
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2021

METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR

KUBERNETES SINGLE-INSTANCE SERVICES KUBERNETES SINGLE-INSTANCE SERVICES

Tim Kuik

Matthew Chou

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Kuik, Tim and Chou, Matthew, "METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR KUBERNETES
SINGLE-INSTANCE SERVICES", Technical Disclosure Commons, (December 07, 2021)
https://www.tdcommons.org/dpubs_series/4770

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4770?utm_source=www.tdcommons.org%2Fdpubs_series%2F4770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6692

METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR KUBERNETES
SINGLE-INSTANCE SERVICES

AUTHORS:

Tim Kuik
Matthew Chou

ABSTRACT

Services that were originally designed to run as a single-instance are unable to be

run within a high availability model, which is expected in a clustered environment.

Presented herein are techniques through which single-instance services can be converted

into multi-instance services without any changes to their binary service logic. This provides

an immediate benefit in providing a higher level of availability for any Kubernetes single-

instance service.

DETAILED DESCRIPTION

During operation in a network environment, if a node upon which a single-instance

service is running fails, the service would be unavailable until the node outage is detected

and the service is brought up to a functioning state on a different node in the cluster. In

some instance, it has been observed on some cloud platforms that recovery from a (virtual)

node outage can take up to 20-30 minutes. Thus, it would be advantageous to mimic the

functionality and benefits of high availability services in order to minimize downtime,

without touching the original service at all.

In many network service implementations, there are often a number of services that

are not yet multi-instance capable. With Kubernetes, it has been discovered that it can take

minutes to detect node outages, and potentially several minutes on some cloud platforms.

One solution is to make all services multi-instance, however, this takes time and, in some

rare cases, perhaps some services will remain single-instance. In order to improve the

availability for this category of services, this proposal provides a method that allows single-

instance services to run in an active/standby mode without any change to the service logic

itself.

2

Kuik and Chou: METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR KUBERNETES SINGLE-INST

Published by Technical Disclosure Commons, 2021

 2 6692

The solution proposed herein may or may not leverage the use of a sidecar to

determine a leader for a service. The service instance that is elected will be the active one.

All other services will be run in a standby mode. Thus, the method essentially provides a

wrapper for the service that monitors for leadership changes, which is run on a per-service

basis. The leader instance is activated while the other instances remain as a hot standby.

When an active service's role changes from active to standby, it is guaranteed that the

deployable unit, such as the POD containing the service, is restarted, so that the service is

brought to an acquiesced state. Figure 1A illustrates example details associated with the

method of this proposal, which is discussed in further detail below, and Figure 1B

illustrates an exemplary environment in which the method can be utilized involving two

PODs that are alive but only one is ready, such that a first POD (POD1) is active and a

second POD (POD2) is in a standby mode.

Leader‐Election

Active‐Standby?

Liveliness/Readiness

SSL

Service A

Liveliness

APIs

Figure 1A: Example Method Flow

POD1
(Alive, Active)

POD2
(Alive, Standby)

Figure 1B: Exemplary Environment

3

Defensive Publications Series, Art. 4770 [2021]

https://www.tdcommons.org/dpubs_series/4770

 3 6692

Logic associated with the method of this proposal may or may not involve the use

of a leader sidecar. For instances involving a leader sidecar, the sidecar can determine

which instance is the active instance, with the leader being the instance that would be

selected to be active. In either case, a new wrapper script is injected, as needed, to perform

the discussed logic.

The active/standby script can be injected into the service container, which can be

performed at the time of imaging, but it is also be possible to do this dynamically, for

example, with a layer rebuild, leveraging a shared PersistentVolumeClaim (PVC), or other

similar mechanism. This script performs the following functions:

 The Kubernetes POD is monitored to see if it is the leader. When it is the leader,

the service is started. If one were to do this dynamically the old command

would be passed as a new environment (ENV) variable in the specification file

but for the method proposed herein, it is baked into the layer during build time.

 The readiness probe for the POD is altered to allow for the wrapper to handle

the probe. When the POD is the leader, it returns the readiness result from the

service, which is configurable via the service YAML (Yet Another Markup

Language) specification. When the POD is not the leader, the readiness probe

returns that it is not ready so that no other service will send traffic to the POD.

 The liveness probe for the POD is also altered to allow for the wrapper to handle

the probe. When the POD is the leader, it returns the liveness result from the

service, which is configurable via the service YAML specification. When the

POD is not the leader, the liveness probe returns that it is alive.

 To handle the logic when a leader is demoted for some reason, as is generally

applicable in an extended connectivity case, the wrapper also detects this case

and will modify the liveness probe response to return a failure condition so that

the POD is restarted.

 One of the key elements of the method described herein is that there are required

YAML ENV variable declarations that are added to configure how to propagate the probes

for the active service Accordingly, with these changes, the services that are single-instance

are able to become multi-instance without a single modification within the service binary.

4

Kuik and Chou: METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR KUBERNETES SINGLE-INST

Published by Technical Disclosure Commons, 2021

 4 6692

Thus, the method of this proposal provides an immediate benefit in providing a higher level

of availability for any Kubernetes single-instance service.

5

Defensive Publications Series, Art. 4770 [2021]

https://www.tdcommons.org/dpubs_series/4770

	METHOD TO PROVIDE ACTIVE/STANDBY LOGIC FOR KUBERNETES SINGLE-INSTANCE SERVICES
	Recommended Citation

	Microsoft Word - 1512537_1

