
An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-1

Abstract

Mirroring (creation of remote copy) of WWW
hypermedia documents is discussed. First a Portable
Hypermedia Document (PHM) format is defined.
Mirroring service and a software environment for
mirroring are introduced. Mirroring environment
automatizes the process of mirroring and transforms
WWW hypermedia documents into PHM format. The
algorithm and the architecture of the environment of
mirroring service are described in detail.

I. Introduction

The World Wide Web (WWW) is a networked
hypermedia architecture [1], [4], joining millions of
documents together nowadays via hypertext links.
Documents are stored on server machines and client
software running on practically any kind of net-
worked computer is used to retrieve documents
through Internet.

Mirroring in the Internet jargon means the cre-
ation of a remote copy for some data or complete
hypermedia documents. This technique is used for
information that is very popular or served via low-
speed connections. It can help to decrease network
traffic over the Internet backbone. Various techniques
of mirroring work well for other types of Internet ser-
vices such as FTP [9] or USENET News and have
enormous significance in the area of World Wide
Web that generates most traffic of all services over
the Internet. Although there exist a few public
domain scripts for WWW mirroring [10], the topic is
in a somewhat premature state according to the
evolving needs of the society of Internet. This can be
caused by the spread of WWW caches.

I.A. Caching versus Mirroring

Caching on Internet is similar to disk caching on
computers. Caches serve the recently viewed docu-
ments to avoid repeated download of the same data.
The following table shows the differences in func-
tionality between caching and mirroring.

Caching is an on-request dynamical technique
whilst mirroring is static, request-independent man-
ner of document access speedup. In case of caching
document is downloaded at the time of the first
request. The second and next requests are served
locally. In mirroring, the documents are downloaded

before any requests and requests (including the first)
are locally served. 

Caching generates a low profile, permanent traf-
fic. Mirroring generates "burst-like" traffic, short
heavily loaded periods and long, silent periods. Inter-
net night traffic is usually much lower than in daily
hours, mirroring could make less traffic and less trou-
ble in daytime.

Mirroring downloads all coherent documents,
caching doesn't. In this case mirroring is useful when
the documents are big and/or the connection is too
slow to download documents on request.

If documents are downloaded in the mirroring
scheme, data are persistent. Caching has temporal
documents, if the cache-buffer is filled, it will throw
out some data. Mirroring makes you sure to have the
document locally.

Under mirroring the allocated disk space is static,
not changing. Under caching this size is dynamically
changing. There are various cache-techniques, utili-
zation of disk space is heavily depends on it.

The goal of using caching is an overall perfor-
mance improvement. Mirroring is frequently used
when fast access is needed on some given docu-
ments.

These two techniques can be used together,
because they speed up different types of requests. For
browsing the Internet, caching is a better choice. But
if something important is needed to access at any
time, mirroring is necessary, because only mirroring
ensures the documents to have locally. For example,
if some programs or programming languages have
descriptions, FAQs, tutorials, etc. in HTML-format,
and you want to use that, it is simpler to mirror docu-
ments in a night hour than downloading document
one-by-one on requests.

As a result one can conclude that caches do not
copy WWW documents completely, and therefore
caches are not able to provide a true secondary loca-
tion of a document with a high degree of availability.
For this one need solutions for mirroring. The pro-
cess of mirroring should be an intelligent and auto-
matic task. As a side effect the exchange of complex
HTML documents over the Internet would be easier.

In section 2 the nature of WWW links is
described. Section 3 concentrates on the portability
of complex HTML documents. The mirroring algo-
rithm and the environment are presented in section 4. 

An Environment for Mirroring Hypermedia Documents

László Kovács <laszlo.kovacs@sztaki.hu>

András Micsik <micsik@sztaki.hu>

Gábor Schermann <schermann@sztaki.hu>

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48281585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-2

II. Links in HTML documents

II.A. Standard notation of hypermedia links 
on the Internet

The language of World Wide Web documents is
called Hypertext Markup Language [5]. Links in
HTML files are expressed with Uniform Resource
Locators [11] which give the information for a
WWW client that is needed to retrieve the linked
document. A URL has the following general syntax: 

<protocol name>:<server descriptor>

<local descriptor>

where protocol name can be substituted with ftp,
gopher, news, telnet, mailto or http. HTTP stands for
Hypertext Transfer Protocol, the data transfer proto-
col of WWW [6]. Server descriptors consist standard
IP machine names optionally accompanied by port
numbers. Local descriptors provide the address for a
part of the service inside the server, thus their format
is specific to the protocol chosen. When it is mean-
ingless, either the server or the local descriptor is
omitted. Examples for the different types of URLs:

mailto:micsik@sztaki.hu

news:comp.sys.next.announcements

telnet://www.sztaki.hu:80

gopher://gopher.eunet.hu/00/ripe/About-ripe

ftp://ftp.sztaki.hu/pub/unix/INDEX

http://www.sztaki.hu/sztaki/contactinfo.html

II.B. Links between nodes of the World 
Wide Web

The http-URLs are discussed in more detail, since
replicating other types of Internet services is not our
intention yet. An http-URL can point at different
types of data:

• hypertext file

http://www.sztaki.hu/sztaki/contactinfo.html

• section of a hypertext file

http://www.sztaki.hu/sztaki/contactinfo.html-
phones

• in-line image

http://www.sztaki.hu/pictures/logo.gif

• files of other types

http://www.sztaki.hu/papers/TR95-1.ps

• executables

http://www.sztaki.hu/cgi-bin/news.pl?comp.sys

The server response header contains the appropri-
ate MIME type of the response content. This informs
the client how to handle the content of the down-
loaded document. The client either presents it or acti-
vates the proper viewer application to display the
content.

Generally a file path information is provided in
the URL as a part of the local descriptor. In this case
the information on a WWW server is stored on a per
file basis inside the operating system’s file system.
The file path points to a file, the type of which can be
deduced from the file name suffix. These suffices are
mapped to appropriate MIME types which travel
together with the content of the file to the client
application. 

II.C. Links to executable files

If an URL points at an executable file according
to the configuration of the server, that file is exe-
cuted, and the results are transferred to the client.
This mechanism is done via the Common Gateway
Interface [2]. CGI programs are recognized either by
their suffix or by residing in CGI directories. Parame-
ters can be passed to the script in two ways of which
only that case is interesting for us, when parameters
are encoded into the URL, just after the file path.
Parameters are separated from the file path with a
question mark. Even the file path may contain para-
metric information, the so-called extended path info,
which starts right after the path of the program. For
example:

http://www.sztaki.hu/cgi-bin/imagemap/sztaki/
2ndfloor.map?12,12

this means that the cgi-bin/imagemap program is
called with the extended path info of sztaki/2ndfloor.-
map and parameters 12,12. This CGI program han-
dles clickable images. The parameter sztaki/
2ndfloor.map points at the map file containing the

 

Caching Mirroring

Time of downloading On the first request Before the first request

Downloading Partial documents Complete documents

Data persistence Temporal Persistent

Network load Evenly spread Burst-like

Allocated disk space Dynamically changing Static

Usage Overall performance improvement Fast access on a per document basis



An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-3

data of clickable areas on the image. The parameter
12,12 is the coordinates of the actual click.

According to present Web server software and
their current usage, to decide whether a link is to an
executable or to a solid file is not always possible.
There are cases when neither any of the special suf-
fices nor the parameter part are present, usually when
the server has special directories containing CGI pro-
grams. There is no way to find out which are these
directories on a server. The hidden danger for a mir-
roring program is to regard the output of a CGI pro-
gram as a stationary file and thus creating a false
mirror. Therefore it would be desirable to distinguish
executables from other files by their suffices. 

II.D. Absolute and relative links

Abbreviations of URLs are called relative links,
where omitted parts of the URL are copied from the
URL of the referencing document. In accordance to
this an URL is qualified as absolute when all seman-
tic parts of it are present. So let us consider this abso-
lute URL:

http://www.sztaki.hu/sztaki/contactinfo.html

And have a look at some of its possible relative
representations:

contactinfo.html (from the same directory)

/sztaki/contactinfo.html (from the same server)

//www.sztaki.hu/sztaki/contactinfo.html (with 
the same protocol)

In relative URLs one can also use the .. notation
for the parent directory:

../../divisions/afe.html

An important property of URLs is that any URL
can be converted from relative to absolute and vice
versa regarding the URL of its referencing page.

III. Portable hypermedia documents

III.A. Structure of HTML documents

An HTML document could be considered as a set
of files, and a set of links. The file set contains all
files needed for the document. Files are generally
HTML hypertexts but other file formats can occur as
well. The link set can be split as real hypertext links,
links for in-line images and links for executables or
for other Internet protocols. The link set can also be
split according the destination of the link, so outside
links pointing out of the file set and inside links are
distinguished.

III.A.1. Link structure

The link structure of an HTML document is rep-
resented by vertices as files and edges as links possi-
bly labeled with a position inside the file. The most
important feature of this directed graph is a way of

connectedness, that in most cases all vertices are
accessible via edges from a root vertex or call it an
entry point. This is not a syntactical rule rather a
semantic requirement otherwise the document can be
considered as buggy or useless.

III.A.2. Storage structure

There is another secondary structure of an HTML
document which we call storage structure. It repre-
sents how the file set is stored in the directory hierar-
chy of a file system. This structure is claimed to be
secondary because this structure need not be revealed
for the user and does not make an impact on the
usage of the document.

Usually HTML format links are given with the
help of the storage structure, so the link structure and
the storage structure become closely related. How-
ever the storage structure of an HTML document can
be modified while the link structure remains the
same.

III.B. Idea of Portable Hypermedia

Generally moving of hypermedia documents con-
sisting of several files corrupts the links inside them.
Correction can be time-consuming (manual) work. A
portable format for hypertext documents is needed.
Documents in this format is freely movable inside
file systems or between machines. Furthermore it can
be served without changes from any WWW server or
can be archived (compressed). This issue is sponta-
neously raised by some webmasters, and similar
effort can be seen in Rohit Khare’s eText software
[7], but there isn’t a well-established and standard-
ized format yet.

A PHM is a directory or an archive containing the
document file set, and a set of associated parameters.
Parameters may contain: title, authors, copyright,
abstract, entry point, file format descriptions, file for-
mat statistics etc. Minimally the entry point should
be present. The included document file set has to
meet the following requirements:

1. URLs pointing at files inside the file set are 
relative

2. URLs pointing outside the file set or referring 
to other Internet protocols are absolute

A set of different operations can be defined on
PHM such as flattening the directory hierarchy of the
file set or masking out some types of files (images,
movies, sounds, etc.) from the file set. PHM format is
to be used in our mirroring software environment for
representing the result.

IV. A software environment for mirroring

A robust mirroring software was built with a
clearly specified behavior and an extendible architec-



An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-4

ture. First the two-phase mirroring algorithm is pre-
sented. After the architecture of the software
environment is discussed.

IV.A. Two-phase mirroring algorithm

The mirroring algorithm navigates on the link
structure of the HTML files which is a directed
graph, so it is natural to use a specialized graph
search as skeleton algorithm. The input of the proce-
dure is an URL serving as an entry point of the result.
The result is given in PHM format which will be
moved to the desired final location.

The algorithm has two phases: first phase is
downloading all related document files and in the
second phase (relocation) the URLs are converted.
The first phase operates with an URL set to be pro-
cessed. This contains the URL of the entry point
when the process is started. When a file is retrieved,
links are extracted from it, analyzed and placed into
the URL set. The next URL to be downloaded is cho-
sen from the set, and that is the point where heuris-
tics can be applied in determining the order of the
retrievals. Retrievals are logged with enough infor-
mation to handle time-outs, or fatal errors. In case of
time-outs the retrieval is attempted again later. If the
mirroring process is broken, it can be resumed at that
point where the abort occurred, so earlier processing
is not wasted.

The conversion of links takes place in the second
phase after the retrieval of all files is finished and the
URL set is empty. Then all URLs are analyzed again
and converted to relative or absolute according the
rules of PHM. This operation is called relocation of
links. Postponing relocation after the retrieval phase
has advantages: first it can be checked if the file
pointed at by a local link exists, second it is easier to
add several types of relocations or combine it with
other operations on PHMs.

The skeleton of the algorithm:

program Mirror 
(input: root-URL, options; output: result-PHM) 

Initialize URL set
Check remote server's limitations for robots
while URL set is not empty do

Choose next URL for retrieval from the set 
(heuristics)
Retrieve document for selected URL
Handle errors, write log
if document is successfully downloaded 
then

if document has links then
Select URLs to download, 
convert them to absolute, 
add them to URL set

end if
Store document

end if
end while

for every retrieved document with links do
Convert links to relative where necessary

end for
Create PHM as output

end program

IV.A.1. Classification of URLs with respect 
to retrieval

The program has to decide which files are to be
downloaded and which files are not. The first limiting
factor is a de facto standard on World Wide Web.
Servers maintain a list of forbidden areas in their
document space. This list is stored in a file called
robots.txt at the root of the document space. Opera-
tions of automatic network retrieval processes (net-
work robots) have to be limited compared to human
users on Web servers, because robots can destroy the
performance of the server by unintelligent repeating
retrievals at high speed. For example robots can step
into an infinite retrieval loop. This can be due to a
bug or failing to recognize that they are retrieving
documents generated by CGI programs. Falling into
the robot category, our algorithm has to check the
limitations for robots on the server.

Another limitation is that mirroring is done only
via HTTP, all other types of URLs remain unproc-
essed. The functionality to handle multiple protocols
can be added, but the result is questionable. One
solution could be to integrate files retrieved via other
protocols into the PHM, so from the mirror side they
would be served via HTTP.

If an URL matches the above criteria, there are
still two kinds of information which normally cannot
be retrieved via HTTP: CGI programs and maps for
clickable images. Therefore requests for these ser-
vices are not mirrored but forwarded to the original
host from the mirror site. With HTML 3.0 separate
imagemap files will not be needed. CGI programs
seem to be irrelevant to mirror, but still the safe iden-
tification of links to CGI programs is needed. A pos-
sible solution would be to standardize a set of
suffices for CGI programs.

Also there are options which control the location
and formats to be mirrored. A scope is given for
determining the locations, URLs outside of the scope
are not mirrored. Usually the scope is the directory of
the entry point. Other scopes can be: the server of the
entry point or several directories on a server. For the
formats either wanted or unwanted file types are
listed. This way one can mirror a document without
images or without Postscript files, etc.

IV.A.2. Choosing the next URL to download

Document images should be downloaded right
after the document itself. After the images a URL is
chosen from the set applying heuristics. The set
includes those links as well for which the retrieval
failed with a time-out. The retrieval for these links



An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-5

should be retired after well chosen intervals. Heuris-
tics should take into account the actual behavior of
network traffic and the user’s expectations. The pos-
sible positive effects of using depth-first, width-first
or more elaborate heuristic strategies under certain
circumstances should be investigated.

IV.B. Architecture of the software environ-
ment

The environment provides services such as mir-
roring on-demand, timed mirroring, continuous mir-
roring. Mirroring on-demand can be initiated by any
user. The environment collects the required docu-
ment and sends it to the user in a PHM archive.
Timed mirroring is a preprogrammed task where the
document is downloaded at a preset time. This can
help to perform mirroring in a low traffic period on
the network. Continuous mirroring maintains stable
copy of a changing document. This is achieved by
intelligently repeated mirroring updates. During an
update only the modified files are retrieved and put
into the existing mirrored document.

The user interface for the environment is imple-
mented as a set of WWW forms. The user can set the
address (URL) of the requested document, the
options for the mirroring software and the options for
the result document format and the mode of delivery. 

For continuously mirrored documents the pre-
ferred rate and time of the refreshment can be config-
ured together with the previously mentioned options.
A mirror scheduler is responsible for the control of
the timed mirroring tasks. Every completed operation
is logged, which is used when a broken mirroring is
restarted. The mirror-log is stored and analyzed, if
necessary, the next mirroring is rescheduled or the
administrator is notified of the abnormal completion
of the process. The following figure illustrates the
elements of the environment.

IV.C. Experiences

Using the mirroring environment approximately
15 Internet sites have been mirrored, transferring 150
Megabytes of information.

One of the problems during the usage, was the
lack of information about remote server's storage
structure and conventions. It is embarrassing when
the directory-index file (index.html by convention) is
renamed and is referred with full name and with
directory-referencing at the same time. Also, the
server limitations for CGI programs mentioned in
4.1.1 (robots.txt) was missing several times.

The solution could be an improvement for HTTP
protocol. For example, there could be a request to
server like 'NNN Show server conventions'. The
answer would be a text, each line containing a 'vari-
able=value' pair, like 'directory-index=index.html' or
'binary-directory=/cgi-bin'. This should be cleared

and a practical description should be made.
Another problem is the image-maps in HTML-2.

Every image-map has a description which cannot be
retrieved, so if the user clicks the map, a request is
sent to the original site. The answer could be any-
thing, e.g. HTML pages with links. These links could
not be mirrored. In HTML-3 this problem is solved,
the HTML-3 specification contains a well-defined
manner of inserting an image-map into a HTML doc-
ument, and in this way all points can be followed.

Perpetual usage of the program raised the prob-
lem of handling together downloaded Portable
Hypermedia documents. If a document has a link to
another document, and both are mirrored, but sepa-
rately, the link in the local mirror will point to origi-
nal place. One could expect that the link in the mirror
points to the other mirrored document. To handle this
problem, the idea of “mirrorspace” could be defined,
which is a set of PHM-s, where links between PHM-
s are converted to relative. Maintaining mirrorspace
can be difficult. If one or more documents (text or
image) are added to it, each existing document
should be revised whether it have links to the added
documents. Similarly, the newly added HTML docu-
ment should be checked for every documents in other
PHM-s. Deletion of one or more documents raises
the same problem. These operations are very
resource-demanding, takes a lot of time and data
transfer. If one could solve these problems, the mir-
rorspace could be a good way of future development.

However, the program could be accelerated. Two
passes of the algorithm could run in parallel. Parallel
programming language implementation would be
faster. Pass one (downloading the documents) could
be divided by the URLs as each task retrieves an
URL. There could be a limit for the number pro-
cesses running at the same time, because this action
burdens both the remote server and the network con-
nection. Pass two (relocating) is an operation exe-
cuted on pairs of elements of URL-sets, so it can be
scheduled on URL-pairs. 

V. Summary

A mature algorithm for mirroring and a standard-
ized portable hypermedia format can ease the distri-
bution of hypermedia documents through the World
Wide Web. In this paper a two-phase mirroring algo-
rithm was developed. The algorithm is able to create
remote copy of a complex HTML document stored in
another WWW server. The algorithm results the mir-
rored document in a portable hypermedia format
(PHM) defined in this paper as well. Hypermedia
documents in PHM format can be transferred with no
need for further semantic transformations.

A software environment based on the previously
mentioned algorithm for mirroring hypermedia docu-
ments was built. The environment provides different



An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-6

high-level, intelligent automatic mirroring services
via usual WWW interface (set of forms). The proper
use of this software environment can decrease the
network load during peak periods and can increase
the accessibility of selected hypermedia documents.

The mirroring technique developed here can be
the first step in the direction of introducing a separate
protocol and/or protocol extension for mirroring pur-
poses similar to that was proposed in [8].

VI. References

[1] Tim Berners-Lee, Robert Cailliau, Jean-Fran-
cois Groff, Bernard Pollermann: “World-Wide 
Web: the Information Universe”, Electronic 
Networking, Vol. 2. No. 1.

[2] Rob McCool: The CGI Specification, URL: 
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

[3] Douglas E. Comer: Internetworking with TCP/
IP, Volume I., Prentice Hall International Edi-
tions, 1991 

[4] Andrew Ford: Spinning the Web, How to pro-
vide Information on the Internet, International 
Thomson Publishing, 1995 

[5] Hypertext Markup Language, URL: http://
www.w3.org/hypertext/WWW/MarkUp/Mark-
Up.html 

[6] Hypertext Transfer Protocol, URL: http://
www.w3.org/hypertext/WWW/Protocols/Over-
view.html 

[7] Rohit Khare: “eText: An Interactive Hyperme-
dia Publishing Environment“ Proceedings of 
ACM Hypertext’93 - Demonstrations

[8] László Kovács, András Micsik: Replication 
within Distributed Digital Document Libraries. 
Proceedings of the 8th ERCIM Database 
Research Group Workshop on Database Issues 
and Infrastructure in Cooperative Information 
Systems, Trondheim, Norway, 1995

[9] L. McLoughlin et.al: Mirror - Mirror Packages 
on Remote Sites (UNIX man-pages)

[10] Oscar Nierstrasz, Gorm Haug Eriksen, Karl 
Guggisberg: w3mir, URL:ftp://sauce.uio.no/
pub/src/w3mir

[11] WWW Names and Addresses, URIs, URLs, 
URNs, URL: http://www.w3.org/hypertext/
WWW/Addressing/Addressing.html

Logging

Selecting next URL

Error registration

Document parsing

Store/Load files
locally

Download files over
the network

Limitation check

M
i
r
r
o
r
i
n
g

M
i
r
r
o
r

S
c
h
e
d
u
l
e
r

U
s
e
r

I
n
t
e
r
f
a
c
e

URL set
with status,
format, etc.

File set

Server
limitations

Log

Relocation



An Envorinment for Mirroring Proceedings of JENC7 L. Kovács

142-7

Author Information

László Kovács works for the MTA SZTAKI, the
Computer and Automation Institute of the Hungarian
Academy of Sciences, as head of Distributed Sys-
tems Department. After his study he was involved in
different projects in the areas of computer network
protocol specifications, verifications and implemen-
tations. During his career he taught years in different
foreign universities and research establishments
including the University of Delaware, Newark/Dela-
ware/USA and the Ecole Normale Supérieure de
Cachan, Cachan/France. During the last years, his
interests include research and development of distrib-
uted applications, World Wide Web services, CSCW,
groupware systems, distributed digital library sys-
tems. At present, multimedia services, audio/video
conferencing and virtual art are also included in his
professional activities. 

András Micsik works for the Distributed Sys-
tems Department of MTA SZTAKI. His activities
include design and implementation of World Wide
Web services, setting up audio and video conference
environments, and teaching different Internet tech-
nologies at the application level. He is a Ph.D. stu-
dent in Computer Science at Eötvös Loránd
University, Budapest, where he got his M.Sc. degree
in 1992. His research topics is about distributed digi-
tal libraries. 

Gábor Schermann studies for his M.Sc. degree
in Computer Science. at Eötvös Loránd University,
Budapest. He also works for Distributed Systems
Department, MTA SZTAKI. He is involved in imple-
menting World Wide Web services as well as algo-
rithms for digital libraries. 


