A), is defined as follows: Let U be a measurable subset of X ×A.
Given ρ ∈M(X ×A), (ρP π)(U) = ρPEπ

I{U}. This operator can be given a probabilistic
interpretation, too, but as we have not found this interpretation sufficiently intuitive, it is
omitted.

Throughout the paper F ⊂ {f : X → R} will denote some subset of real-valued func-
tions over the state-space X . For convenience, we will treat elements of FM as real-
valued functions f defined over X ×A with the obvious identification f ≡ (f1, . . . , fM),
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f (x, aj ) = fj (x), j = 1, . . . ,M . The set FM will denote the set of admissible functions
used in the optimization step of our algorithm.

Finally, for ν ∈M(X ), we extend ‖ · ‖p,ν (p ≥ 1) to FM by

‖f ‖p
p,ν = 1

M

M∑
j=1

‖fj‖p
p,ν .

Alternatively, we define ν(dx, da), the extension of ν to X ×A via

∫
Q(x,a)ν(dx, da) = 1

M

M∑
j=1

∫
Q(x,aj )ν(dx). (3)

For real numbers a and b, a ∨ b shall denote the maximum of a and b. Similarly, a ∧ b

shall denote the minimum of a and b. The ceiling value of a real number a is denoted by �a�,
while for x > 0, log+(x) = 0 ∨ log(x).

3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted policy iteration
method, whose pseudo-code is shown in Fig. 1. By assumption, the training sample, D,
used by the algorithm is a finite trajectory

{(Xt ,At ,Rt )}1≤t≤N

underlying some stochastic stationary policy πb: At ∼ πb(·|Xt), Xt+1 ∼ P (·|Xt,At ), Rt ∼
S(·|Xt,At ). We assume that this trajectory is sufficiently rich in a sense that will be made
precise in the next section. For now, let us make the assumption that Xt is stationary and
is distributed according to some (unknown) distribution ν. The action-evaluation function
Q−1 is used to initialize the first policy (alternatively, one may start with an arbitrary initial
policy). The procedure PEval takes data in the form of a long trajectory and some policy π̂

and should return an approximation to the action-value function of π̂ . In this case the policy
is just the greedy policy with respect to Q′: π̂ = π̂(·;Q′).

There are many possibilities to design PEval. In this paper we consider an approach
based on Bellman-residual minimization (BRM). Let π denote the policy to be evaluated.

FittedPolicyQ(D,K,Q−1,PEval,πb)
// D: samples (e.g., trajectory)
// K: number of iterations
// Q−1: Initial action-value function
// PEval: Policy evaluation routine
Q ← Q−1 // Initialization
for k = 0 to K − 1 do

Q′ ← Q

Q ←PEval(π̂(·;Q′),D,πb)

end for
return Q // or π̂(·;Q), the greedy policy w.r.t. Q

Fig. 1 Model-free fitted policy iteration
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The basic idea of BRM comes from rewriting the fixed-point equation (1) for Qπ in the
form Qπ − T πQπ = 0. When Qπ is replaced by some other function Q, the left-hand side
becomes non-zero. The resulting quantity, Q−T πQ, is called the Bellman-residual of Q. If
the magnitude, ‖Q− T πQ‖, of the Bellman-residual is small then Q can be expected to be
a good approximation to Qπ (for an analysis using supremum norms see, e.g., the work of
Williams and Baird (1994)). Here we choose a weighted L2-norm to measure the magnitude
of the Bellman-residual as it leads to an optimization problem with favorable characteristics
and enables an easy connection to regression function estimation to be made. Hence, define
the loss function

L(Q;π) = ‖Q− T πQ‖2
ν,

where the weighting is determined by ν, the stationary distribution underlying the states
in the input data and the uniform distribution over the actions. (Remember that ‖Q‖2

ν =
1/M

∑M

j=1 ‖Q(·, aj )‖2
ν .) Since Xt follows the distribution ν, the choice of ν in the loss

function facilitates its sample-based approximation. The choice of the uniform distribu-
tion over the actions instead of the distribution underlying the sample {At } expresses our
a priori disbelief in the action-choices made by the behavior policy: Since the behavior pol-
icy may well prefer suboptimal actions over the optimal ones, we have no reason to give
more weight to the actions that are sampled more often. Of course, the same issue arises
in connection to the state distribution, or the joint state-action distribution. However, cor-
recting for the bias involving the states would be possible only if ν had a known density
(a very unrealistic assumption) or if this density was learnt from the samples. Thus, while
the correction for the sampling “bias” of actions requires only the (mild) assumption of the
knowledge of the behavior policy and is very cheap (as we shall see below), the correction
for the states’ bias would be quite expensive and risky. Hence, to simplify the presentation
we do not consider such a correction here. Another alternative would be to use the joint
distribution of (Xt ,At ) in the above norm; the results would not change significantly in this
case.

In light with the above remarks, given the loss L, we expect Q = argminf∈FM L(f ;π)

to be a good approximation to the evaluation function of π .1 In order to obtain a practical
procedure one needs a sample-based approximation to L. To arrive at such an approximation
one may first try to replace ‖ · ‖ν by its empirical counterpart,

‖f ‖2
ν,N

def= 1

NM

N∑
t=1

M∑
j=1

I{At=aj }
πb(aj |Xt)

fj (Xt )
2 = 1

NM

N∑
t=1

f (Xt ,At )
2

πb(At |Xt)

(since Xt ∼ ν and if, e.g., {Xt } is ergodic, ‖f ‖2
ν,N converges to ‖f ‖2

ν as N → ∞)
and then plug in Rt + γf (Xt+1,π(Xt+1)) in place of (T πf )(Xt ,At ) (since E[Rt +
γf (Xt+1,π(Xt+1))|Xt,At ] = (T πf )(Xt ,At )). This results in the loss function

L̂N (f ;π) = 1

NM

N∑
t=1

1

πb(At |Xt)

× (f (Xt ,At )− (Rt + γf (Xt+1,π(Xt+1))))
2. (4)

1In order to simplify the presentation we assume sufficient regularity of F so that we do not need to worry
about the existence of a minimizer which can be guaranteed under fairly mild conditions, such as the com-
pactness of F w.r.t. ‖ · ‖ν , or if F is finite dimensional (Cheney 1966).
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However, as it is well known (see, e.g., Sutton and Barto 1998, p. 220; Munos 2003;
or Lagoudakis and Parr 2003), L̂N is not an unbiased estimate of the L2 Bellman-
error: E[L̂N(f ;π)] �= L(f ;π). Indeed, elementary calculus shows that for Y ∼ P (·|x, a),
R ∼ S(·|x, a),

E[(f (x, a)− (R + γf (Y,π(Y ))))2]
= (f (x, a)− (T πf )(x, a))2 + Var[R + γf (Y,π(Y ))].

It follows that minimizing L̂N(f ;π) in the limit when N → ∞ is equivalent to minimiz-
ing the sum of L(f ;π) and γ 2 1

M

∑M

j=1 E[Var[f (Y,π(Y ))|X,A = aj ]] with Y ∼ P (·|X,A).
The unwanted variance term acts like a penalty factor, favoring smooth solutions (if f is con-
stant then the variance term Var[f (Y,π(Y ))|X,A = aj ] becomes zero). Although smooth-
ness penalties are often used as a means of complexity regularization, in order to arrive at
a consistent procedure one needs a way to control the influence of the penalty. Here we
do not have such a control and hence the procedure will yield biased estimates even as the
number of samples grows without a limit. Hence, we need to look for alternative ways to
approximate the loss L.

A common suggestion is to use uncorrelated or “double” samples in L̂N . According to
this proposal, for each state and action in the sample at least two next states should be
generated (see, e.g., Sutton and Barto 1998, p. 220). However, this is neither realistic nor
sample efficient unless there is a (cheap) way to generate samples—a possibility that we
do not consider here. Another option, motivated by the double-sample proposal, would be
to reuse samples that are close in space (e.g., use nearest neighbors). The difficulty with
this approach is that it requires a definition of ‘proximity’. Here we pursue an alternative
approach that avoids these pitfalls and looks simpler.

The trick is to introduce an auxiliary function h to cancel the unwanted variance term.
The new loss function is

L(f,h;π) = L(f ;π) − ‖h− T πf ‖2
ν (5)

and we propose to solve for

f̂ = argmin
f∈FM

sup
h∈FM

L(f,h;π), (6)

where the supremum comes from the negative sign of ‖h − T πf ‖2
ν (our aim is to push

h close to T πf ). There are two issues to worry about: One is if the optimization of this
new loss function still makes sense and the other is if the empirical version of this loss is
unbiased. A quick heuristic explanation of why the second issue is resolved is as follows: In
the sample based estimate of ‖h−T πf ‖2

ν the same variance term, as the one that we wanted
to get rid of, appears. Since ‖h− T πf ‖2

ν is subtracted from the original loss function, when
considering the empirical loss the unwanted terms cancel each other. A precise reasoning
will be given below in Lemma 1.

Now let us consider the issue if optimizing the new loss makes sense. Let h∗
f ∈ FM be a

function that minimizes ‖h− T πf ‖2
ν . Then

L(f ;π) = L(f,h∗
f ;π)+ ‖h∗

f − T πf ‖2.

Thus, if ‖h∗
f − T πf ‖2

ν is “small” independently of the choice of f then minimizing
L(f,h∗

f ;π) should give a solution whose loss as measured by L(f ;π) is small, too.
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Before returning to the unbiasedness issue let us note that for f ∈ FM , L(f,h∗
f ;π) ≥ 0.

This inequality holds because by the definition of h∗
f , L(f,h∗

f ;π) ≥ L(f,h;π) holds for
any h ∈FM . Thus substituting h = f we get L(f,h∗

f ;π) ≥ L(f,f ;π) = 0.
Let us now define the empirical version of L(f,h;π) by

L̂N (f,h;π) = 1

NM

N∑
t=1

1

πb(At |Xt)
[(f (Xt ,At ) − (Rt + γf (Xt+1,π(Xt+1))))

2

− (h(Xt ,At )− (Rt + γf (Xt+1,π(Xt+1))))
2]. (7)

Thus, we let PEval solve for

Q = argmin
f∈FM

sup
h∈FM

L̂N(f,h;π). (8)

The key attribute of the new loss function is that its empirical version is unbiased:

Lemma 1 (Unbiased empirical loss) Assume that the behavior policy πb samples all actions
in all states with positive probability. Then for any f,h ∈ FM , policy π , L̂N(f,h;π) as
defined by (7) provides an unbiased estimate of L(f,h;π):

E[L̂N(f,h;π)] = L(f,h;π). (9)

Proof Let us define Ctj = I{At=aj }
πb(aj |Xt )

and Q̂f,t = Rt +γf (Xt+1,π(Xt+1)). By (7), the t th term

of L̂N (f,h;π) can be written as

L(t) = 1

M

M∑
j=1

Ctj ((fj (Xt )− Q̂f,t )
2 − (hj (Xt) − Q̂f,t )

2). (10)

Note that E[Ctj |Xt ] = 1 and

E[Ctj Q̂f,t |Xt ] = E[Q̂f,t |Xt,At = aj ]

= rj (Xt ) + γ

∫
y

f (y,π(y))dP (y|Xt, aj ) = (T πf )j (Xt) (11)

since all actions are sampled with positive probability in any state. (In (10) and (11), we use
the convention f (x, aj ) = fj (x) introduced earlier.)

Consider now t = 1 and L(1). Taking expectations,

E[L(1)] = E[E[L(1)|X1]]

= 1

M

M∑
j=1

E[E[C1j ((fj (X1)− Q̂f,1)
2 − (hj (X1)− Q̂f,1)

2)|X1]].

By the bias-variance decomposition formula, if U , V are conditionally uncorrelated given
W then,

E[(U − V )2|W ] = E[(U − E[V |W ])2|W ] + Var[V |W ],
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where Var[V |W ] = E[(V − E[V |W ])2|W ]. Using this and (11), we get

E[C1j ((fj (X1)− Q̂f,1)
2 − (hj (X1)− Q̂f,1)

2)|X1]
= (fj (X1)− (T πf )j (X1))

2 + Var[Q̂f,1|X1,A1 = aj ]
− ((hj (X1)− (T πf )j (X1))

2 + Var[Q̂f,1|X1,A1 = aj ])
= (fj (X1)− (T πf )j (X1))

2 − (hj (X1)− (T πf )j (X1))
2.

Taking expectations of both sides we get that

E[L(1)] = 1

M

M∑
j=1

(‖fj − (T πf )j‖2
ν − ‖hj − (T πf )j‖2

ν)

= L(f ;π)− ‖h− T πf ‖2
ν

= L(f,h;π). (12)

Because of stationarity, E[L(t)] = E[L(1)] holds for any t , thus finishing the proof of (9). �

It can be observed that unbiasedness is achieved because the quadratic terms Q̂2
f,t and

(T πf )2
j are canceled in the new loss functions (both in the sample based and the population

based versions).
For linearly parameterized function classes the solution of the optimization problem (8)

can be obtained in closed form. Perhaps surprisingly, even more is true in this case: The new
method gives the same solutions as LSTD! In order to formally state this result let us first
review the LSTD procedure.2

Instead of minimizing the distance of Q and T πQ, in LSTD one looks for a value func-
tion Q in the space of admissible functions FM such that the back-projection of the image
of Q under T π onto FM comes the closest to Q (see Fig. 2). Formally, this means that
we want to minimize ‖Q − ΠT πQ‖2, where ‖f ‖ is a norm compatible with some in-
ner product: ‖f ‖2 = 〈f,f 〉. Here the projection operator Π : B(X × A) → B(X × A)

is defined by ΠQ = argminQ′∈FM ‖Q − Q′‖. In order to make the minimization prob-
lem practical it is customary to assume a linear parameterization of the value functions:
FM = {wT φ : w ∈ R

p}, where φ : X × A → R
p is some function extracting features of

state-action pairs. Note that FM is a linear subspace (hyperplane) of B(X ×A). Denote by
wπ the weights of the solution of the minimization problem and let Qwπ = (wπ)T φ. Then
due to the properties of projection, Qwπ − T πQwπ must be perpendicular to the space FM

with respect to the inner product underlying the chosen norm.3 Formally, this means that

2We introduce LSTD quite differently from how it is normally done in the literature (the description given
in the introduction follows the “normal” pattern). In fact, our treatment is influenced by Lagoudakis and Parr
(2003).
3This is because the projection of a vector to a linear subspace is the unique element of the subspace such
that the vector connecting the element and the projected vector is perpendicular to the subspace. Hence if
for some Q ∈ FM , Q − T πQ happens to be perpendicular to FM then (since Q ∈ FM ) Q must be the
projection of T πQ onto FM , i.e., Q and ΠT πQ must coincide. Further, since it is always possible to find
Q ∈ FM such that Q − T πQ is perpendicular to FM , and for such a Q, Q = ΠT πQ, the minimal value
of the LSTD loss is always zero. Hence, if Q is the minimizer of the LSTD loss then Q = ΠT πQ. Then
Q − T πQ = ΠT πQ − T πQ must be perpendicular to FM .
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Fig. 2 Comparing the modified Bellman-error and the LSTD criterion. The function space, FM , is rep-
resented by the horizontal line. Under the operator, T π , a value function, Q ∈ FM , is mapped to a func-
tion, T πQ. The vector connecting T πQ and its back-projection to FM , ΠT πQ, is orthogonal to the func-
tion space FM . The Bellman-error is the distance of Q and T πQ. In order to get the modified Bellman-error
loss, the squared distance of T πQ and ΠT πQ is subtracted from the squared Bellman-error. LSTD aims at
picking a function Q such that its distance to ΠT πQ is minimal. For a linear space, FM , the solution of this
is Q = ΠT πQ, which simultaneously minimizes the modified Bellman-error loss function

〈Qwπ −T πQwπ ,wT φ〉 = 0 must hold for any weight-vector w. However, this can hold only
if for any i ∈ {1, . . . , p},

〈Qwπ − T πQwπ ,φi〉 = 0. (13)

These are the so-called normal equations and the linearity of the inner product can be used
to solve them for wπ .

When LSTD is used in practice, T π and the inner product are approximated based on the
samples. Then (13) becomes

0 = 1

NM

N∑
t=1

φi(Xt ,At )

πb(At |Xt)
(Qwπ (Xt ,At ) − [Rt + γQwπ (Xt+1,π(Xt+1))]), (14)

where the normalization factors (1/M)/πb(At |Xt) are introduced to remain consistent with
our previous convention to normalize with the action frequencies. Note that unlike in the
case of the straightforward empirical loss (4), there is no biasedness issue here and hence
asymptotic consistency is easy to obtain (Bradtke and Barto 1996).

For our purposes it is important to note that (14) can be derived from a loss-minimization
principle with a reasoning that is entirely analogous to the argument used to derive (13). To
see this, define SN : B(X ×A) → R

N , T̂ π
N : B(X ×A) → R

N and 〈·, ·〉N by

SNQ = (Q(X1,A1), . . . ,Q(XN,AN))T ,

T̂ π
N Q = (R1 + γQ(X2,π(X2)), . . . ,RN + γQ(XN+1,π(XN+1)))

T ,

〈q, q ′〉N = 1

NM

N∑
t=1

qtq
′
t

πb(At |Xt)
,

where q, q ′ ∈ R
N . Further, let ‖·‖N denote the 	2-norm on R

N that corresponds to 〈·, ·〉N and
let SNFM = {SNQ : Q ∈ FM}. Note that SNFM is a linear subspace of R

N . Then (14) can
be written in the compact form 0 = 〈SNQwπ − T̂ π

N Qwπ ,φi〉N . Further, the solution of these
equations minimizes ‖SNQ−ΠNT̂ π

N Q‖N , where the projection operator ΠN : RN → R
N is

defined by ΠNq = argminq ′∈SNFM ‖q − q ′‖N .
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Now we are ready to state our equivalence result:

Proposition 2 When linearly parameterized functions are used, the solution of (8) and that
of LSTD coincide and the algorithm proposed here becomes equivalent to LSPI.

Proof We prove the statement for the population based losses, LLSTD(Q;π) = ‖Q −
ΠT πQ‖2, LBRM(Q;π) = ‖Q − T πQ‖2 − infh∈FM ‖h − T πQ‖2, where ‖ · ‖ is any norm
derived from some inner product 〈·, ·〉. The argument for the empirical losses is an exact
parallel of the argument presented here, one just must use SN,ΠN and 〈·, ·〉N as defined
above.

Let Q ∈ FM solve the equations 〈Q − T πQ,φi〉 = 0 simultaneously for all i. We know
that all minimizers of LLSTD can be obtained this way and that the value of LLSTD at a mini-
mizer is zero. Since the Pythagorean identity ‖Q−T πQ‖2 = ‖Q−ΠT πQ‖2 +‖ΠT πQ−
T πQ‖2 holds for any Q, from LLSTD(Q;π) = 0 we conclude that ‖Q − T πQ‖2 =
‖ΠT πQ − T πQ‖2. Hence, LBRM(Q;π) = ‖Q − T πQ‖2 − ‖ΠT πQ − T πQ‖2 = 0. Since
LBRM is non-negative on FM , this shows that Q is a minimizer of LBRM.

Now, let Q be the minimizer of LBRM. Using again the Pythagorean identity, we imme-
diately get that ‖Q − ΠT πQ‖2 = 0, which together with the non-negativity of LLSTD gives
that Q is a minimizer of LLSTD. �

As a consequence of this equivalence, when a linear function class is used all our results
derived for the BRM loss transfer to LSTD/LSPI.

One problem with the LSTD loss is that it is defined in terms of the projection Π which
makes its optimization quite involved when a non-linear parameterization is used (e.g., when
a neural network is used to represent the action-value functions). On the other hand, the
BRM criterion proposed here avoids the direct use of the projection operator and hence it is
easier to use it with non-linear parameterizations. This can be advantageous when there is
a reason to believe that a non-linear parameterization is useful. Of course, for such parame-
terizations the optimization problem may be difficult to solve anyway.

4 Main result

Before describing the main result we need some more definitions.
We start with a mixing-property of stochastic processes. Informally, a process is mixing

if ‘future’ depends weakly on the ‘past’. The particular mixing concept we use here is called
β-mixing:

Definition 1 (β-mixing) Let {Zt }t=1,2,... be a stochastic process. Denote by Z1:t the collec-
tion (Z1, . . . ,Zt ), where we allow t = ∞. Let σ(Zi:j ) denote the sigma-algebra generated
by Zi:j (i ≤ j ). The mth β-mixing coefficient of {Zt }, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)

|P (B|Z1:t )− P (B)|
]
.

{Zt } is said to be β-mixing if βm → 0 as m → ∞. In particular, we say that a β-mixing
process mixes at an exponential rate with parameters β ,b,κ > 0 if βm ≤ β exp(−bmκ) holds
for all m ≥ 0.
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Note that “mixing” can be defined in a large number of ways (see, e.g., Doukhan 1994).
The weakest among the most commonly used mixing concepts is called α-mixing. Another
commonly used mixing concept is φ-mixing, which is stronger than β-mixing (see Meyn
and Tweedie 1993).

Our assumptions regarding the sample path are as follows:

Assumption 2 (Sample path properties) Assume that

{(Xt ,At ,Rt )}t=1,...,N

is the sample path of some stochastic stationary policy, πb . Further, assume that {Xt } is
strictly stationary (Xt ∼ ν ∈ M(X )) and exponentially β-mixing with a rate defined by
the parameters (β, b, κ). We further assume that the sampling policy πb satisfies πb0

def=
mina∈A infx∈X πb(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain empirical
processes. Note that if Xt is β-mixing then the hidden-Markov process {(Xt , (At ,Rt ))} is
also β-mixing with the same rate (see, e.g., the proof of Proposition 4 by Carrasco and Chen
(2002) for an argument that can be used to prove this).

Our next assumption concerns the controllability of the MDP. Remember that ν denotes
the stationary distribution underlying {Xt }. For the sake of flexibility, we allow the user
to choose another distribution, ρ, to be used in assessing the procedure’s performance. It
turns out that in the technique that we use to bound the final error as a function of the
intermediate errors we need to change distributions between future state-distributions started
from ρ and ν. A natural way to bound the effect of changing from measure α to measure
β is to use the Radon-Nikodym derivative of α w.r.t. β:4 for any nonnegative measurable
function f ,

∫
f dα = ∫

f dα
dβ

dβ ≤ ‖ dα
dβ

‖∞
∫

f dβ . This motivates the following definition
introduced in (Munos and Szepesvári 2006):

Definition 2 (Discounted-average concentrability of future-state distribution) Given ρ, ν,
m ≥ 0 and an arbitrary sequence of stationary policies {πm}m≥1 let

cρ,ν(m) = sup
π1,...,πm

∥∥∥∥d(ρP π1P π2 . . . P πm)

dν

∥∥∥∥
∞

, (15)

with the understanding that if the future state distribution ρP π1P π2 . . . P πm is not absolutely
continuous w.r.t. ν then we take cρ,ν(m) = ∞. The second-order discounted-average con-
centrability of future-state distributions is defined by

Cρ,ν = (1 − γ )2
∑
m≥1

mγ m−1cρ,ν(m).

In general cρ,ν(m) diverges to infinity as m → ∞. However, thanks to discounting,
Cρ,ν will still be finite whenever γ m converges to zero faster than cρ,ν(m) converges
to ∞. In particular, if the rate of divergence of cρ,ν(m) is sub-exponential, i.e., if Γ =

4The Radon-Nikodym (RN) derivative is a generalization of the notion of probability densities. According to
the Radon-Nikodym Theorem, dα/dβ , the RN derivative of α w.r.t. β is well-defined if β is σ -finite and if α

is absolute continuous w.r.t. β . In our case β is a probability measure, so it is actually finite.
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lim supm→∞ 1/m log cρ,ν(m) ≤ 0 then Cρ,ν will be finite. In the stochastic process literature,
Γ is called the top-Lyapunov exponent of the system and the condition Γ ≤ 0 is interpreted
as a stability condition. Hence, our condition on the finiteness of the discounted-average
concentrability coefficient Cρ,ν can also be interpreted as a stability condition. Further dis-
cussion of this concept and some examples of how to estimate Cρ,ν for various system
classes can be found in the report by Munos and Szepesvári (2006).

The concentrability coefficient Cρ,ν will enter our bound on the weighted error of the
algorithm. In addition to these weighted-error bounds, we shall also derive a bound on the
L∞-error of the algorithm. This bound requires a stronger controllability assumption. In
fact, the bound will depend on

Cν = sup
x∈X ,a∈A

dP (·|x, a)

dν
,

i.e., the supremum of the density of the transition kernel w.r.t. the state-distribution ν. Again,
if the system is “noisy” then Cν is finite: In fact, the noisier the dynamics is (the less control
we have), the smaller Cν is. As a side-note, let us remark that Cρ,ν ≤ Cν holds for any
measures ρ, ν. (This follows directly from the definitions.)

Our bounds also depend on the capacity of the function set F . Let us now develop
the necessary concepts. We assume that the reader is familiar with the concept of VC-
dimension.5 The VC-dimension of a set system C shall be denoted by VC . To avoid any
confusions we introduce the definition of covering numbers:

Definition 3 (Covering numbers) Fix ε > 0 and a pseudo-metric space M= (M, d).6 We
say that M is covered by m discs D1, . . . ,Dm if M⊂⋃

j Dj . We define the covering num-
ber N (ε,M, d) of M as the smallest integer m such that M can be covered by m discs each
of which having a radius less than ε. If no such finite m exists then we let N (ε,M, d) =∞.

In particular, for a class F of real-valued functions with domain X and points x1:N =
(x1, x2, . . . , xN) in X , we use the empirical covering numbers, i.e., the covering number
of F equipped with the empirical 	1 pseudo-metric,

lx1:N (f, g) = 1

N

N∑
t=1

|f (xt ) − g(xt )|.

In this case N (ε,F, lx1:N ) shall be denoted by N1(ε,F, x1:N).
Another capacity measure widely used in the nonparametric statistics literature is the

pseudo-dimension of function sets:

Definition 4 (Pseudo-dimension) The pseudo-dimension VF+ of F is defined as the VC-
dimension of the subgraphs of functions in F (hence it is also called the VC-subgraph
dimension of F ).

In addition to the pseudo-dimension, we will need a new capacity concept:

5Readers not familiar with VC-dimension are suggested to consult a book, such as the one by Anthony and
Bartlett (1999).
6A pseudo-metric satisfies all the properties of a metric except that the requirement of distinguishability is
removed.
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Definition 5 (VC-crossing dimension) Let

C2 = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈F}.

The VC-crossing dimension of F , denoted by VF× , is defined as the VC-dimension of C2:
VF×

def= VC2 .

The rationale of this definition is as follows: Remember that in the kth iteration of the al-
gorithm we want to compute an approximate (action-value) evaluation of a policy that is
greedy w.r.t. a previously computed action-value function Q′. Thus, if π̂ denotes the chosen
greedy policy, then we will jointly select M functions (one for each action of A) from F
through (7) and (8). It follows that we will ultimately need a covering number bound for the
set

F∨
π̂ = {f : f (·) = Q(·, π̂(·)) and Q ∈ FM}.

Since Q′ depends on the data (a collection of random variables), Q′ is random, hence π̂ is
random, and thus the above set is random, too. In order to deal with this, we consider the
following, non-random superset of F∨

π̂
:

F∨ =
⋃

Q′∈FM

F∨
π̂(·;Q′)

= {f : f (·) = Q(·, π̂(·)), π̂ = π̂(·;Q′) and Q,Q′ ∈FM}.

Ultimately, we will bound the estimation error of the procedure using the capacity of this
class. Note that F∨ can be written in the equivalent form:

F∨ =
{

M∑
j=1

I{fj (x)=max1≤k≤M fk(x)}gj (x) : fj , gj ∈F

}

(ties should be broken in a systematic, but otherwise arbitrary way). If we define the set of
partitions of X induced by elements of F as

ΞF,M =
{
ξ : ξ = {Aj }Mj=1,Aj ⊂ X , x ∈ Aj ⇔ fj (x) = max

1≤k≤M
fk(x), fj ∈F

}
(16)

then we see that

F∨ =
{

M∑
j=1

I{Aj }gj : {Ak} = ξ ∈ ΞF,M, gj ∈F

}
. (17)

It turns out that the capacity of this class ultimately depends on the capacity (i.e., VC-
dimension) of the set-system C2 defined above. The form (17) suggests to view the elements
of the set F∨ as regression trees defined by the partition system ΞF,M and set F . Actually,
as the starting point for our capacity bounds we will use a result from the regression tree
literature due to Nobel (1996).

Having introduced this new capacity measure, the first question is if it is really differ-
ent from previous measures. The next statement, listing basic properties of VC-crossing
dimension, answers this question affirmatively.
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Fig. 3 Illustration of the concepts used to measure the approximation power of the function space FM .
In the top subfigure the vectors represent the mapping T π . On this figure, the measure E∞(FM ;π) is the
length of the shortest vector. In the bottom subfigure the vectors represent the shortest distances of selected
points of T πFM to FM . The measure E1(FM ;π) is the length of the longest of such vectors

Proposition 3 (Properties of VC-crossing dimension) For any class F of X → R functions
the following statements hold:

(a) VF+ ≤ VF× . In particular, if VF× < ∞ then VF+ < ∞.
(b) If F is a vector space then VF+ = VF× = dim(F). In particular, if F is a subset of a

finite dimensional vector space then VF× < ∞.
(c) There exists F with VF× < ∞ which is not a subset of any finite dimensional vector

space.
(d) There exists F with X = [0,1], VF+ < ∞ but VF× = ∞. In particular, there exists

F with these properties such that the following properties also hold for F : (i) F is
countable, (ii) {{x ∈ X : f (x) ≥ a} : f ∈ F, a ∈ R} is a VC-class (i.e., F is VC-major
class), (iii) each f ∈ F is monotonous, bounded, and continuously differentiable with
uniformly bounded derivatives.

The proof of this proposition is given in the Appendix. We can now state our assumptions
on the function set F :

Assumption 3 (Assumptions on the function set) Assume that F ⊂ B(X ;Qmax) for
Qmax > 0 and VF× < +∞.

Let us now turn to the definition of the quantities measuring the approximation power
of F . We will use two quantities for this purpose, the function space’s inherent Bellman-
error and its inherent one-step Bellman-error.

The Bellman-error of an action-value function Q w.r.t. a policy evaluation operator T π

is commonly defined as the norm of the difference Q − T πQ. If the Bellman-error is small
one expects Q to be close to the fixed point of T π . Hence, it is natural to expect that the
final error of fitted policy iteration will be small if for all policies π encountered during the
run of the algorithm, we can find some action-value function Q ∈ FM such that Q − T πQ

is small. For a fixed policy π , we thus introduce

E∞(FM;π)
def= inf

Q∈FM
‖Q− T πQ‖ν .

(For an illustration of this quantity see the top subfigure of Fig. 3.) Since we do not know
in advance what greedy policies will be seen during the execution of the algorithm, taking a
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pessimistic approach, we introduce

E∞(FM)
def= sup

Q′∈FM

E∞(FM; π̂(·;Q′)),

which we call the inherent Bellman-error of F . The subindex ‘∞’ is meant to convey the
view that the fixed points of an operator can be obtained by repeating the operator an infinite
number of times.

The other quantity, the inherent one-step Bellman-error of F , is defined as follows: For a
fixed policy π , the one-step Bellman-error of F w.r.t. T π is defined as the deviation of FM

from T πFM :

E1(FM;π)
def= sup

Q∈FM

inf
Q′∈FM

‖Q′ − T πQ‖ν .

The bottom subfigure of Fig. 3 illustrates this concept. Taking again a pessimistic approach,
the inherent one-step Bellman-error of F is defined as

E1(FM)
def= sup

Q′′∈FM

E1(FM ; π̂(·;Q′′)).

The rationale of the ‘one-step’ qualifier is that T π is applied only once and then we look
at how well the function in the resulting one-step image-space can be approximated by
elements of FM . It is the additional term, ‖h−T πf ‖ν that we subtracted in (5) from the un-
modified Bellman-error that causes the inherent one-step Bellman-error to enter our bounds.

The final error will actually depend on the squared sum of the inherent Bellman-error
and the inherent one-step Bellman-error of F :

E(FM)
def= (

E2
∞(FM)+ E2

1(F
M)

)1/2
.

E(FM) is called the total inherent Bellman-error of F .
We are now ready to state the main result of the paper:

Theorem 4 (Finite-sample error bounds) Let (X ,A,P ,S, γ ) be a discounted MDP satisfy-
ing Assumption 1. In particular, let Rmax denote a bound on the expected immediate rewards
and let R̂max denote a bound on the random immediate rewards. Fix the set of admissible
functions F satisfying Assumption 3 with Qmax ≤ Rmax/(1 − γ ). Consider the fitted policy
iteration algorithm with the modified Bellman-residual minimization criterion defined by (8)
and the input {(Xt ,At ,Rt )}, satisfying the mixing assumption, Assumption 2. Let Qk ∈ FM

be the kth iterate (k =−1,0,1,2, . . .) and let πk+1 be greedy w.r.t. Qk . Choose ρ ∈M(X ),
a measure used to evaluate the performance of the algorithm and let 0 < δ ≤ 1. Then

‖Q∗ − QπK ‖ρ

≤ 2γ

(1 − γ )2

(
C1/2

ρ,ν

(
E(FM) +

(
ΛN( δ

K
)(ΛN( δ

K
)/b ∨ 1)1/κ

C2N

)1/4)
+ γ K/2Rmax

)
(18)

holds with probability at least 1 − δ. Here E(FM) is the total inherent Bellman-error of F ,
ΛN(δ) quantifies the dependence of the estimation error on N , δ, and the capacity of the
function set F :

ΛN(δ) = V
2 logN + log(e/δ) + log+ (C1C

V/2
2 ∨ β),
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V being the “effective” dimension of F :

V = 3MVF+ + M2VF× ,

M2 = M(M − 1),

logC1 = V log

(
512eQmaxR̃max

Mπb0

)
+ VF×M2 logM2 + VF+M log 2 + M2

+ M2 log(VF× + 1)+M log(VF+ + 1)+ 2 log(MVF+ + 1) + 2 log(4e),

C2 = 1

2

(
Mπb0

32R̃2
max

)2

,

and

R̃max = (1 + γ )Qmax + R̂max.

Further, ‖Q∗ −QπK ‖∞ can be bounded with probability at least 1− δ by a bound identical
to (18), except that in that bound C1/2

ρ,ν has to be replaced by C1/2
ν .

Before developing the proof, let us make some comments on the form of the bound (18).
The bound has three terms, the first two of which are similar to terms that often appear
in bounds of the regression literature: In particular, the first term that depends on the total
inherent Bellman-error of F , E(FM), quantifies the approximation power of F as discussed
beforehand. The next term, after some simplifications and if constant and logarithmic terms
are omitted, takes the form

(
(V logN + log(K/δ))1+1/κ

N

)1/4

.

This term bounds the estimation error. Note that the rate obtained (as a function of the
number of samples, N ) is worse than the best rates available in the regression literature.
However, we think that this is only a proof artifact. Just like in regression, using a different
proof technique (cf. Chap. 11 of Györfi et al. 2002), it seems possible to get a bound that
scales with the reciprocal of the square-root of N , though this comes at the price of replacing
E(FM) in the bound by (1 + α)E(FM) with some α > 0. The last term does not have a
counterpart in regression settings, as it comes from a bound on the error remaining after
running the policy iteration algorithm for a finite number (K) of iterations. It can be readily
observed that the optimal value of K will depend (amongst other factors) on the capacity of
the function set, the mixing rate, and the number of samples. However, it will not depend on
the approximation-power of the function set.

Finally, let us comment on the multipliers in front of the bound. The multiplier
2γ /(1 − γ )2 appears in previous L∞-performance bounds for policy iteration, too (cf. Bert-
sekas and Tsitsiklis 1996). As discussed previously, the concentrability coefficient, C1/2

ρ,ν ,
enters the bound due to the change-of-measure argument that we use when we propagate
the error bounds through the iterations.

As a final remark note that a bound on the difference of the optimal action-value function,
Q∗, and the action-value function of πK , QπK , does not immediately yield a bound on the
difference of V ∗ and V πK . However, with some additional work (by using similar techniques
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to the ones used in the proof of Theorem 4) it is possible to derive such a bound by starting
with the elementary point-wise bound

V ∗ − V πK ≤ Eπ∗
(Q∗ − QπK−1 + QπK−1 −QK−1)

+EπK (QK−1 −QπK−1 +QπK−1 − Q∗ +Q∗ −QπK )

which yields to the L2 bound:

1/M‖V ∗ − V πK ‖2
ρ ≤ 2‖Q∗ − QπK−1‖2

ρ + ‖Q∗ −QπK ‖2
ρ + 2‖QπK−1 − QK−1‖2

ρ,

and where a bound on ‖Qπk −Qk‖ρ may be derived (similarly as what is done in Lemma 12
by using the point-wise equality: Qπk − Qk = (I − γP πk )−1(T πkQk − Qk)) in terms of
‖T πkQk − Qk‖ν up to a constant (defined similarly as Cρ,ν ) times a 1/(1 − γ ) factor.
The Bellman residual ‖T πkQk − Qk‖ν being controlled by the BRM algorithm (see e.g.
Lemma 10), a bound on ‖V ∗ − V πK ‖ρ then follows. For the sake of compactness, however,
we do not explore this bound any further here.

The following sections are devoted to develop the proof of the main theorem.

4.1 Bounds on the error of the fitting procedure

The goal of this section is to derive a bound on the error introduced due to using a finite sam-
ple in the main optimization routine minimizing the risk (7). If the samples were identically
distributed and independent of one another, we could use the results developed for empiri-
cal processes (e.g., Pollard’s inequality). However, in our case the samples are dependent.
To deal with this situation, we will use the blocking device of Yu (1994) that we introduce
now: For simplicity assume that N = 2mNkN for appropriate positive integers mN , kN (the
general case can be taken care of as was done by Yu 1994). The technique of Yu partitions
the N samples into 2mN blocks which come in pairs, each having kN samples:

Z1, . . . ,ZkN︸ ︷︷ ︸
H1

,ZkN+1, . . . ,Z2kN︸ ︷︷ ︸
T1

,Z2kN+1, . . . ,Z3kN︸ ︷︷ ︸
H2

,Z3kN+1, . . . ,Z4kN︸ ︷︷ ︸
T2

, . . .

. . . ,Z(2mN−2)kN+1, . . . ,Z(2mN−1)kN︸ ︷︷ ︸
HmN

,Z(2mN−1)kN+1, . . . ,Z2mN kN︸ ︷︷ ︸
TmN

.

Here {Zt } is the dependent process used by the learning algorithm,

Hi
def= {2(i − 1)kN + j : 1 ≤ j ≤ kN } and

Ti
def= {(2i − 1)kN + j : 1 ≤ j ≤ kN }.

Next, corresponding to every second block (Hi ), we introduce block-independent “ghost”
samples as it was done by Yu (1994) and Meir (2000):

Z′
1, . . . ,Z

′
kN︸ ︷︷ ︸

H1

,Z′
2kN+1, . . . ,Z

′
3kN︸ ︷︷ ︸

H2

, . . . ,Z′
(2mN−2)kN+1, . . . ,Z

′
(2mN−1)kN︸ ︷︷ ︸

HmN

. (19)

Here any particular block has the same joint marginal distribution as originally, however,
these new random variables are constructed such that the mN new blocks are independent of
one another. Introduce H =⋃mN

i=1 Hi .
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Our first result generalizes Pollard’s tail inequality to β-mixing sequences via the help of
this blocking device. This result refines a previous result of Meir (2000). (In order to keep
the flow of the developments continuous, the proofs of the statements of these results are
given in the Appendix.)

Lemma 5 Suppose that Z1, . . . ,ZN ∈ Z is a stationary β-mixing process with mixing co-
efficients {βm} and that F is a permissible class of Z →[−K,K] functions. Then

P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑
t=1

f (Zt )− E[f (Z1)]
∣∣∣∣∣> ε

)

≤ 16E[N1(ε/8,F, (Z′
t ; t ∈ H))]e− mN ε2

128K2 + 2mNβkN+1,

where the “ghost” samples Z′
t ∈Z and H =⋃mN

i=1 Hi are defined above in (19).

Compared with Pollard’s tail inequality the main differences are that the exponential
term now depends on the number of blocks, and we also have a term that depends on the
coefficient sequence {βm}. For exponential β-mixing both terms decay at an exponential
rate. The block size (equivalently the number of blocks) then has to be such that the two
terms are balanced. Another difference is that the empirical covering numbers are evaluated
on the ghost samples.

Let us now turn to the development of bounds on the covering numbers that we will need.
Let Ξ be a family of partitions of X . By a partition of X we mean an ordered list of disjoint
subsets of X whose union covers X . Note that the empty set may enter multiple times the
list. Following Nobel (1996), we define the cell count of a partition family Ξ by

m(Ξ) = max
ξ∈Ξ

|{A ∈ ξ : A �= ∅}|.

We will work with partition families that have finite cell counts. Note that we may always
achieve that all partitions have the same number of cells by introducing the necessary num-
ber of empty sets. Hence, in what follows we will always assume that all partitions have
the same number of elements. For x1:N ∈ XN , let Δ(x1:N,Ξ) be the number of distinct
partitions (regardless the order) of x1:N that are induced by the elements of Ξ . The parti-
tioning number of Ξ , Δ∗

N(Ξ), is defined as max{Δ(x1:N,Ξ) : x1:N ∈ XN }. Note that the
partitioning number is a generalization of the shatter-coefficient.

Given a class G of real-valued functions on X and a partition family Ξ over X , define
the set of Ξ -patched functions of G as follows:

G ◦Ξ =
{
f =

∑
Aj∈ξ

gj I{Aj } : ξ = {Aj } ∈ Ξ,gj ∈ G
}
.

Note that from this, (16), and (17), we have F∨ = F ◦ ΞF,M . We quote here a result of
Nobel (with any domain X instead of R

s and with minimized premise):

Proposition 6 (Nobel 1996, Proposition 1) Let Ξ be any partition family with m(Ξ) < ∞,
G be a class of real-valued functions on X , x1:N ∈ XN . Let φN : R

+ → R
+ be a func-

tion that upper-bounds the empirical covering numbers of G on all subsets of the multi-set
[x1, . . . , xN ] at all scales:

N1(ε,G,A) ≤ φN(ε), A ⊂ [x1, . . . , xN ], ε > 0.
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Then, for any ε > 0,

N1(ε,G ◦Ξ,x1:N) ≤ Δ(x1:N,Ξ)φN(ε)m(Ξ) ≤ Δ∗
N(Ξ)φN(ε)m(Ξ). (20)

In our next result we refine this bound by replacing the partitioning number by the cover-
ing number of the partition family. For arbitrary sets A,B , let A � B denote the symmetric
difference of A and B .

Lemma 7 Let Ξ , G, x1:N , φN : R
+ → R

+ be as in Proposition 6. Moreover, let G be
bounded: ∀g ∈ G, |g| ≤ K . For ξ = {Aj }, ξ ′ = {A′

j } ∈ Ξ , introduce the pseudo-metric

d(ξ, ξ ′) = dx1:N (ξ, ξ ′) = μN(ξ � ξ ′),

where

ξ � ξ ′ = {x ∈X : ∃j �= j ′;x ∈ Aj ∩ A′
j ′ } =

m(Ξ)⋃
j=1

Aj �A′
j ,

and where μN is the empirical measure corresponding to x1:N defined by μN(A) =
1
N

∑N

i=1 I{xi∈A} (here A is any measurable subset of X ). Then, for any ε > 0, α ∈ (0,1),

N1(ε,G ◦ Ξ,x1:N) ≤N
(

αε

2K
,Ξ,dx1:N

)
φN((1 − α)ε)m(Ξ).

Note that from this latter bound, provided that φN is left-continuous, the conclusion of
Proposition 6 follows in the following limiting sense: Since N (ε,Ξ,dx1:N ) ≤ Δ(x1:N,Ξ)

holds for any ε > 0, we have

N1(ε,G ◦Ξ,x1:N) ≤ Δ(x1:N,Ξ)φN((1 − α)ε)m(Ξ).

Thus, letting α → 0 yields the bound (20).
Lemma 7 is used by the following result that develops a capacity bound on the function

set of interest:

Lemma 8 Let F be a class of uniformly bounded functions on X (∀f ∈ F , |f | ≤ K),
x1:N ∈ XN , φN : R

+ → R
+ be an upper-bound on the empirical covering numbers of F

on all subsets of the multi-set [x1, . . . , xN ] at all scales as in Proposition 6. Let G1
2 denote

the class of indicator functions I{f1(x)≥f2(x)} : X → {0,1} for any f1, f2 ∈ F . Then for F∨

defined in (17), M2 = M(M − 1), for every ε > 0, α ∈ (0,1),

N1(ε,F∨, x1:N) ≤N1

(
αε

M2K
,G1

2 , x
1:N

)M2

φN((1 − α)ε)M.

We shall use the following lemma due to Haussler (1995) (see also, Anthony and Bartlett
1999, Theorem 18.4) to bound the empirical covering numbers of our function sets in terms
of their pseudo-dimensions:
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Proposition 9 (Haussler 1995, Corollary 3) For any set X , any points x1:N ∈XN , any class
F of functions on X taking values in [0,K] with pseudo-dimension VF+ < ∞, and any
ε > 0,

N1(ε,F, x1:N) ≤ e(VF+ + 1)

(
2eK

ε

)VF+
.

Define

Ẽ2
1(F

M;π) = E2
1(F

M;π) − inf
f,h∈FM

‖h− T πf ‖2
ν . (21)

Certainly, Ẽ2
1(FM;π) ≤ E2

1(FM ;π). The following lemma is the main result of this section:

Lemma 10 Let Assumption 1 and 2 hold, and fix the set of admissible functions F satisfying
Assumption 3. Let Q′ be a real-valued random function over X ×A, Q′(ω) ∈ FM (possibly
not independent from the sample path). Let π̂ = π̂(·;Q′) be a policy that is greedy w.r.t. Q′.
Let f ′ be defined by

f ′ = argmin
f∈FM

sup
h∈FM

L̂N(f,h; π̂).

For 0 < δ ≤ 1, N ≥ 1, with probability at least 1 − δ,

‖f ′ − T π̂f ′‖2
ν ≤ E2

∞(FM ; π̂) + Ẽ2
1(F

M; π̂)+
√

ΛN(δ)(ΛN(δ)/b ∨ 1)1/κ

C2N
,

where ΛN(δ) and C2 are defined as in Theorem 4. Further, the bound remains true if
E2∞(FM; π̂)+ Ẽ2

1(FM ; π̂) above is replaced by E2(FM).

By considering the case when γ = 0 and M = 1 we get an interesting side-result for
regression function estimation (we use r = r(x) since there are no actions):

Corollary 11 Let Assumption 1 hold. Assume that {(Xt ,Rt )}t=1,...,N is the sample path,
{Xt } is strictly stationary (Xt ∼ ν ∈ M(X )) and β-mixing with exponential rate (β, b, κ).
Assume that F ⊂ B(X ;Qmax) for Qmax ≥ 0 and VF+ < ∞. Let f ′ be defined by

f ′ = argmin
f∈F

1

N

N∑
t=1

(f (Xt) −Rt)
2.

Then, for 0 < δ ≤ 1, N ≥ 1, with probability at least 1 − δ,

‖f ′ − r‖2
ν ≤ inf

f∈F
‖f − r‖2

ν +
√

ΛN(δ)(ΛN(δ)/b ∨ 1)1/κ

C2N
,

where ΛN(δ) = (VF+/2 ∨ 1) logN + log(e/δ) + log+ (C1C
VF+ /2
2 ∨ β), C1 = 16e(VF+ +

1)(128eQmaxR̃max)
VF+ , C2 = ( 1

32R̃2
max

)2, R̃max = Qmax + R̂max.
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4.2 Propagation of errors

The main result of the previous section shows that if the approximation power of F is good
enough and the number of samples is high then for any policy π the optimization procedure
will return a function Q with small weighted error. Now, let Q0,Q1,Q2, . . . denote the
iterates returned by our algorithm, with Q−1 being the initial action-value function:

Qk = argmin
Q∈FM

sup
h∈FM

L̂N(Q,h;πk), k = 0,1,2, . . . ,

πk = π̂(·;Qk−1), k = 0,1,2, . . . .

Further, let

εk = Qk − T πkQk, k = 0,1,2, . . . (22)

denote the Bellman-residual of the kth step. By the main result of the previous section, in
any iteration step k the optimization procedure will find with high probability a function Qk

such that ‖εk‖2
ν is small. The purpose of this section is to bound the final error as a function

of the intermediate errors. This is done in the following lemma. Note that in the lemma no
assumptions are made about how the sequence Qk is generated:

Lemma 12 Let p ≥ 1 be a real, K be a positive integer, and Qmax ≤ Rmax/(1 − γ ). Then,
for any sequence of functions {Qk} ⊂ B(X ;Qmax), 0 ≤ k < K and εk defined by (22) the
following inequalities hold:

‖Q∗ −QπK ‖p,ρ ≤ 2γ

(1 − γ )2

(
C1/p

ρ,ν max
0≤k<K

‖εk‖p,ν + γ K/pRmax

)
, (23)

‖Q∗ −QπK ‖∞ ≤ 2γ

(1 − γ )2

(
C1/p

ν max
0≤k<K

‖εk‖p,ν + γ K/pRmax

)
. (24)

Proof We have Cν ≥ Cρ,ν for any ρ. Thus, if the bound (23) holds for any ρ, choosing ρ to
be a Dirac at each state implies that (24) also holds. Therefore, we only need to prove (23).

Let

Ek = P πk+1(I − γP πk+1)−1 − P π∗
(I − γP πk )−1.

Closely following the proof of Lemma 4 in (Munos 2003) we get

Q∗ − Qπk+1 ≤ γP π∗
(Q∗ − Qπk )+ γEkεk.

Thus, by induction,

Q∗ −QπK ≤ γ

K−1∑
k=0

(γP π∗
)K−k−1Ekεk + (γP π∗

)K(Q∗ −Qπ0). (25)

Now, let

Fk = P πk+1(I − γP πk+1)−1 + P π∗
(I − γP πk )−1.

By taking the absolute value of both sides point-wise in (25) we get

|Q∗ − QπK | ≤ γ

K−1∑
k=0

(γP π∗
)K−k−1Fk|εk| + (γP π∗

)K |Q∗ − Qπ0 |.



114 Mach Learn (2008) 71: 89–129

From this, using the fact that Q∗ −Qπ0 ≤ 2
1−γ

Rmax1, we arrive at

|Q∗ − QπK | ≤ 2γ (1 − γ K+1)

(1 − γ )2

[
K−1∑
k=0

αkAk|εk| + αKAKRmax1

]
. (26)

Here we introduced the positive coefficients

αk = (1 − γ )γ K−k−1

1 − γ K+1
, for 0 ≤ k < K, and αK = (1 − γ )γ K

1 − γ K+1
,

and the operators

Ak = 1 − γ

2
(P π∗

)K−k−1Fk, for 0 ≤ k < K, and AK = (P π∗
)K.

Note that
∑K

k=0 αk = 1. Further, we claim that the operators Ak· : B(X ×A) → B(X ×A)

are positive linear operators and satisfy Ak1 = 1. Fix an index k. It is clear that Ak is positive:
AkQ ≥ 0 whenever Q ≥ 0. It is also clear that Ak is linear, so it remains to see that Ak

leaves 1 invariant. From the definition of Ak it is easy to see that it suffices to check that
1−γ

2 Fk possesses this property. For this, it suffices to notice that (1 − γ )(I − γP πk+1)−1

and (1 − γ )(I − γP πk )−1 also possess this property. This follows, however, by, e.g., the
Neumann-series expansion of these inverses. Now let us remark that Jensen’s inequality
holds for positive operators that leave the unity invariant (Kuczma 1985): If A is such an
operator and g is a convex function then g(AkQ) ≤ Ak(g ◦ Q), where g is applied point-
wise, as is done the comparison between the two sides.

Let λK = [ 2γ (1−γ K+1)

(1−γ )2 ]p . Taking the pth power of both sides of (26), using Jensen’s in-
equality twice and then integrating both sides w.r.t. ρ(x, a) (using ρ’s extension to X ×A
defined by (3)) we get

‖Q∗ − QπK ‖p
p,ρ = 1

M

∑
a∈A

∫
ρ(dx)|Q∗(x, a)−QπK (x, a)|p

≤ λKρ

[
K−1∑
k=0

αkAk|εk|p + αKAK(Rmax)
p1

]
,

where we used the shorthand notation introduced in (2). From the definition of the coeffi-
cients cρ,ν(m),

ρAk ≤ (1 − γ )
∑
m≥0

γ mcρ,ν(m +K − k)ν

and hence

‖Q∗ − QπK ‖p
p,ρ

≤ λK

[
(1 − γ )

K−1∑
k=0

αk

∑
m≥0

γ mcρ,ν(m +K − k)‖εk‖p
p,ν + αK(Rmax)

p

]
.
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Let ε
def= max0≤k<K ‖εk‖p,ν . Using the definition of αk , Cρ,ν and λK we get

‖Q∗ −QπK ‖p
p,ρ ≤ λK

[
1

1 − γ K+1
Cρ,νε

p + (1 − γ )γ K

1 − γ K+1
(Rmax)

p

]

≤ λK [Cρ,νε
p + γ K(Rmax)

p]

≤
[

2γ

(1 − γ )2

]p

[Cρ,νε
p + γ K(Rmax)

p],

leading to the desired bound:

‖Q∗ −QπK ‖p,ρ ≤ 2γ

(1 − γ )2
C1/p

ρ,ν ε + γ K/pRmax. �

4.3 Proof of the main result

Now, we are ready to prove Theorem 4.

Proof As in the case of the previous proof, we need to prove only part of the statement that
concerns the weighted ρ-norm.

Fix N,K > 0, and let ρ and F be as in the statement of Theorem 4. Consider the iterates
Qk generated by model-free policy iteration with PEval defined by (8), when running on
the trajectory {(Xt ,At ,Rt )} generated by some stochastic stationary policy πb . Let ν be
the invariant measure underlying the stationary process {Xt }. Let πK be a policy greedy
w.r.t. QK . Our aim is to derive a bound on the distance of QπK and Q∗. For this, we use
Lemma 12. Indeed, if one defines εk = Qk − T πkQk then Lemma 12 with p = 2 gives

‖Q∗ −QπK ‖ρ ≤ 2γ

(1 − γ )2

(
C1/2

ρ,ν max
0≤k<K

‖εk‖ν + γ K/2Rmax

)
. (27)

Now, from Lemma 10, we conclude that for any fixed integer 0 ≤ k < K and for any δ′ > 0,

‖εk‖ν ≤ E(FM) +
(

ΛN(δ′)(ΛN(δ′)/b ∨ 1)1/κ

C2N

)1/4

(28)

holds everywhere except on a set of probability at most δ′. (ΛN(δ′) and C2 are defined as
in the text of the theorem.) Take δ′ = δ/K . By the choice of δ′, the total probability of the
set of exceptional events for 0 ≤ k < K is at most δ. Outside of this failure set, we have that
(28) holds for all 0 ≤ k < K . Combining this with (27), we get

‖Q∗ −QπK ‖ρ

≤ 2γ

(1 − γ )2

(
C1/2

ρ,ν

(
E(FM) +

(
ΛN( δ

K
)(

ΛN ( δ
K

)

b
∨ 1)1/κ

C2N

)1/4)
+ γ

K
2 Rmax

)
,

thus finishing the proof of the weighted-norm bound. �

5 Related work

The idea of using value function approximation goes back to the early days of dynamic
programming (Samuel 1959; Bellman and Dreyfus 1959). With the recent successes in rein-
forcement learning, work on value function approximation methods flourished, resulting in
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the publication of the books (Bertsekas and Tsitsiklis 1996; Sutton and Barto 1998). Exist-
ing theoretical results mostly concern supremum-norm approximation errors (Gordon 1995;
Tsitsiklis and Van Roy 1996) and require that the operator projecting the intermediate iter-
ates to the function space chosen by the user to be a non-expansion w.r.t. the supremum-
norm. This holds when kernel-smoothing estimation is used such as in the works of Gor-
don (1995), Tsitsiklis and Van Roy (1996), Guestrin et al. (2001) or Ernst et al. (2005).
However, when risk-minimization is involved, the required non-expansion property is lost.
Yet these approaches were often found to perform quite satisfactorily in practice (e.g.,
Wang and Dietterich 1999; Dietterich and Wang 2002; Lagoudakis and Parr 2003). The
lack of theoretical results for these approaches served as the main motivation for this
work.

To the best of our knowledge this work is unique from yet another point of view: We know
of no previous theoretical results on the finite-sample performance of off-policy control-
learning algorithms for infinite horizon problems that use function-approximation and learn
from a single trajectory. In fact, the only paper where finite-sample bounds are derived
in an off-policy setting and which uses function approximators is the paper by Murphy
(2005) who considered fitted Q-iteration for finite-horizon, undiscounted problems. Notice
that the finite horizon setting is substantially different from the infinite horizon setting: The
algorithm can work backwards (avoiding the use of fixed point equations and arguments!)
and thus the learning of an action-value function at any stage becomes a slightly twisted
regression problem. In particular, the samples available for learning at any stage will be
independent of each other since in the finite-horizon framework one naturally assumes that
the training data is available as a sequence of independent trajectories.

Another interesting theoretical development concerning off-policy control learning with
value-function approximation is the paper by Ormoneit and Sen (2002) who considered
kernel-regression in conjunction with approximate value iteration over action-value func-
tions and obtained asymptotic rates on weak-convergence. Q-learning with interpolative
function approximation was considered by Szepesvári and Smart (2004), who derived as-
ymptotic convergence and performance bound guarantees. Both these works carry out the
analysis with respect to L∞-norms and exploit that the function-approximation operator
Π is a non-expansion. Precup et al. (2001) considers the use of likelihood ratios to eval-
uate policies and arrive at asymptotic convergence results, though only for policy evalua-
tion.

As to the analysis methods, the closest to the present work is the work of Szepesvári and
Munos (2005). However, unlike there here we dealt with a fitted policy iteration algorithm
and worked with dependent samples and a single sample-path. This resulted in a more com-
plex analysis and the need to develop new tools. For dealing with dependent data, we used
the blocking device originally proposed by Yu (1994). We had to introduce a new capacity
concept to deal with the complications arising from the use of policy iteration. The error
propagation technique used in Sect. 4.2 is an extension of a similar technique due to Munos
(2003). However, while the analysis in Munos (2003) was restricted to the case when the
transition probability kernel is point-wise absolute continuous w.r.t. the stationary distribu-
tion of the states (i.e., under the assumption Cν < +∞), here the analysis was carried out
under a weaker condition (namely, Cρ,ν < ∞). Although this condition was studied ear-
lier by Szepesvári and Munos (2005), they did so for analyzing approximate value iteration
only.
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6 Conclusions and future work

We have considered fitted policy iteration with Bellman-residual minimization and gave
high-probability finite-sample bounds on the performance of a policy iteration algorithm
for infinite-horizon control learning in an off-policy setting, using function approximators
over a continuous state-space. We have also shown that when linearly parameterized value
functions are used the new procedure is equivalent to LSPI of Lagoudakis and Parr (2003).
Hence, our results apply directly to LSPI, as well.

Although we believe that the present work represents a significant step towards under-
standing what makes efficient reinforcement learning possible, much remains to be done.

One open question is if the finiteness of the VC-crossing dimension of the function space
chosen is really necessary (or finiteness of e.g. the pseudo-dimension suffices). If the finite-
ness of the VC-crossing dimension proves necessary then it will be important to derive
bounds on it for popular function classes, such as regression trees or neural networks.

We have not touched issues such as how to design appropriate function sets that have
controlled capacity but large approximation power. When the MDP is noisy and the dynam-
ics is “smooth” then it is known that the class of value functions of all stationary policies will
be uniformly smooth. Hence, for such MDPs, by choosing a sequence of increasing func-
tion sets whose union covers the space of smooth functions (like in the method of sieves
in regression) it is possible to recover the optimal policy with the presented method (a de-
tailed argument along these lines is presented in Munos and Szepesvári 2006). One open
question is how to design a method that adaptively chooses the function set so as to fit the
actual smoothness of the system. One idea, borrowed from the regression literature, would
be to use penalized least-squares. It remains to be seen if this can be done in a reinforcement
learning context.

Another possibility is to use different function sets for the representation of the fixed-
point candidates and the auxiliary function candidates, or just in the successive iterations of
the algorithm.

One major challenge is to extend our results to continuous action spaces as the present
analysis heavily builds on the finiteness of the action set. Antos et al. (2007a) makes the first
steps in this direction.

It would also be desirable to remove the condition that the function set must admit a
bounded envelope. One idea is to use the truncation technique of Chap. 11 by (Györfi et al.
2002) for this purpose. The technique presented there could also be used to try to improve
the rate of our bound. Borrowing further ideas from the regression literature, it might be
possible to achieve even larger improvement by, e.g., using localization techniques or data-
dependent bounds.

As noted beforehand, our results apply to the LSPI algorithm of Lagoudakis and Parr
(2003). As to other batch algorithms, the first results for fitted Q-iteration (Ernst et al. 2005)
are derived by Antos et al. (2007a), while Antos et al. (2007b) derive results value-iteration
based fitted policy iteration. As a next step it would be interesting to unify and compare
these results.

Another direction is to lift the condition that the states are observable. If the observations
depend on the states in a deterministic way, the results go through except that the achiev-
able performance will be limited by what is observed: The mapping from the states to the
observed quantities can be viewed as a restriction on what function approximators can be
used. An interesting direction is to add a component to the algorithm that, as the sample
size grows, enriches the inputs so that in the limit one still recovers the optimal perfor-
mance. Less clear is what happens if the observations are noisy because this corresponds to



118 Mach Learn (2008) 71: 89–129

the “noise in the variables” setting of regression. Another assumption that can be relaxed
is the one that requires that all actions are sampled with positive probability in all states.
The results still extend to this case, with the only change being that convergence to opti-
mality would be lost (from the point of the learner, the actions that are never sampled are
non-existent).

Finally, it would be interesting to compare the result that we obtained with γ = 0 and
M = 1 for the regression-case (Corollary 11) with similar results available in the regression
literature.
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Appendix

7.1 Proofs of the auxiliary lemmas

Proof of Proposition 3. (a) Since VF+ is the VC-dimension of the subgraphs of functions
in F , there exist VF+ points, z1, . . . , zVF+ in X × R that are shattered by these subgraphs
(see, e.g., Devroye et al. 1996 or Anthony and Bartlett 1999). This can happen only if the
projections, x1, . . . , xVF+ , of these points to X × {0} are all distinct. Now, for any A ⊆
{x1, . . . , xVF+ }, there is an f1 ∈ F such that f1(xi) > zi for xi ∈ A and f1(xi) ≤ zi for
xi �∈ A, and also there is an f2 ∈ F such that f2(xi) ≤ zi for xi ∈ A and f2(xi) > zi for
xi �∈ A. That is, f1(xi) > f2(xi) for xi ∈ A and f1(xi) < f2(xi) for xi �∈ A. Thus, the set
in C2 corresponding to (f1, f2) contains exactly the same xi ’s as A does. This means that
x1, . . . , xVF+ is shattered by C2, that is, VF× = VC2 ≥ VF+ . The second part of the statement
is obvious.

(b) According to Theorem 11.4 of Anthony and Bartlett (1999), VF+ = dim(F). On the
other hand, since now for f1,f2 ∈ F also f1 − f2 ∈ F , it is easy to see that C2 = {{x ∈ X :
f (x) ≥ 0} : f ∈ F}. By taking g ≡ 0 in Theorem 3.5 of Anthony and Bartlett (1999), we get
the desired VF× = VC2 = dim(F). The second statement follows obviously.

(c) Let F = {I{(a,∞)} : a ∈ R}. Then VF× = 2 and F generates an infinite dimensional
vector space.

(d) Let X = [0,1]. Let {aj } be monotonously decreasing with
∑∞

j=1 aj = 1, 0 ≤ aj ≤
1/ log2 j , and 3aj+1 > aj . For an integer n ≥ 2, let k ≥ 1 and 0 ≤ i ≤ 2k − 1 be the unique
integers defined by n = 2k + i. Define

fn(x) = x +
n∑

j=1

aj and

f̃n(x) = x +
n∑

j=1

aj + an

4
(−1)�i/2�kx  sin2(kπx),

where π = 3.14159 . . . is Ludolf’s number. Certainly, fn and f̃n are both differentiable.
Note that an ≤ a2k ≤ 1/k, thus the gradient of the last term of f̃n(x) is bounded in absolute
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value by kπ/(4k) < 1. Hence the functions f̃n (and obviously fn) are strictly monotonously
increasing, and have range in [0,2]. Let F1 = {fn : n ≥ 2}, F̃1 = {f̃n : n ≥ 2}, and F =
F1 ∪ F̃1. F is certainly countable. By the monotonicity of fn and f̃n, the VC-dimension
of {{x ∈ X : f (x) ≥ a} : f ∈ F, a ∈ R} is 1. Observe that the sequence fn is point-wise
monotonously increasing also in n, and this remains true also for f̃n, since the last modifying
term is negligible (less than an/4 in absolute value). (Moreover, for any n, n′, n > n′, fn >

f̃n′ and f̃n > fn′ everywhere.) This point-wise monotonicity implies that VF+
1
= VF̃+

1
= 1,

and thus VF+ ≤ 3. On the other hand, since

{x ∈X : f̃n(x) ≥ fn(x)}
= {x ∈X : (−1)�i/2�kx  ≥ 0} = {x ∈X : �i/2�kx  is even},

so

C2 ⊇ {{x ∈X : f̃n(x) ≥ fn(x)} : n ≥ 2}
= {{x ∈X : �i/2�kx  is even} : n ≥ 2}.

As this class contains the unions of {1} and any of the intervals [0,1/k), [1/k,2/k), . . . ,
[1 − 1/k,1) for any k, thus it shatters the points 0, 1/k, 2/k, . . . , 1 − 1/k, and hence
VF× = VC2 =∞. �

Proof of Lemma 5. The proof uses the following lemma, essentially due to Yu (1994). The
lemma is stated without a proof:7

Lemma 13 (Yu 1994, 4.2 Lemma) Suppose that {Zt }, F , {Z′
t }, {Hi}, and H are as in

Lemma 5. Then

P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑
t=1

f (Zt )

∣∣∣∣∣> ε

)
≤ 2P

(
sup
f∈F

∣∣∣∣∣
1

N

mN∑
i=1

∑
t∈Hi

f (Z′
t )

∣∣∣∣∣>
ε

2

)
+ 2mNβkN+1.

Now, let us turn to the proof of Lemma 5. Define the block-wise functions f̄ :ZkN → R

as

f̄ (z1:kN ) = f̄ (z1, . . . , zkN
)

def=
kN∑
t=1

f (zt )

for f ∈F and z1:kN = (z1, . . . , zkN
) and let F̄ def= {

f̄ : f ∈F
}
.

We use Lemma 13 to replace the original process by the block-independent one, implying

7Note that both Yu (1994) and Meir (2000) give a bound that contains βkN
instead of βkN+1 which we have

here. However, a careful investigation of the original proof of Yu (1994) leads to the bound that is presented
here.
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P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑
t=1

f (Zt )− E[f (Z1)]
∣∣∣∣∣> ε

)

= P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑
t=1

(f (Zt )− E[f (Z1)])
∣∣∣∣∣> ε

)

≤ 2P

(
sup
f∈F

∣∣∣∣∣
1

N

mN∑
i=1

(f̄ (Z′(i))− kNE[f (Z1)])
∣∣∣∣∣>

ε

2

)
+ 2mNβkN+1

= 2P

(
sup
f∈F

∣∣∣∣∣
1

mN

mN∑
i=1

f̄ (Z′(i))− kNE[f (Z1)]
∣∣∣∣∣> kNε

)
+ 2mNβkN+1. (29)

Here Z′(i) def= {Z′
t }t∈Hi

= (Z′
2kN (i−1)+1, . . . ,Z

′
2kN (i−1)+kN

).

Now, since any f̄ ∈ F̄ is bounded by kNK , Pollard’s inequality (cf. Pollard 1984) applied
to the independent blocks implies the bound

P

(
sup
f∈F

∣∣∣∣∣
1

mN

mN∑
i=1

f̄ (Z′(i)) − kNE[f (Z1)]
∣∣∣∣∣> kNε

)

≤ 8E[N1(kNε/8, F̄, (Z′(1), . . . ,Z′(mN )))]e− mN ε2

128K2 . (30)

Following Lemma 5.1 by Meir (2000) (or the proof of part (i) of 4.3 Lemma of Yu 1994),
we get that for any f, f̃ ∈F , the distance of f̄ and ¯̃f can be bounded as follows:

1

mN

mN∑
i=1

|f̄ (Z′(i))−¯̃f (Z′(i))| = 1

mN

mN∑
i=1

∣∣∣∣
∑
t∈Hi

f (Z′
t )−

∑
t∈Hi

f̃ (Z′
t )

∣∣∣∣

≤ 1

mN

mN∑
i=1

∑
t∈Hi

|f (Z′
t ) − f̃ (Z′

t )|

= kN

N/2

∑
t∈H

|f (Z′
t )− f̃ (Z′

t )|,

implying8

N1(kNε/8, F̄, (Z′(1), . . . ,Z′(mN ))) ≤N1(ε/8,F, (Z′
t ; t ∈ H)).

This, together with (29) and (30) gives the desired bound. �

Proof of Lemma 7. Fix x1, . . . , xN ∈X and ε > 0. First note that d is indeed a pseudo-metric
as it follows from an elementary argument. Let Ξ̂ be an αε/(2K)-cover for Ξ according to
d such that |Ξ̂ | = N ( αε

2K
,Ξ,d). If f ∈ G ◦ Ξ , then there is a partition ξ = {Aj } ∈ Ξ and

8Note that neither Meir (2000), nor Yu (1994) exploit that it is enough to use half of the ghost samples in the
upper bound above. Also Meir (2000) makes a slight mistake of considering (Z′

t ; t ∈ H) below as having N

(instead of N/2) variables.
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functions gj ∈ G such that

f =
∑
Aj∈ξ

gj I{Aj }. (31)

Let ξ ′ ∈ Ξ̂ such that d(ξ, ξ ′) < αε
2K

, and let f ′ =∑
A′

j
∈ξ ′ gj I{A′

j
}. Then

1

N

N∑
i=1

|f (xi)− f ′(xi)|

= 1

N

N∑
i=1

∣∣∣∣
∑
Aj∈ξ

gj (xi)I{xi∈Aj } −
∑

A′
j
∈ξ ′

gj (xi)I{xi∈A′
j
}

∣∣∣∣

= 1

N

∑
i:xi∈ξ�ξ ′

∣∣∣∣
∑
Aj∈ξ

gj (xi)I{xi∈Aj } −
∑

A′
j
∈ξ ′

gj (xi)I{xi∈A′
j
}

∣∣∣∣

≤ 2K

N
|{i : xi ∈ ξ � ξ ′}| = 2Kd(ξ, ξ ′)

< αε.

Let Fj = Fj (ξ
′) be an (1 − α)ε-cover for G on Âj = {x1, . . . , xN } ∩ A′

j such that |Fj | ≤
φN((1 − α)ε). To each function gj appearing in (31) there corresponds an approximating
function fj ∈Fj such that

1

Nj

∑
xi∈Âj

|gj (xi)− fj (xi)| < (1 − α)ε,

where Nj = |Âj |. If we define f ′′ =∑
A′

j
∈ξ ′ fj I{A′

j
} then it is easy to see that

1

N

N∑
i=1

|f ′(xi)− f ′′(xi)| < (1 − α)ε.

Hence

1

N

N∑
i=1

|f (xi) − f ′′(xi)| < ε.

Hence, {∑j fj I{A′
j
} : fj ∈ Fj (ξ

′), ξ ′ ∈ Ξ̂} gives an ε-cover of G ◦Ξ . The cardinality of this

set,
∑

ξ ′∈Ξ̂

∏|ξ ′ |
j=1 |Fj (ξ

′)|, is bounded by
∑

ξ ′∈Ξ̂ φN((1 − α)ε)|ξ ′| ≤ N ( αε
2K

,Ξ,d)φN((1 −
α)ε)m(Ξ), finishing the proof. �

Proof of Lemma 8. Since F∨ =F ◦Ξ for Ξ = ΞF,M defined in (16),

N1(ε,F∨, x1:N) =N1(ε,F ◦Ξ,x1:N).

By Lemma 7 this is bounded by

N
(

αε

2K
,Ξ,dx1:N

)
φN((1 − α)ε)M,



122 Mach Learn (2008) 71: 89–129

where N (ε,Ξ,dx1:N ) is the ε-covering number of Ξ regarding the pseudo-metric dx1:N de-
fined in Lemma 7. We bound this covering number next.

For f : X ×A→ R (f ∈FM ), define the indicator function If : X ×A→{0,1}
If (x, a) = I{maxa′∈A f (x,a′)=f (x,a)}

(ties should be broken in an arbitrary, but systematic way) and their class G = {If : f ∈ FM}.
Now the distance dx1:N of two partitions in Ξ is M/2-times the 	1-distance of the corre-

sponding two indicator functions in G regarding to the empirical measure supported on the
NM points x1:N ×A. Hence the pseudo-metric dx1:N on Ξ corresponds to this 	1 pseudo-
metric on G. So

N (ε,Ξ,dx1:N ) =N1

(
2ε

M
,G, x1:N ×A

)
.

Furthermore, if G1
M denotes the class of indicator functions I{maxa′∈A f (x,a′)=f1(x)} : X →

{0,1} for any f : X × A → R (f ∈ FM ), then, since the support of a function from G is
the disjoint union of the supports (on different instances of X ) of M functions from G1

M , it
is easy to see that (cf., e.g., Devroye et al. 1996, Theorem 29.6)

N1(ε,G, x1:N ×A) ≤N1(ε,G1
M,x1:N)M.

Now, since a function from G1
M is the product of M − 1 indicator functions from G1

2 , it is
easy to see that (cf., e.g., the generalization of Devroye et al. 1996, Theorem 29.7, Pollard
1990)

N1(ε,G1
M,x1:N) ≤N1

(
ε

M − 1
,G1

2 , x
1:N

)M−1

.

The above inequalities together give the bound of the lemma. �

We shall need the following technical lemma in the next proof:

Lemma 14 Let βm ≤ β exp(−bmκ), N ≥ 1, kN = �(C2Nε2/b)
1

1+κ �, mN = N/(2kN), 0 <

δ ≤ 1, V ≥ 2, and C1, C2, β , b, κ > 0. Further, define ε and Λ by

ε =
√

Λ(Λ/b ∨ 1)1/κ

C2N
(32)

with Λ = (V/2) logN + log(e/δ) + log+ (C1C
V/2
2 ∨ β). Then

C1

(
1

ε

)V

e−4C2mN ε2 + 2mNβkN
< δ.

Proof of Lemma 14. We have

max((C2Nε2/b)
1

1+κ ,1) ≤ kN ≤ max(2(C2Nε2/b)
1

1+κ ,1)

and so

N

4
min

(
b

C2Nε2
,1

) 1
1+κ ≤ N

4
min

((
b

C2Nε2

) 1
1+κ

,2

)
≤ mN = N

2kN

≤ N

2
.
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Obviously, Λ ≥ 1 and from (32),

ε ≥√
Λ/(C2N) ≥√

1/(C2N) and C2Nε2 = Λ(Λ/b ∨ 1)1/κ . (33)

Substituting the proper bounds for βm, kN , and mN , we get

C1

(
1

ε

)V

e−4C2mN ε2 + 2mNβkN

≤ C1

(
1

ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+ Nβe−b(
C2Nε2

b
∨1)

κ
1+κ

= C1

(
1

ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+Nβe
−b(

C2Nε2

b
∨1)( b

C2Nε2 ∧1)
1

1+κ

≤
(

C1

(
1

ε

)V

+Nβ

)
e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

,

which, by (33), is upper bounded by

(C1(C2N)V/2 + Nβ)e
−( b

Λ(Λ/b∨1)1/κ
∧1)

1
1+κ Λ(Λ/b∨1)1/κ

.

It is easy to check that the exponent of e in the last factor is just −Λ. Thus, substituting Λ,
this factor is N−V/2δ/(e(C1C

V/2
2 ∨ β ∨ 1)), and our bound becomes

(C1(C2N)V/2 +Nβ)N−V/2 δ

e(C1C
V/2
2 ∨ β ∨ 1)

≤ (1 + 1)
δ

e
< δ. �

7.2 Proof of Lemma 10

Proof Recall that (see the proof of Lemma 1) Q̂f,t = Rt + γf (Xt+1, π̂(Xt+1)), and that, for
fixed, deterministic f and π̂ ,

E[Q̂f,t |Xt,At ] = (T π̂f )(Xt ,At ),

that is, T π̂f is the regression function of Q̂f,t given (Xt ,At ). What we have to show is
that the chosen f ′ is close to T π̂(·;Q′)f ′ with high probability, noting that Q′ may not be
independent of the sample path.

We can assume that |F | ≥ 2 (otherwise the bound is obvious). This implies VF+ ,
VF× ≥ 1, and thus V ≥ M(M + 2) ≥ 3. Let ε and ΛN(δ) be chosen as in (32):

ε =
√

ΛN(δ)(ΛN(δ)/b ∨ 1)1/κ

C2N

with ΛN(δ) = (V/2) logN + log(e/δ) + log+ (C1C
V/2
2 ∨ β) ≥ 1. Define

P0
def= P(‖f ′ − T π̂f ′‖2

ν −E2
∞(FM; π̂)− Ẽ2

1(F
M ; π̂) > ε).

It follows that it is sufficient to prove that P0 < δ.
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Remember that for π̂ arbitrary, we defined the following losses:

L(f ; π̂) = ‖f − T π̂f ‖2
ν,

L(f,h; π̂) = L(f ; π̂) − ‖h− T π̂f ‖2
ν .

Let us now introduce the following additional shorthand notations:

L(f ;Q′) = L(f ; π̂(·;Q′)),

L(f,h;Q′) = L(f,h; π̂(·;Q′)),

L̂N(f,h;Q′) = L̂N (f,h; π̂(·;Q′))

where L̂N was defined in (7). Further, define

L̄(f ;Q′) def= sup
h∈FM

L(f,h;Q′) = L(f ;Q′)− inf
h∈FM

‖h− T π̂f ‖2
ν .

Now,

‖f ′ − T π̂f ′‖2
ν −E2

∞(FM; π̂) − Ẽ2
1(F

M ; π̂)

= L(f ′;Q′)− inf
f∈FM

L(f ;Q′)− Ẽ2
1(F

M ; π̂)

= L̄(f ′;Q′)+ inf
h∈FM

‖h− T π̂f ′‖2
ν

− inf
f∈FM

(
L̄(f ;Q′)+ inf

h∈FM
‖h− T π̂f ‖2

ν

)
− Ẽ2

1(F
M ; π̂)

≤ L̄(f ′;Q′)+ inf
h∈FM

‖h− T π̂f ′‖2
ν

− inf
f∈FM

L̄(f ;Q′) − inf
f,h∈FM

‖h− T π̂f ‖2
ν − Ẽ2

1(F
M ; π̂)

= L̄(f ′;Q′)− L̄F,Q′ + inf
h∈FM

‖h− T π̂f ′‖2
ν − sup

f∈FM

inf
h∈FM

‖h− T π̂f ‖2
ν

≤ L̄(f ′;Q′)− L̄F,Q′ ,

where in the second last line we used the definition of Ẽ2
1 (cf. (21)) and where L̄F,Q′ =

inff∈FM L̄(f ;Q′) is the error of the function with minimum loss in our class. Define also

¯̂
LN(f ;Q′) def= sup

h∈FM

L̂N(f,h;Q′).

Now, since f ′ = argminf∈FM
¯̂
LN(f ;Q′),

L̄(f ′;Q′)− L̄F,Q′

= L̄(f ′;Q′)− ¯̂
LN(f ′;Q′)+ ¯̂

LN(f ′;Q′) − inf
f∈FM

L̄(f ;Q′)

≤ | ¯̂LN(f ′;Q′)− L̄(f ′;Q′)| + inf
f∈FM

¯̂
LN(f ;Q′)− inf

f∈FM
L̄(f ;Q′)
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(by the definition of f ′)

≤ 2 sup
f∈FM

| ¯̂LN(f ;Q′)− L̄(f ;Q′)|

= 2 sup
f∈FM

| sup
h∈FM

L̂N(f,h;Q′)− sup
h∈FM

L(f,h;Q′)|

≤ 2 sup
f,h∈FM

|L̂N (f,h;Q′)−L(f,h;Q′)|

≤ 2 sup
Q′,f,h∈FM

|L̂N (f,h;Q′)−L(f,h;Q′)|.

Thus we get

P0 ≤ P

(
sup

Q′,f,h∈FM

|L̂N (f,h;Q′)− L(f,h;Q′)| > ε/2
)
.

Hence, in the subsequent statements, Q′ denotes an arbitrary (deterministic) function in FM .
We follow the line of proof due to Meir (2000). For any f,h,Q′ ∈ FM , define the loss

function lf,h,Q′ : X ×A× [−R̂max, R̂max] ×X → R in accordance with (7) as

lf,h,Q′(z) = lf,h,Q′(x, a, r, y)

def= 1

M

M∑
j=1

I{a=aj }
πb(aj |x)

(|fj (x)− r − γf (y, π̂(y;Q′))|2

− |hj (x)− r − γf (y, π̂(y;Q′))|2)

for z = (x, a, r, y) and LF
def= {lf,h,Q′ : f,h,Q′ ∈FM}. Introduce Zt = (Xt ,At ,Rt ,Xt+1) for

t = 1, . . . ,N . Note that the process {Zt } is β-mixing with mixing coefficients {βm−1}.
Observe that by (10),

lf,h,Q′(Zt ) = 1

M

M∑
j=1

I{At=aj }
πb(aj |Xt)

((fj (Xt )− Q̂f,t )
2 − (hj (Xt )− Q̂f,t )

2) = L(t),

hence we have for any f , h, Q′ ∈FM

1

N

N∑
t=1

lf,h,Q′(Zt ) = L̂N(f,h;Q′),

and (by (12))

E[lf,h,Q′(Zt )] = E[L(t)] = L(f,h;Q′)

(coincidentally with (9), but note that E[ ¯̂LN(f ;Q′)] �= L̄(f ;Q′)). This reduces the bound
to a uniform tail probability of an empirical process over LF :

P0 ≤ P

(
sup

Q′,f,h∈FM

∣∣∣∣∣
1

N

N∑
t=1

lf,h,Q′(Zt )− E[lf,h,Q′(Z1)]
∣∣∣∣∣> ε/2

)
.
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Now we make use of the blocking device mentioned previously: Recall that the “ghost”
samples {Z′

t } and H are defined above at (19). We use Lemma 5 with Z = X ×A× R×X
and F = LF noting that any lf,h,Q′ ∈ LF is bounded by

K = R̃2
max

Mπb0

with R̃max = (1 + γ )Qmax + R̂max. Thus,

P

(
sup

Q′,f,h∈FM

∣∣∣∣∣
1

N

N∑
t=1

lf,h,Q′(Zt )− E[lf,h,Q′(Z1)]
∣∣∣∣∣> ε/2

)

≤ 16E[N1(ε/16,LF , (Z′
t ; t ∈ H))]e− mN

2 (
Mπb0ε

16R̃2
max

)2

+ 2mNβkN
.

By some calculation, the distance in LF can be bounded as follows:

2

N

∑
t∈H

|lf,h,Q′(Z′
t ) − lg,h̃,Q̃′(Z′

t )|

≤ 2R̃max

Mπb0

(
2

N

∑
t∈H

|f (X′
t ,A

′
t )− g(X′

t ,A
′
t )| +

2

N

∑
t∈H

|h̃(X′
t ,A

′
t ) − h(X′

t ,A
′
t )|

+ 2
2

N

∑
t∈H

|f (X′
t+1, π̂(X′

t+1;Q′)) − g(X′
t+1, π̂(X′

t+1; Q̃′))|
)

.

Note that the first and second terms are D′ = ((X′
t ,A

′
t ); t ∈ H)-based 	1-distances of func-

tions in FM , while the last term is just twice the D′+ = (X′
t+1; t ∈ H)-based 	1-distance of

two functions in F∨ corresponding to (f,Q′) and (g, Q̃′). This leads to

N1

(
8R̃max

Mπb0
ε′,LF , (Z′

t ; t ∈ H)

)
≤N 2

1 (ε′,FM,D′)N1(ε
′,F∨,D′

+).

Applying now Lemma 8 with α = 1/2,9 the covering number of F∨ is bounded by

N1

(
ε′

2M2Qmax
,G1

2 ,D
′
+

)M2

φN/2(ε
′/2)M,

where M2 = M(M − 1), G1
2 is the class of the indicator functions of the sets from C2, and

the empirical covering numbers of F on all subsets of D′+ are majorized by φN/2(·).
To bound these factors, we use Corollary 3 from Haussler (1995) that was cited here as

Proposition 9. The pseudo-dimensions of F and G1
2 are VF+ and VF× < ∞, respectively,

and the range of functions from F has length 2Qmax. By the pigeonhole principle, it is easy
to see that the pseudo-dimension of FM cannot exceed MVF+ . Thus

9The optimal choice α = VF×/(VF× + VF+/(M − 1)) would give slightly better constants.
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N1

(
8R̃max

Mπb0
ε′,LF , (Z′

t ; t ∈ H)

)

≤
(

e(MVF+ + 1)

(
4eQmax

ε′

)MVF+)2

×
(

e(VF× + 1)

(
4eM2Qmax

ε′

)VF×)M2
(

e(VF+ + 1)

(
8eQmax

ε′

)VF+)M

= eM2+2(MVF+ + 1)2(VF+ + 1)M(VF× + 1)M2 2MVF+ M
M2VF×
2

(
4eQmax

ε′

)V

,

where V = 3MVF+ +M2VF× is the “effective” dimension, and thus

N1(ε/16,LF , (Z′
t ; t ∈ H))

≤ eM2+2(MVF+ + 1)2(VF+ + 1)M(VF× + 1)M2 ·

× 2MVF+ M
M2VF×
2

(
512eQmaxR̃max

Mπb0ε

)V

= C1

16

(
1

ε

)V

,

with C1 = C1(M,VF+ ,VF× ,Qmax, R̂max, γ,πb0). It can be easily checked that logC1

matches the corresponding expression given in the text of the theorem.
Putting together the above bounds we get

P0 ≤ C1

(
1

ε

)V

e−4C2mN ε2 + 2mNβkN
, (34)

where C2 = 1
2 (

Mπb0
32R̃2

max
)2. Defining kN = �(C2Nε2/b)

1
1+κ � and mN = N/(2kN), the proof is

finished by Lemma 14, which, together with (34), implies P0 < δ.
The last statement follows obviously from Q′ ∈ FM and the definitions of E(FM),

E∞(FM), E1(FM), and Ẽ1(FM ; π̂). �
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