AN EXTENSION OF THE RUZSA-SZEMERÉDI THEOREM

 GÁBOR N. SÁRKÖZY, STANLEY SELKOWReceived February 20, 2002
Revised February 18, 2004

We let $G^{(r)}(n, m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and $f^{(r)}(n, p, s)$ is the smallest m such that every member of $G^{(r)}(n, m)$ contains a member of $G^{(r)}(p, s)$. In this paper we are interested in fixed values r, p and s for which $f^{(r)}(n, p, s)$ grows quadratically with n. A probabilistic construction of Brown, Erdős and T. Sós ([2]) implies that $f^{(r)}(n, s(r-2)+2, s)=\Omega\left(n^{2}\right)$. In the other direction the most interesting question they could not settle was whether $f^{(3)}(n, 6,3)=o\left(n^{2}\right)$. This was proved by Ruzsa and Szemerédi [11]. Then Erdős, Frankl and Rödl [6] extended this result to any r : $f^{(r)}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$, and they conjectured ([4], [6]) that the Brown, Erdős and T. Sós bound is best possible in the sense that $f^{(r)}(n, s(r-2)+3, s)=o\left(n^{2}\right)$.

In this paper by giving an extension of the Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) we show that indeed the Brown, Erdős, T. Sós Theorem is not far from being best possible. Our main result is

$$
f^{(r)}\left(n, s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor, s\right)=o\left(n^{2}\right) .
$$

1. Introduction

1.1. Notation and definitions

For basic graph concepts see the monograph of Bollobás [1]. We let $V(G)$ and $E(G)$ denote the vertex-set and the edge-set of the graph G, and (A, B) or (A, B, E) denote a bipartite graph $G=(V, E)$, where $V=A \cup B$, and $E \subset A \times B$. In general, given any graph G and two disjoint subsets A, B of $V(G)$, the pair (A, B) is the graph restricted to $A \times B . N(v)$ is the set of

[^0]neighbors of $v \in V$. Hence the size of $N(v)$ is $|N(v)|=\operatorname{deg}(v)=\operatorname{deg}_{G}(v)$, the degree of v. For a vertex $v \in V$ and set $U \subset V-\{v\}$, we write $\operatorname{deg}(v, U)$ for the number of edges from v to U. We denote by $e(A, B)$ the number of edges of G with one endpoint in A and the other in B. For non-empty A and B,
$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$
is the density of the graph between A and B.
Definition 1. The pair (A, B) is ε-regular if
$$
X \subset A, Y \subset B,|X|>\varepsilon|A|,|Y|>\varepsilon|B|
$$
imply
$$
|d(X, Y)-d(A, B)|<\varepsilon
$$
otherwise it is ε-irregular.
A hypergraph \mathcal{F} is called k-uniform if $|F|=k$ for every edge $F \in \mathcal{F}$. A k-uniform hypergraph \mathcal{F} on the set X is k-partite if there exists a partition $X=X_{1} \cup \ldots \cup X_{k}$ with $\left|F \cap X_{i}\right|=1$ for every edge $F \in \mathcal{F}$ and $1 \leq i \leq k$.

1.2. Turán-type hypergraph problems

We let $G^{(r)}(n, m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and let $f^{(r)}(n, p, s)$ be the smallest m such that every member of $G^{(r)}(n, m)$ contains a member of $G^{(r)}(p, s)$. The determination of $f^{(r)}(n, p, s)$ has been a longstanding open problem. Special cases of this problem appeared in [3] and [5]. For more about Turán-type hypergraph results consult the surveys by Füredi [8] and Sidorenko [12]. In this paper we are interested in fixed values r, p and s for which $f^{(r)}(n, p, s)$ grows quadratically with n.

A probabilistic construction of Brown, Erdős and T. Sós [2] implies that

$$
f^{(r)}(n, s(r-2)+2, s)=\Omega\left(n^{2}\right)
$$

In the other direction the most interesting question they could not settle was whether $f^{(3)}(n, 6,3)=o\left(n^{2}\right)$. This was proved in the celebrated paper by Ruzsa and Szemerédi [11]. Then Erdős, Frankl and Rödl [6] extended this result to any r :

$$
f^{(r)}(n, 3(r-2)+3,3)=o\left(n^{2}\right)
$$

and they conjectured ([4], [6]) that the Brown, Erdős and T. Sós bound is best possible in the following sense:

Conjecture 1.

$$
f^{(r)}(n, s(r-2)+3, s)=o\left(n^{2}\right)
$$

In [6] they also showed that for any $c<2$,

$$
\lim _{n \rightarrow \infty} f^{(r)}(n, 3(r-2)+3,3) / n^{c}=\infty
$$

In this paper by giving an extension of the upper bound of the Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) we show that indeed the Brown, Erdős, T. Sós Theorem is not far from being best possible.

Our main result is the following.
Theorem 1. For all integers $r, s \geq 3$ we have

$$
f^{(r)}\left(n, s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor, s\right)=o\left(n^{2}\right)
$$

In particular for $s=3$ we get the Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) as a special case.

Thus roughly speaking the Brown, Erdős, T. Sós Theorem is best possible apart from a $\left\lfloor\log _{2} s\right\rfloor$ term. However, it still remains open whether one can eliminate this term and prove Conjecture 1 ; for instance, it is still left open whether it is true that $f^{(3)}(n, 7,4)=o\left(n^{2}\right)$. What we do get from our result is that $f^{(3)}(n, 8,4)=o\left(n^{2}\right), f^{(3)}(n, 9,5)=o\left(n^{2}\right)$, etc.

The Erdős, Frankl, Rödl approach was based on the following result: If $n \geq n_{0}(\varepsilon, H)$ and G is an H-free graph on n vertices, then one can remove fewer than εn^{2} edges from G so that the remaining graph is K_{r}-free, where $r=\chi(H)$. This result in turn was proved by using Szemerédi's Regularity Lemma [13].

Another simple proof of $f^{(3)}(n, 6,3)=o\left(n^{2}\right)$ was found later by Szemerédi (see [10]). In this paper we generalize this argument in order to prove our main theorem. Szemerédi used the following result: suppose the edges of an n-vertex graph G are properly colored by at most cn colors, and $|E(G)| \geq$ $c^{\prime} n^{2}$, where c and c^{\prime} are positive constants. If $n \geq n_{0}\left(c, c^{\prime}\right)$, then there is a path in G on 3 edges that gets only 2 colors. In this paper we generalize this argument; we obtain certain trees that get few colors.

In the next section we provide the tools. Then in Section 3 we prove the theorem by reducing the general case to that of $r=3$.

2. Tools

We will use a simple but useful result of Erdős and Kleitman ([7], see also on page 1300 in [9]).

Lemma 1. Every k-uniform hypergraph \mathcal{F} contains a k-partite k-uniform hypergraph \mathcal{H} with

$$
\frac{|\mathcal{H}|}{|\mathcal{F}|} \geq \frac{k!}{k^{k}}
$$

We will also use the following lemma.
Lemma 2. For every $c_{1}>0, c_{2} \geq 1$ there are positive constants η, n_{0} with the following properties. Let G be a graph on $n \geq n_{0}$ vertices with $|E(G)| \geq c_{1} n^{2}$ that is the edge disjoint union of matchings $M_{1}, M_{2}, \ldots, M_{m}$ where $m \leq c_{2} n$. Then there exist an $1 \leq i \leq m$ and $A, B \subset V\left(M_{i}\right)$ such that

- $(A \times B) \cap M_{i}=\emptyset$,
- $|A|=|B| \geq \eta n$,
- $\left|E\left(\left.G\right|_{A \times B}\right)\right| \geq \frac{c_{1}}{4}|A||B|$.

Proof. This lemma can be proved by a fairly standard argument using the Regularity Lemma, we leave it to the reader. A very similar argument can be found in [10].

3. Proof of Theorem 1

Let $r, s \geq 3, p=s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor$ and $l=\left\lfloor\log _{2} s\right\rfloor+1$.
For any constant $c>0$ and sufficiently large n, let $\mathcal{F} \in G^{(r)}\left(n,\left\lceil c n^{2}\right\rceil\right)$. That is, \mathcal{F} is an r-uniform hypergraph with at least $\left\lceil c n^{2}\right\rceil$ edges. We will show that \mathcal{F} must contain a member of $G^{(r)}(p, s)$, i.e., a set of p vertices spanning at least s edges.

Using the Erdős-Kleitman theorem (Lemma 1) we find an r-partite subhypergraph \mathcal{H} of \mathcal{F} with at least

$$
\frac{r!c}{r^{r}} n^{2}
$$

edges. Let X_{1}, \ldots, X_{r} be the vertex classes of this r-partite hypergraph \mathcal{H}. Consider the 3 -uniform hypergraph \mathcal{H}^{*} which is defined by the removal of X_{1}, \ldots, X_{r-3} from the vertex set of \mathcal{H} and from all edges of \mathcal{H}. If a 3-edge (triple) of \mathcal{H}^{*} has multiplicity greater than 1 , then we keep only one edge. Note that every triple has multiplicity less than s. Indeed, otherwise taking a triple with multiplicity at least s and $s r$-edges of \mathcal{H} containing this triple, we get a set of at most

$$
s(r-3)+3<s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor=p
$$

vertices that span at least $s r$-edges, implying that \mathcal{F} contains a member of $G^{(r)}(p, s)$. Then keeping only one edge from each multiple triple in \mathcal{H}^{*} we still have at least

$$
\frac{r!c}{r^{r} s} n^{2}
$$

edges.
Consider first an arbitrary $v \in X_{r-2}$ and the bipartite graph $G_{b p}^{v}$ defined by v between X_{r-1} and X_{r} such that (u, w) is an edge in $G_{b p}^{v}$ if and only if (v, u, w) is a triple in \mathcal{H}^{*}. The maximum degree in $G_{b p}^{v}$ is less than s. Indeed, otherwise taking s edges from a vertex u, the vertex v and the $s r$-edges of \mathcal{H} containing these triples, we get again a set of at most

$$
s(r-2)+2<s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor=p
$$

vertices that span at least $s r$-edges, implying that \mathcal{F} contains a member of $G^{(r)}(p, s)$. Then we can choose a matching M_{v} in $G_{b p}^{v}$ such that

$$
\left|M_{v}\right| \geq \frac{\left|E\left(G_{b p}^{v}\right)\right|}{s}
$$

We take the next $v^{\prime} \in X_{r-2}$ and similarly as above we define $G_{b p}^{v^{\prime}}$ and $M_{v^{\prime}}$, but now from $M_{v^{\prime}}$ we remove all the edges that are already in M_{v}. We continue in this fashion for all the vertices in X_{r-2}. Define the bipartite graph $G_{b p}=\bigcup_{v \in X_{r-2}} M_{v}$. Since every edge of $G_{b p}$ is an edge in fewer than s of the graphs $G_{b p}^{v}$, we have

$$
\left|E\left(G_{b p}\right)\right| \geq \frac{r!c}{r^{r} s^{3}} n^{2}
$$

Next by applying Lemma 2 iteratively in $G_{b p}$, we will find a sequence of matchings $M_{v_{1}}, \ldots, M_{v_{l}}$. From these l matchings, we will construct a tree of $2^{l}-1$ edges in the bipartite graph $\left(X_{r-1}, X_{r}\right)$. Leaves will be removed from this tree until it has s edges. The $s+1$ vertices of this tree, along with the corresponding $l=\left\lfloor\log _{2} s\right\rfloor+1$ vertices of X_{r-2}, are then extended to a member of $G^{(r)}(p, s)$. These l vertices of X_{r-2} account for the gap between Conjecture 1 and Theorem 1. Thus in order to reduce this gap one has to construct trees (or other graphs) of similar size that are built from even fewer matchings.

To obtain $M_{v_{1}}$ we apply Lemma 2 in $G_{b p}$. We can choose

$$
c_{1}=c_{1}^{1}=\frac{r!c}{r^{r} s^{2}} \quad \text { and } \quad c_{2}=c_{2}^{1}=1
$$

$M_{v_{1}}$ is the M_{i} guaranteed in the lemma. Denote $M_{v_{1}}=\left(A_{1}, B_{1}\right)$ where $A_{1} \subset$ $X_{r-1}, B_{1} \subset X_{r}$. Lemma 2 also guarantees that there are $A_{1}^{\prime}, B_{1}^{\prime} \subset V\left(M_{v_{1}}\right)$ such that

- $\left(A_{1}^{\prime} \times B_{1}^{\prime}\right) \cap M_{v_{1}}=\emptyset$,
- $\left|A_{1}^{\prime}\right|=\left|B_{1}^{\prime}\right| \geq \eta_{1} n$,
- $\left|E\left(\left.G_{b p}\right|_{A_{1}^{\prime} \times B_{1}^{\prime}}\right)\right| \geq \frac{c_{1}}{4}\left|A_{1}^{\prime}\right|\left|B_{1}^{\prime}\right|$.

To obtain $M_{v_{2}}$ we apply Lemma 2 again, now for $\left.G_{b p}\right|_{A_{1}^{\prime} \times B_{1}^{\prime}}$. Here we can choose

$$
c_{1}=c_{1}^{2}=\frac{c_{1}^{1}}{16} \quad \text { and } \quad c_{2}=c_{2}^{2}=\frac{c_{2}^{1}}{2 \eta_{1}}
$$

$M_{v_{2}}$ is the M_{i} guaranteed in the lemma. Note that technically this $M_{v_{2}}$ is not the whole $M_{v_{2}}$ in $G_{b p}$, but it is restricted to $\left.G_{b p}\right|_{A_{1}^{\prime} \times B_{1}^{\prime}}$. Denote $M_{v_{2}}=$ $\left(A_{2}, B_{2}\right)$ where $A_{2} \subset X_{r-1}, B_{2} \subset X_{r}$.

We continue in this fashion, satisfying

$$
A_{1} \supset A_{1}^{\prime} \supset A_{2} \supset A_{2}^{\prime} \supset \cdots
$$

and

$$
B_{1} \supset B_{1}^{\prime} \supset B_{2} \supset B_{2}^{\prime} \supset \cdots
$$

Assume that $M_{v_{j}}=\left(A_{j}, B_{j}\right)$ is already defined where $A_{j} \subset X_{r-1}, B_{j} \subset X_{r}$. Futhermore, we have $A_{j}^{\prime}, B_{j}^{\prime} \subset V\left(M_{v_{j}}\right)$ such that

- $\left(A_{j}^{\prime} \times B_{j}^{\prime}\right) \cap M_{v_{j}}=\emptyset$,
- $\left|A_{j}^{\prime}\right|=\left|B_{j}^{\prime}\right| \geq \eta_{j}\left(\left|A_{j-1}^{\prime}\right|+\left|B_{j-1}^{\prime}\right|\right)$,
- $\left|E\left(\left.G_{b p}\right|_{A_{j}^{\prime} \times B_{j}^{\prime}}\right)\right| \geq \frac{c_{1}^{j}}{4}\left|A_{j}^{\prime}\right|\left|B_{j}^{\prime}\right|$.

To obtain $M_{v_{j+1}}$ we apply Lemma 2 for $\left.G_{b p}\right|_{A_{j}^{\prime} \times B_{j}^{\prime}}$. We can choose

$$
c_{1}=c_{1}^{j+1}=\frac{c_{1}^{j}}{16} \quad \text { and } \quad c_{2}=c_{2}^{j+1}=\frac{c_{2}^{j}}{2 \eta_{j}}
$$

$M_{v_{j+1}}$ is the M_{i} guaranteed in the lemma. Denote $M_{v_{j+1}}=\left(A_{j+1}, B_{j+1}\right)$. We continue until $M_{v_{1}}, \ldots, M_{v_{l}}$ are selected.

Next using these matchings $M_{v_{j}}$ we will select a set of p vertices spanning at least $s r$-edges of \mathcal{H}, implying that \mathcal{F} contains a member of $G^{(r)}(p, s)$.

Lemma 3. For any $1 \leq i \leq l=\left\lfloor\log _{2} s\right\rfloor+1$, let G_{i} be the graph obtained from bipartite graph $\left(X_{r-1}, X_{r}, \bigcup_{j=1}^{i} M_{v_{j}}\right)$ by removing all components which do not contain a vertex of $A_{i} \cup B_{i}$. The vertices of G_{i} are partitioned into $\left|M_{v_{i}}\right|$ trees, each with $2^{i}-1$ edges.

Proof. We use induction on i. For $i=1, G_{1}$ is just $M_{v_{1}}$, and each tree of G_{1} has one edge. We assume the lemma to hold for $i-1$. Each endpoint of each edge $e \in M_{v_{i}}$ is in $A_{i-1} \cup B_{i-1}$ and thus by the inductive hypothesis belongs to exactly one tree of G_{i-1}, and each of these trees has $2^{i-1}-1$ edges. Edge e, along with the two trees it joins, comprise a new tree with $2^{i}-1$ edges.

Lemma 4. There exist $l+s+1=\left\lfloor\log _{2} s\right\rfloor+s+2$ vertices in \mathcal{H}^{*} which span at least s 3-edges.

Proof. In case $s=2^{l}-1$, then the $l=\left\lfloor\log _{2} s\right\rfloor+1$ vertices $\left\{v_{1}, \ldots, v_{l}\right\}$ and the $s+1$ vertices of a tree τ in G_{l} span at least $s 3$-edges of \mathcal{H}^{*}. Otherwise, we just remove leaves of τ until a total of s edges (and $s+1$ vertices) are left. Then again the $l=\left\lfloor\log _{2} s\right\rfloor+1$ vertices $\left\{v_{1}, \ldots, v_{l}\right\}$ and the $s+1$ vertices left in τ span at least $s 3$-edges of \mathcal{H}^{*}.

For each of the $s 3$-edges in \mathcal{H}^{*} assured by Lemma 4, we add the $r-3$ other vertices of an edge in the original hypergraph \mathcal{H} which contains it. So the $s(r-2)+2+\left\lfloor\log _{2} s\right\rfloor=p$ vertices span at least s edges, implying that \mathcal{F} contains a member of $G^{(r)}(p, s)$.

This completes the proof of Theorem 1.

References

[1] B. BollobÁs: Extremal Graph Theory, Academic Press, London, 1978.
[2] W. G. Brown, P. Erdős and V. T. Sós: Some extremal problems on r-graphs, in New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, pp. 55-63, Academic Press, New York, 1973.
[3] W. G. Brown, P. Erdős and V. T. Sós: On the existence of triangulated spheres in 3-graphs and related problems, Periodica Mathematica Hungarica 3 (1973), 221-228.
[4] P. Erdős: Problems and results on graphs and hypergraphs: similarities and differences, in Mathematics of Ramsey Theory (J. Nešetřil, V. Rödl, eds.), pp. 12-28, Springer Verlag, Berlin, 1990.
[5] P. Erdős: Extremal problems in graph theory, in Theory of graphs and its applications (M. Fiedler, ed.), pp. 29-36, Academic Press, New York, 1964.
[6] P. Erdős, P. Frankl and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113-121.
[7] P. Erdős and D. J. Kleitman: On coloring graphs to maximize the proportion of multicolored k-edges, J. of Combinatorial Theory 5 (1968), 164-169.
[8] Z. Füredi: Turán-type problems, Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., A. D. Keedwell, ed., Cambridge Univ. Press (1991), 253-300.
[9] R. L. Graham, M. Grötschel and L. Lovász: Handbook of Combinatorics, Elsevier Science B.V., 1995.
[10] J. Komlós and M. Simonovits: Szemerédi's Regularity Lemma and its applications in graph theory, in Combinatorics, Paul Erdős is Eighty (D. Miklós, V. T. Sós and T. Szőnyi, eds.), pp. 295-352, Bolyai Society Mathematical Studies, Vol. 2, Budapest, 1996.
[11] I. Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles, in Combinatorics, Keszthely, 1976, Coll. Math. Soc. J. Bolyai 18 Volume II., pp. 939-945.
[12] A. F. Sidorenko: What we do know and what we do not know about Turán numbers, Graphs and Combinatorics 11 (1995), 179-199.
[13] E. Szemerédi: Regular partitions of graphs, Colloques Internationaux C.N.R.S. № 260 - Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399-401.

Gábor N. Sárközy

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609
USA
gsarkozy@cs.wpi.edu

Stanley Selkow

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609
USA
sms@cs.wpi.edu

[^0]: Mathematics Subject Classification (2000): 05C65, 05C70

