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On the projection onto a finitely generated cone

Miklós Ujvári ∗

Abstract. In this paper we study the properties of the projection
onto a finitely generated cone. We show for example that this map is
made up of finitely many linear parts with a structure resembling the
facial structure of the finitely generated cone. An economical algorithm
is also presented for calculating the projection of a fixed vector, based
on Lemke’s algorithm to solve a linear complementarity problem. Some
remarks on the conical inverse (a generalization of the Moore-Penrose
generalized inverse) conclude the paper.

Mathematics Subject Classifications (2000). 90C20, 90C49

1 Introduction

A standard way to generalize concepts in convex analysis is to replace subspaces
with polyhedral cones, polyhedral cones with closed convex cones, closed con-
vex cones with closed convex sets, and closed convex sets with closed convex
functions. In this paper we make the first step on this way in the case of the
concept of the projection onto a subspace, and examine the properties of the
projection onto a finitely generated cone. (For higher levels of generality, see
[2].)

Let A be an m by n real matrix. Let Im A resp. Ker A denote the range
space (that is the image space) and the null space (that is the kernel) of the
matrix A. It is well-known that (ImA)⊥ = Ker (AT ) and (KerA)⊥ = Im (AT )
where T denotes transpose and ⊥ denotes orthogonal complement ([7]).

The projection map pIm A onto the subspace Im A can be defined as follows:
for every vector y ∈ Rm, pIm A(y) is the unique vector Ax∗ such that

||y − Ax∗|| = min
x∈Rn

||y − Ax||, x∗ ∈ Rn.

It is well-known that pIm A : Rm → Rm is a linear map: there exists a unique
matrix PIm A ∈ Rm×m such that

pIm A(y) = PIm Ay (y ∈ Rm).
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The matrix PIm A is symmetric (that is PT
Im A = PIm A), idempotent (that

is P 2
Im A = PIm A), consequently positive semidefinite (that is yT PIm Ay ≥ 0 for

every y ∈ Rm). Also the equalities

PIm A · PIm B = 0, PIm A + PIm B = I

hold for any matrix B such that Ker (AT ) = Im B ([7]). (Here I denotes the
identity matrix.)

Analogous results hold also in the case of the projection onto a finitely
generated cone. Before stating the corresponding theorem we fix some further
notation.

Let Im+ A resp. Ker+ A denote the so-called finitely generated cone

Im+ A := {Ax : 0 ≤ x ∈ Rn}

and the polyhedral cone

Ker+ A := {x ∈ Rn : Ax ≥ 0}.

A reformulation of Farkas’ Lemma ([5]) says that (Im+ A)∗ = Ker+(AT ) and
(Ker+ A)∗ = Im+(AT ) where ∗ denotes dual cone. Thus polyhedral cones are
the duals of the finitely generated cones, and vice versa. Furthermore, by the
Farkas-Weyl-Minkowski Theorem ([5]), for every matrix A there exists a matrix
B such that Im+ A = Ker+ (BT ), or, dually, Ker+ (AT ) = Im+ B. In other
words, the finitely generated cones are polyhedral cones, and vice versa.

The projection map onto Im+ A can be defined similarly as in the case of
ImA: let pIm+ A(y) be the unique vector Ax∗ such that

||y − Ax∗|| = min
0≤x∈Rn

||y − Ax||, 0 ≤ x∗ ∈ Rn.

For finitely generated cones which are not subspaces this map is not linear
anymore, but is made up of linear parts, and these parts have the properties
described already in the case of the projection onto a subspace. To state these
facts precisely, the definitions of the faces, complementary faces and polyhedral
partition are needed.

Let C be a convex set in Rd. A convex set F ⊆ C is called an extremal
subset (or shortly a face) of the set C, if F does not contain an inner point of a
line segment from C without containing the endpoints of the line segment, that
is

c1, c2 ∈ C, 0 < ε < 1, εc1 + (1 − ε)c2 ∈ F implies c1, c2 ∈ F.

We will denote by F ⊳ C the fact that F is a face of C.
If K is the finitely generated cone Im+ A then its faces are finitely generated

cones also, and there are only finitely many of them. The faces of (the finitely
generated cone) K∗ are exactly the complementary faces F△ of the faces F of
K, defined as

F△ := F⊥ ∩ (K∗) (F ⊳ K).
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The complementary face F△ can be alternatively defined as

F△ = {f0}
⊥ ∩ (K∗)

where f0 is an arbitrary element of riF , the relative interior of the face F . Also
(F△)△ = F holds for every face F of K ([6]).

It is not difficult to verify using a standard separation argument that if Rd

is the finite union of closed convex sets Ci with nonempty and pairwise disjoint
interiors then the sets Ci are necessarily polyhedrons. In this case we call the
set {Ci} a polyhedral partition of Rd.

Now we can state our main result,

THEOREM 1.1. Let A be an m by n real matrix. Let K denote the finitely
generated cone Im+ A. Then the following statements hold:

a) The cones {F −F△ : F ⊳K} form a polyhedral partition of Rm. The map
pK is linear restricted to the members of this partition, that is for every F ⊳ K

there exists a unique matrix PF such that

pK(f − g) = PF (f − g) (f ∈ F, g ∈ F△).

b) For every F ⊳ K, and every basis B of F , PF = PIm B. Specially, the
matrices PF (F ⊳ K) are symmetric, idempotent and positive semidefinite.

c) The map P. is a bijection between the sets {F : F ⊳K} and {PF : F ⊳K};
and it preserves the usual partial ordering on these sets, that is F1 ⊆ F2 if and
only if PF2

− PF1
is positive semidefinite.

d) For every face F of K,

PF · P ∗
F△ = 0, PF + P ∗

F△ = I.

(Here P ∗
F△ denotes the matrices defined by pK∗ .)

In Section 2 we will prove Theorem 1.1. In Section 3 we describe an algo-
rithm for calculating the projection pIm+ A(y) for a fixed vector y ∈ Rm. The
method is based on Lemke’s algorithm to solve a linear complementarity prob-
lem LCP ([1]). After writing the problem as an LCP, using the structure of the
problem our algorithm calculates with r(A) by 2r(A) matrices instead of n by
2n matrices (r(A) denotes rank). Finally, in Section 4 we describe a concept
closely related to the projection pIm+ A: the conical inverse A<. Theoretical and
algorithmical properties of the conical inverse are largely unexplored and need
further research.

2 Proof of the main theorem

In this section we will prove Theorem 1.1. First we state three lemmas and
propositions that will be needed in the proof of statement a) in Theorem 1.1.
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The first lemma describes a well-known characterization of the projection
of a vector onto a closed convex cone, now specialized to the case of a finitely
generated cone (see [2], Proposition 3.2.3).

LEMMA 2.1. For every vector y ∈ Rm there exists a unique vector k ∈ Rm

such that
k ∈ K, k − y ∈ K∗, kT (k − y) = 0. (1)

This vector k equals pK(y) then.

As an immediate consequence, we obtain

PROPOSITION 2.1. Let F be a face of K. Let CF denote the set of vectors
y such that pK(y) ∈ riF . Then

CF = (riF ) − F△. (2)

Proof. Let C denote the set on the right hand side of (2). First we will show
that CF ⊆ C. Let y be an element of CF , and let k denote the vector pK(y).
Then k ∈ riF ; and, by (1), k − y ∈ {k}⊥ ∩K∗, that is k − y ∈ F△. We can see
that y = k − (k − y) is an element of C, and the inclusion CF ⊆ C is proved.

Conversely, if k ∈ riF and k−y ∈ F△, then (1) holds, so k = pK(y), and we
can see that y ∈ CF . This way we have proved the inclusion C ⊆ CF as well.
2

The closure of the set CF defined in Proposition 2.1 is clCF = F − F△.
The next lemma states that this finitely generated cone is full-dimensional (or
equivalently has nonempty interior).

LEMMA 2.2. The linear hull of the set F −F△ is Rm, for every face F of
K.

Proof. Let B be a matrix such that K = Ker+ (BT ). It is well-known (see
[5]) that then there exists a partition (B1, B2) of the columns of B such that

F = {y : BT
1 y ≥ 0, BT

2 y = 0},

linF = {y : BT
2 y = 0},

riF = {y : BT
1 y > 0, BT

2 y = 0}.

(Here lin denotes linear hull.) Let f0 ∈ riF . Then F△ = {f0}
⊥ ∩ K∗, and the

latter set can be easily seen to be equal to Im+ B2. Thus the linear hull of F△

is Im B2, the orthogonal complement of the linear hull of F . The linear hull of
the set F − F△, being the sum of these two subspaces, is Rm. 2

It is well-known that relative interiors of the faces of a convex set form a
partition of the convex set (see [3]): they are pairwise disjoint, and their union
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is the whole convex set. From this observation easily follows that the sets CF

are pairwise disjoint, and their union is the whole space. Consequently their
closures, the sets cl CF (F ⊳ K), have pairwise disjoint interiors (as the interior
of cl CF equals the interior of the convex CF ), cover the whole space, and (by
Lemma 2.2) are full-dimensional. We obtained a proof of

PROPOSITION 2.2. The sets F − F△ (F ⊳ K) form a polyhedral partition
of Rm. 2

We call a set C ⊆ Rm

• positively homogeneous if 0 < λ ∈ R, y ∈ C implies λy ∈ C;

• additive if y1, y2 ∈ C implies y1 + y2 ∈ C.

Similarly, we call a map p : C → Rm, defined on a positively homogeneous,
additive set C,

• positively homogeneous if 0 < λ ∈ R, y ∈ C implies p(λy) = λp(y);

• additive if y1, y2 ∈ C implies p(y1 + y2) = p(y1) + p(y2).

For example,

PROPOSITION 2.3. The sets CF defined in Proposition 2.1 are positively
homogeneous, additive sets; and the map pK restricted to CF is a positively
homogeneous, additive map.

Proof. The first half of the statement follows from Proposition 2.1: the sets
(riF ) − F△ are obviously positively homogeneous, additive sets.

To prove the remaining part of the statement, let y ∈ CF . Then by Proposi-
tion 2.1 there exist f0 ∈ riF , g ∈ F△ such that y = f0−g. Also, for 0 < λ ∈ R,
λy ∈ CF . Again, by Proposition 2.1 there exist f0(λ) ∈ riF , g(λ) ∈ F△ such
that λy = f0(λ) − g(λ). Necessarily,

λpK(y) = λf0 = f0(λ) = pK(λy),

and we have proved the positive homogeneity of the map pK restricted to the
set CF . Additivity can be similarly verified, so the proof is finished. 2

We can see that the sets CF are full-dimensional, positively homogeneous,
additive sets, and the map pK restricted to the set CF is a positively homoge-
neous, additive map. Such maps have a unique linear extension as the following
lemma states.

LEMMA 2.3. Let C be a positively homogeneous, additive set in Rm such
that the linear hull of the set C is the whole space Rm. Let p : C → Rm be
a positively homogeneous, additive map. Then there exists a unique linear map
ℓ : Rm → Rm such that ℓ(y) = p(y) for every y ∈ C.

5



Proof. Let us choose a basis {y1, . . . , ym} from the set C, and let us define
the map ℓ as follows:

ℓ

(

m
∑

i=1

λiyi

)

:=

m
∑

i=1

λip(yi) (λ1, . . . , λm ∈ R).

We will show that the restriction of this linear map ℓ to the set C is the map
p. Let C0 denote the set of the linear combinations of the vectors y1, . . . , ym

with positive coefficients. Then C0 is an open set, and p(y) = ℓ(y) for every
y ∈ C0. Fix y0 ∈ C0, and let y be an arbitrary element from the set C. Then
there exists a constant 0 < ε < 1 such that the vector yε := εy + (1 − ε)y0 is in
the set C0. By positive homogeneity and additivity of the map p,

p(yε) = εp(y) + (1 − ε)p(y0).

On the other hand, by linearity of the map ℓ,

ℓ(yε) = εℓ(y) + (1 − ε)ℓ(y0).

Here ℓ(yε) = p(yε) and ℓ(y0) = p(y0), so we have ℓ(y) = p(y); the map ℓ meets
the requirements.

Finally, uniqueness of the map ℓ is trivial, as ℓ must have fixed values for
the elements of the full-dimensional set C. 2

Now we can describe the proof of Theorem 1.1.

Proof of part a) in Theorem 1.1: By Proposition 2.3 and Lemma 2.3 existence
and uniqueness of matrices PF follow such that

pK(y) = PF y (y ∈ CF ).

It is well-known (see Proposition 3.1.3 in [2]), that the map pK is continuous,
so we have actually

pK(y) = PF y (y ∈ cl CF ).

We have seen already (see Proposition 2.2) that the sets clCF = F −F△ (F ⊳K)
form a polyhedral partition of Rm, thus the proof of statement a) in Theorem
1.1 is complete.

Proof of part b) in Theorem 1.1: Let F be a face of the cone K. Let B be a
basis of the face F , and let B△ be a basis of the complementary face F△. Then
every vector y ∈ Rm can be written in the form

y = Bv + B△w, v ∈ Rdim F , w ∈ Rdim F△

.

Multiplying this equality from the left with the matrices PF and BT , respec-
tively, we obtain the equalities

PF y = Bv, BT y = BT Bv.
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These equalities imply

PF y = Bv = B(BT B)−1BT y = PIm By.

We have PF = PIm B , and the proof of statement b) in Theorem 1.1 is finished
also.

Proof of part c) in Theorem 1.1: First, notice that the map P. is trivially a
bijection between the sets {F : F ⊳ K} and {PF : F ⊳ K}. (Injectivity follows
from the obvious fact that if F1 6= F2, for example there exists y ∈ F1 \ F2,
then PF1

= PF2
would imply PF2

y = PF1
y = y, and thus y ∈ F2, which is a

contradiction.)
Hence we have to verify only that F1, F2 ⊳K, F1 ⊆ F2 implies that PF2

−PF1

is positive semidefinite. Let B1 be a basis of the face F1, and let B2 be a basis
of the face F2 such that B1 ⊆ B2. Then for every y ∈ Rm, by the definition of
the projection map,

||y − PIm B1
y||2 ≥ ||y − PIm B2

y||2.

This inequality, by part b) in Theorem 1.1 imply that

yT PF2
y ≥ yT PF1

y (y ∈ Rm),

that is the positive semidefiniteness of the matrix PF2
− PF1

, which was to be
shown.

Proof of part d) in Theorem 1.1: Let y1, . . . , ym be a basis in the set CF ,

and let y
△
1 , . . . , y△

m be a basis in the set C∗
F△ .

Then to prove that PF · P ∗
F△ = 0, it is enough to show that

yT
i PF · P ∗

F△y
△
j = 0 (1 ≤ i, j ≤ m).

In other words we have to show that the vectors pK(yi) and pK∗(y△
j ) are or-

thogonal. This follows from the fact that the former vectors are in F , while the
latter vectors are in F△.

To prove the equality PF + P ∗
F△ = I, it is enough to verify that

yT
i (PF + P ∗

F△)y△
j = yT

i y
△
j (1 ≤ i, j ≤ m).

In other words that

pK(yi)
T y

△
j + yT

i pK∗(y△
j ) = yT

i y
△
j (1 ≤ i, j ≤ m),

or equivalently that

(yi − pK(yi))
T (y△

j − pK∗(y△
j )) = 0 (1 ≤ i, j ≤ m).
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This latter equality is the consequence of the fact that the vectors yi−pK(yi) are

in F△ while the vectors y
△
j −pK∗(y△

j ) are in (F△)△ = F and so are orthogonal.
This way we have finished the proof of part d), and the proof of Theorem

1.1 as well. 2

We conclude this section with an example. Let K be the finitely generated
cone

K := {(y1, y2) ∈ R2 : y1 ≥ y2 ≥ 0}.

Then K has four faces,

F1 = {0}, F2 = {(λ, λ) : λ ≥ 0}, F3 = {(λ, 0) : λ ≥ 0}, F4 = K.

The dual of K is

K∗ = {(y1, y2) ∈ R2 : y2 ≥ −y1 ≤ 0}

with faces

F
△
1 = K∗, F

△
2 = {(λ,−λ) : λ ≥ 0}, F

△
3 = {(0, λ) : λ ≥ 0}, F

△
4 = {0}.

The reader can easily verify that

PF1
= 0, PF2

= 1
2

(

1 1
1 1

)

, PF3
=

(

1 0
0 0

)

, PF4
= I;

P ∗

F
△

1

= I, P ∗

F
△

2

= 1
2

(

1 −1
−1 1

)

, P ∗

F
△

3

=

(

0 0
0 1

)

, P ∗

F
△

4

= 0

and that the statements of Theorem 1.1 hold in this special case.

3 Algorithm for computing the projection

In this section we will describe an algorithm for calculating the projection of a
fixed vector onto a finitely generated cone. The algorithm economically solves
a certain type of linear complementarity problems as well.

Let A be an m by n real matrix, and let K denote the finitely generated
cone Im+ A. Let us fix a vector y ∈ Rm. To compute the projection pK(y), by
Lemma 2.1, we have to find a vector x ∈ Rn such that

x ≥ 0, Ax − y ∈ Ker+ (AT ), (Ax)T (Ax − y) = 0.

This problem can be rewritten as a linear complementarity problem LCP (A):
find vectors z, x ∈ Rn such that

z − AT Ax = −AT y; x, z ≥ 0; zT x = 0.
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A finite version of Lemke’s algorithm ([1]) can be applied to solve LCP (A); if
(x, z) is a solution, then Ax = pK(y) is the projection we searched for.

However, a more economical algorithm can be constructed to find the pro-
jection of a vector; economical in the sense that instead of solving the n-
dimensional LCP (A), it solves a sequence of r(A)-dimensional LCPs, LCP (B1),
LCP (B2),. . . where B1, B2, . . . are bases of the matrix A. (A matrix B is called
a basis of the matrix A, if B is an m by r(A) submatrix of A, and r(B) = r(A).)

Before describing this algorithm, we prove three propositions and lemmas
that will be needed in the proof of the correctness and finiteness of the algorithm.

Let B be a basis of the matrix A, with corresponding basis tableau T (B).
(The basis tableau T (B) corresponding to a basis B contains the unique coeffi-
cients tij ∈ R such that

aj =
∑

i

{tijai : ai ∈ B} (aj ∈ A),

where aj denotes the j-th column vector of the matrix A.)
With these notations,

PROPOSITION 3.1. If (x, z) is a solution of LCP (B), then Bx = pIm+ B(y).
Furthermore, if

aT
j (Bx − y) ≥ 0 (aj ∈ A \ B) (3)

holds, then Bx = pIm+ A(y) as well.

Proof. The statement follows from Lemma 2.1, see also the beginning of this
section. 2

If (3) does not hold, then there exist column vectors aj ∈ A \ B such that
aT

j (Bx − y) < 0. Choose one of them which minimizes the inner product with
the vector Bx − y: let j∗ be an index such that

aT
j∗

(Bx − y) = min
{

aT
j (Bx − y) : aj ∈ A \ B

}

, aj∗ ∈ A \ B. (4)

This vector aj∗ will enter the basis B.
From the definition of the index j∗ immediately follows

LEMMA 3.1. The minimum in (4) is less than 0. 2

Now, we will choose the vector ai∗ that leaves the basis B. Let i∗ denote an
index such that

aT
i∗(Bx − y) = max

{

aT
i (Bx − y) : ai ∈ B, tij∗ 6= 0

}

, ai∗ ∈ B, ti∗j∗ 6= 0. (5)

Remember that Bx = pIm+B(y); so aT
i (Bx − y) ≥ 0 holds for every vector

ai ∈ B. Hence the maximum in (5) is at least 0. But more can be said:

LEMMA 3.2. The maximum in (5) is greater than 0.

9



Proof. The vector aj∗ can be written in the form

aj∗ =
∑

{tij∗ai : ai ∈ B}.

If aT
i (Bx− y) = 0 would hold for every index i such that ai ∈ B, tij∗ 6= 0, then

aT
j∗

(Bx − y) = 0 would follow, contradicting Lemma 3.1. 2

It is well-known (see [7]) that ti∗j∗ 6= 0 implies

PROPOSITION 3.2. The submatrix

B̂ := (B \ {ai∗}) ∪ {aj∗}

is a basis of the matrix A. Furthermore, the corresponding basis tableau T (B̂)
can be obtained from the basis tableau T (B) by pivoting on the (i∗, j∗)-th position
of the latter tableau.

We will show that the new basis B̂ is an improvement over B: the distance
between pIm+ B̂(y) and y is less than the distance between pIm+ B(y) and y. To
verify this statement we need the following lemma:

LEMMA 3.3. The vectors pIm+ B(y) and aj∗ are elements of the cone Im+ B̂.

Proof. As for the solution (x, z) of LCP (B), zT x = 0, z, x ≥ 0, necessarily
xizi = 0 for all index i. As by Lemma 3.2 zi∗ = aT

i∗(Bx − y) > 0, we have

xi∗ = 0. We can see that Bx ∈ Im+ (B \{ai∗}); consequently Bx ∈ Im+B̂, that
is pIm+ B(y) ∈ Im+B̂. The statement that aj∗ ∈ Im+B̂ is trivial. 2

PROPOSITION 3.3. It holds that

||pIm+B̂(y) − y|| < ||pIm+B(y) − y||.

Proof. Let S denote the following set of vectors:

S := {εBx + (1 − ε)aj∗ ; 0 < ε < 1, ε ∈ R}.

By Lemma 3.3, S ⊆ Im+ B̂. Furthermore, from Lemma 3.1 it can be easily seen
that there exists a vector s ∈ S such that the distance between y and s is less
than the distance between y and Bx = pIm+ B(y). As the distance between y

and pIm+ B̂(y) is not greater than the distance between y and s, the statement
follows. 2

Now we can describe the algorithm and prove its correctness.

Algorithm: Let B be a given basis of the matrix A, with corresponding
basis tableau T (B). (Initially, this basis can be any basis of the matrix A.)

10



Solve LCP (B) using a finite version of Lemke’s algorithm. This way a
solution (x, z) is obtained, pIm+ B(y) = Bx.

If the inequality aT
j (Bx−y) ≥ 0 holds for every j such that aj ∈ A\B, then

stop: pIm+ A(y) = Bx.
If there exist at least one index j such that aj ∈ A \B and aT

j (Bx− y) < 0,
then choose j∗ according to (4) and choose i∗ according to (5).

Let B̂ := (B \ {ai∗}) ∪ {aj∗} be the new basis, update T (B) by pivoting on
its (i∗, j∗)-th position, and repeat the above step until pK(y) is reached.

THEOREM 3.1. The algorithm described above finds pK(y) after finite num-
ber of steps.

Proof. The correctness of the algorithm follows from Propositions 3.1 and
3.2. The finiteness of the algorithm is a consequence of Proposition 3.3: as the
distance between the vectors pIm+ B(y) and y decreases with each step, so there
can be no repetition in the sequence of the bases, and there are only finitely
many of the bases of A. 2

Finally, we remark that the above algorithm can be applied to solve eco-
nomically any LCP of the form

(LCP ) : find x, z such that z − Mx = q; z, x ≥ 0; zT x = 0

where M is a symmetric positive semidefinite matrix, q ∈ ImM . To see this
it is enough to note that a matrix A can be found such that M = AT A using
Cholesky decomposition ([7]). Then ImM = Im (AT ), so q = −AT y for some
vector y. This way we have rewritten (LCP ) as LCP (A), and the algorithm
discussed in this section can be applied to solve the problem.

4 Remarks on the conical inverse

In this section we describe a concept closely related to the projection onto a
finitely generated cone and also to the Moore-Penrose generalized inverse of a
matrix.

Let A be an m by n real matrix. For every vector y ∈ Rm there exists a
unique vector x∗ ∈ Rn such that

||x∗|| = min{||x|| : Ax = pIm A(y), x ∈ Rn}.

Surprisingly, the dependence of the vector x∗ on the vector y turns out to be
linear ([7]): there exists a unique matrix, called the Moore-Penrose generalized
inverse of the matrix A and denoted by A− such that x∗ = A−y for every
y ∈ Rm.

It is also well-known (see [4]) that the Moore-Penrose generalized inverse
can be alternatively defined as the unique matrix A− ∈ Rn×m satisfying the
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four conditions: a) AA−A = A; b) A−AA− = A−; c) (AA−)T = AA−; d)
(A−A)T = A−A.

Similarly as in the case of the projection map, this concept can also be
generalized via replacing the subspace Im A with the finitely generated cone
Im+ A. The map defined this way is called the conical inverse of the matrix
A, and is denoted by A<. Thus for every vector y ∈ Rm, A<(y) is the unique
vector in Rn satisfying

||A<(y)|| = min{||x|| : Ax = pIm+ A(y), x ≥ 0}; A<(y) ≥ 0.

The next proposition describes a certain relation between the two inverses
defined above.

PROPOSITION 4.1. For every vector y ∈ Rm, it holds that

(A,−A)<(y) = (max{A−y, 0},−min{A−y, 0})

where the max and min are meant elementwise.

Proof. Let us consider the following two programs:

(P̂ ) : min
x1,x2≥0

||y − Ax1 + Ax2||

and
(P ) : min

x
||y − Ax||.

The variable transformations

x := x1 − x2 resp. x1 := max{x, 0}, x2 := −min{x, 0}

show the equivalence of programs (P̂ ) and (P ).
Furthermore, it can be easily seen that

• if x is an optimal solution of program (P ) then the vector

(x1, x2) := (max{x, 0} + p,−min{x, 0} + p)

is an optimal solution of program (P̂ ) for any vector p ≥ 0;

• if (x1, x2) is an optimal solution of program (P̂ ) then the vector x :=
x1 − x2 is an optimal solution of program (P ) such that

(x1, x2) = (max{x, 0} + p,−min{x, 0} + p)

for some vector p ≥ 0.
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Consequently, the shortest optimal solution of (P̂ ) will be

(x1, x2) = (max{x, 0},−min{x, 0})

where x is the shortest optimal solution of (P ); which was to be shown. 2

Thus any algorithm for calculating the conical inverse can be used for calcu-
lating the Moore-Penrose generalized inverse. Conversely also, as the following
proposition shows.

PROPOSITION 4.2. The vector x equals A<(y) if and only if for some vector
z, (x, z) is a solution of the following linear complementarity problem:

(LCP<) :

{

find x, z such that x, z ≥ 0; zT x = 0;
x − (I − A−A)z = A−pIm+ A(y).

Proof. Let x0 ≥ 0 be a vector such that Ax0 = pIm+ A(y). To find A<(y)
we have to find the unique optimal solution of the following convex quadratic
program:

(QP ) : min
1

2
||x||2, Ax = Ax0, x ≥ 0.

By the Kuhn-Tucker conditions (see [1]), the vector x ≥ 0 is an optimal solution
of program (QP ) if and only if there exists a vector z ≥ 0 such that zT x = 0,

x − z ∈ Im (AT ), x − x0 ∈ KerA. (6)

It is well-known that

PIm (AT ) = A−A, PKer A = I − A−A,

so (6) can be rewritten as

(I − A−A)(x − z) = 0, A−Ax = A−Ax0. (7)

It is easy to see that (7) holds if and only if (x, z) satisfies the following equality

x − (I − A−A)z = A−Ax0.

We can see that x = A<(y) if and only if there exists a vector z such that (x, z)
is a solution of (LCP<); the proof is complete. 2

Finally, we mention two open problems concerning the conical inverse:

• Is it true, that similarly to the case of the projection, the conical inverse
is also made up from linear parts? (This statement is trivial if the m by
n matrix A has rank r(A) = n.)
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• We can see from Proposition 4.2 that the conical inverse for a fixed vector
y can be calculated via solving an n-dimensional LCP. Is it possible to
construct an algorithm to compute A<(y) more economically, similarly as
in the case of the projection map?

Conclusion. In this paper we examined the properties of the projection
onto a finitely generated cone. Our main result shows that this map is made
up of linear parts (the map is linear if and only if we project onto a subspace)
with a structure resembling the facial structure of the finitely generated cone we
project onto. Also we presented an algorithm for computing the projection of
a fixed vector. The algorithm is economical in the sense that it calculates with
matrices whose size depends on the dimension of the finitely generated cone and
not on the number of the generating vectors of the cone. Some remarks and
open problems concerning the conical inverse conclude the paper.

Acknowledgements. I am indebted to Tamás Rapcsák and András Frank
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