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We let G(r)(n,m) denote the set of r-uniform hypergraphs with n vertices and m edges,
and f (r)(n,p,s) is the smallest m such that every member of G(r)(n,m) contains a member
of G(r)(p,s). In this paper we are interested in fixed values r,p and s for which f (r)(n,p,s)
grows quadratically with n. A probabilistic construction of Brown, Erdős and T. Sós
([2]) implies that f (r)(n,s(r−2)+2, s)=Ω(n2). In the other direction the most interest-
ing question they could not settle was whether f (3)(n,6,3) = o(n2). This was proved by
Ruzsa and Szemerédi [11]. Then Erdős, Frankl and Rödl [6] extended this result to any r:
f (r)(n,3(r−2)+3,3) = o(n2), and they conjectured ([4], [6]) that the Brown, Erdős and
T. Sós bound is best possible in the sense that f (r)(n,s(r−2)+3, s)=o(n2).
In this paper by giving an extension of the Erdős, Frankl, Rödl Theorem (and thus

the Ruzsa–Szemerédi Theorem) we show that indeed the Brown, Erdős, T. Sós Theorem
is not far from being best possible. Our main result is

f (r)(n, s(r − 2) + 2 + �log2 s�, s) = o(n2).

1. Introduction

1.1. Notation and definitions

For basic graph concepts see the monograph of Bollobás [1]. We let V (G)
and E(G) denote the vertex-set and the edge-set of the graph G, and (A,B)
or (A,B,E) denote a bipartite graph G = (V,E), where V = A ∪B, and
E ⊂A×B. In general, given any graph G and two disjoint subsets A,B of
V (G), the pair (A,B) is the graph restricted to A×B. N(v) is the set of
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neighbors of v∈V . Hence the size of N(v) is |N(v)|=deg(v)=degG(v), the
degree of v. For a vertex v∈V and set U ⊂V −{v}, we write deg(v,U) for
the number of edges from v to U . We denote by e(A,B) the number of edges
of G with one endpoint in A and the other in B. For non-empty A and B,

d(A, B) =
e(A, B)
|A||B|

is the density of the graph between A and B.

Definition 1. The pair (A,B) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B|

imply
|d(X, Y )− d(A, B)| < ε,

otherwise it is ε-irregular.

A hypergraph F is called k−uniform if |F |=k for every edge F ∈F . A
k-uniform hypergraph F on the set X is k−partite if there exists a partition
X =X1∪ . . .∪Xk with |F ∩Xi|=1 for every edge F ∈F and 1≤ i≤k.

1.2. Turán-type hypergraph problems

We let G(r)(n,m) denote the set of r-uniform hypergraphs with n vertices
and m edges, and let f (r)(n,p,s) be the smallest m such that every member of
G(r)(n,m) contains a member of G(r)(p,s). The determination of f (r)(n,p,s)
has been a longstanding open problem. Special cases of this problem ap-
peared in [3] and [5]. For more about Turán-type hypergraph results consult
the surveys by Füredi [8] and Sidorenko [12]. In this paper we are interested
in fixed values r,p and s for which f (r)(n,p,s) grows quadratically with n.

A probabilistic construction of Brown, Erdős and T. Sós [2] implies that

f (r)(n, s(r − 2) + 2, s) = Ω(n2).

In the other direction the most interesting question they could not settle
was whether f (3)(n,6,3) = o(n2). This was proved in the celebrated paper
by Ruzsa and Szemerédi [11]. Then Erdős, Frankl and Rödl [6] extended this
result to any r:

f (r)(n, 3(r − 2) + 3, 3) = o(n2),

and they conjectured ([4], [6]) that the Brown, Erdős and T. Sós bound is
best possible in the following sense:
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Conjecture 1.
f (r)(n, s(r − 2) + 3, s) = o(n2).

In [6] they also showed that for any c<2,

lim
n→∞

f (r)(n, 3(r − 2) + 3, 3)/nc = ∞.

In this paper by giving an extension of the upper bound of the Erdős,
Frankl, Rödl Theorem (and thus the Ruzsa–Szemerédi Theorem) we show
that indeed the Brown, Erdős, T. Sós Theorem is not far from being best
possible.

Our main result is the following.

Theorem 1. For all integers r,s≥3 we have

f (r)(n, s(r − 2) + 2 + �log2 s�, s) = o(n2).

In particular for s=3 we get the Erdős, Frankl, Rödl Theorem (and thus
the Ruzsa–Szemerédi Theorem) as a special case.

Thus roughly speaking the Brown, Erdős, T. Sós Theorem is best possible
apart from a �log2 s� term. However, it still remains open whether one can
eliminate this term and prove Conjecture 1; for instance, it is still left open
whether it is true that f (3)(n,7,4)=o(n2). What we do get from our result
is that f (3)(n,8,4)=o(n2), f (3)(n,9,5)=o(n2), etc.

The Erdős, Frankl, Rödl approach was based on the following result: If
n≥n0(ε,H) and G is an H-free graph on n vertices, then one can remove
fewer than εn2 edges from G so that the remaining graph is Kr-free, where
r = χ(H). This result in turn was proved by using Szemerédi’s Regularity
Lemma [13].

Another simple proof of f (3)(n,6,3)=o(n2) was found later by Szemerédi
(see [10]). In this paper we generalize this argument in order to prove our
main theorem. Szemerédi used the following result: suppose the edges of an
n-vertex graph G are properly colored by at most cn colors, and |E(G)| ≥
c′n2, where c and c′ are positive constants. If n ≥ n0(c,c′), then there is a
path in G on 3 edges that gets only 2 colors. In this paper we generalize this
argument; we obtain certain trees that get few colors.

In the next section we provide the tools. Then in Section 3 we prove the
theorem by reducing the general case to that of r=3.

2. Tools

We will use a simple but useful result of Erdős and Kleitman ([7], see also
on page 1300 in [9]).
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Lemma 1. Every k-uniform hypergraph F contains a k-partite k-uniform
hypergraph H with

|H|
|F| ≥

k!
kk

.

We will also use the following lemma.

Lemma 2. For every c1 >0, c2≥1 there are positive constants η,n0 with the
following properties. Let G be a graph on n≥n0 vertices with |E(G)|≥c1n2

that is the edge disjoint union of matchings M1,M2, . . . ,Mm where m≤c2n.
Then there exist an 1≤ i≤m and A,B⊂V (Mi) such that

• (A×B)∩Mi =∅,
• |A|= |B|≥ηn,
• |E (G|A×B)|≥ c1

4 |A||B|.

Proof. This lemma can be proved by a fairly standard argument using the
Regularity Lemma, we leave it to the reader. A very similar argument can
be found in [10].

3. Proof of Theorem 1

Let r,s≥3, p=s(r−2)+2+�log2 s� and l=�log2 s�+1.
For any constant c > 0 and sufficiently large n, let F ∈ G(r)(n,�cn2�).

That is, F is an r-uniform hypergraph with at least �cn2� edges. We will
show that F must contain a member of G(r)(p,s), i.e., a set of p vertices
spanning at least s edges.

Using the Erdős–Kleitman theorem (Lemma 1) we find an r-partite sub-
hypergraph H of F with at least

r!c
rr

n2

edges. Let X1, . . . ,Xr be the vertex classes of this r-partite hypergraph H.
Consider the 3-uniform hypergraph H∗ which is defined by the removal of
X1, . . . ,Xr−3 from the vertex set of H and from all edges of H. If a 3-edge
(triple) of H∗ has multiplicity greater than 1, then we keep only one edge.
Note that every triple has multiplicity less than s. Indeed, otherwise taking
a triple with multiplicity at least s and s r-edges of H containing this triple,
we get a set of at most

s(r − 3) + 3 < s(r − 2) + 2 + �log2 s� = p
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vertices that span at least s r-edges, implying that F contains a member of
G(r)(p,s). Then keeping only one edge from each multiple triple in H∗ we
still have at least

r!c
rrs

n2

edges.
Consider first an arbitrary v∈Xr−2 and the bipartite graph Gv

bp defined
by v between Xr−1 and Xr such that (u,w) is an edge in Gv

bp if and only if
(v,u,w) is a triple in H∗. The maximum degree in Gv

bp is less than s. Indeed,
otherwise taking s edges from a vertex u, the vertex v and the s r-edges of
H containing these triples, we get again a set of at most

s(r − 2) + 2 < s(r − 2) + 2 + �log2 s� = p

vertices that span at least s r-edges, implying that F contains a member of
G(r)(p,s). Then we can choose a matching Mv in Gv

bp such that

|Mv | ≥
|E(Gv

bp)|
s

.

We take the next v′ ∈Xr−2 and similarly as above we define Gv′
bp and Mv′ ,

but now from Mv′ we remove all the edges that are already in Mv. We
continue in this fashion for all the vertices in Xr−2. Define the bipartite
graph Gbp =

⋃
v∈Xr−2

Mv. Since every edge of Gbp is an edge in fewer than s
of the graphs Gv

bp, we have

|E(Gbp)| ≥
r!c

rrs3
n2.

Next by applying Lemma 2 iteratively in Gbp, we will find a sequence
of matchings Mv1 , . . . ,Mvl

. From these l matchings, we will construct a tree
of 2l − 1 edges in the bipartite graph (Xr−1,Xr). Leaves will be removed
from this tree until it has s edges. The s+1 vertices of this tree, along with
the corresponding l = �log2 s�+1 vertices of Xr−2, are then extended to a
member of G(r)(p,s). These l vertices of Xr−2 account for the gap between
Conjecture 1 and Theorem 1. Thus in order to reduce this gap one has to
construct trees (or other graphs) of similar size that are built from even
fewer matchings.

To obtain Mv1 we apply Lemma 2 in Gbp. We can choose

c1 = c1
1 =

r!c
rrs2

and c2 = c1
2 = 1.

Mv1 is the Mi guaranteed in the lemma. Denote Mv1 =(A1,B1) where A1⊂
Xr−1,B1 ⊂ Xr. Lemma 2 also guarantees that there are A′

1,B′
1 ⊂ V (Mv1)

such that
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• (A′
1×B′

1)∩Mv1 =∅,
• |A′

1|= |B′
1|≥η1n,

•
∣∣∣E

(
Gbp|A′

1×B′
1

)∣∣∣≥ c1
4 |A′

1||B′
1|.

To obtain Mv2 we apply Lemma 2 again, now for Gbp|A′
1×B′

1
. Here we can

choose

c1 = c2
1 =

c1
1

16
and c2 = c2

2 =
c1
2

2η1
.

Mv2 is the Mi guaranteed in the lemma. Note that technically this Mv2 is
not the whole Mv2 in Gbp, but it is restricted to Gbp|A′

1×B′
1
. Denote Mv2 =

(A2,B2) where A2⊂Xr−1,B2⊂Xr.
We continue in this fashion, satisfying

A1 ⊃ A′
1 ⊃ A2 ⊃ A′

2 ⊃ · · ·

and

B1 ⊃ B′
1 ⊃ B2 ⊃ B′

2 ⊃ · · · .

Assume that Mvj = (Aj ,Bj) is already defined where Aj ⊂ Xr−1,Bj ⊂ Xr.
Futhermore, we have A′

j ,B
′
j ⊂V (Mvj ) such that

• (A′
j ×B′

j)∩Mvj =∅,
• |A′

j |= |B′
j |≥ηj(|A′

j−1|+ |B′
j−1|),

•
∣∣∣E

(
Gbp|A′

j×B′
j

)∣∣∣≥ cj
1
4 |A′

j ||B′
j |.

To obtain Mvj+1 we apply Lemma 2 for Gbp|A′
j×B′

j
. We can choose

c1 = cj+1
1 =

cj
1

16
and c2 = cj+1

2 =
cj
2

2ηj
.

Mvj+1 is the Mi guaranteed in the lemma. Denote Mvj+1 =(Aj+1,Bj+1). We
continue until Mv1 , . . . ,Mvl

are selected.
Next using these matchings Mvj we will select a set of p vertices spanning

at least s r-edges of H, implying that F contains a member of G(r)(p,s).

Lemma 3. For any 1≤ i≤ l=�log2 s�+1, let Gi be the graph obtained from

bipartite graph
(
Xr−1,Xr,

⋃i
j=1 Mvj

)
by removing all components which do

not contain a vertex of Ai∪Bi. The vertices of Gi are partitioned into |Mvi |
trees, each with 2i−1 edges.
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Proof. We use induction on i. For i=1, G1 is just Mv1 , and each tree of G1

has one edge. We assume the lemma to hold for i−1. Each endpoint of each
edge e∈Mvi is in Ai−1∪Bi−1 and thus by the inductive hypothesis belongs
to exactly one tree of Gi−1, and each of these trees has 2i−1−1 edges. Edge
e, along with the two trees it joins, comprise a new tree with 2i−1 edges.

Lemma 4. There exist l+s+1=�log2 s�+s+2 vertices in H∗ which span
at least s 3-edges.

Proof. In case s=2l−1, then the l=�log2 s�+1 vertices {v1, . . . ,vl} and the
s+1 vertices of a tree τ in Gl span at least s 3-edges of H∗. Otherwise, we
just remove leaves of τ until a total of s edges (and s+1 vertices) are left.
Then again the l=�log2 s�+1 vertices {v1, . . . ,vl} and the s+1 vertices left
in τ span at least s 3-edges of H∗.

For each of the s 3-edges in H∗ assured by Lemma 4, we add the r−3
other vertices of an edge in the original hypergraph H which contains it. So
the s(r−2)+2+�log2 s�=p vertices span at least s edges, implying that F
contains a member of G(r)(p,s).

This completes the proof of Theorem 1.
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[4] P. Erdős: Problems and results on graphs and hypergraphs: similarities and dif-
ferences, in Mathematics of Ramsey Theory (J. Nešetřil, V. Rödl, eds.), pp. 12–28,
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