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Naturalistic Routing Using Inverse Reinforcement Learning 

ABSTRACT 

This disclosure describes techniques, referred to as naturalistic routing (NR), that 

improve the quality of routes found by map applications by learning from users’ real-world 

navigation actions, accessed with user permission. The techniques leverage the principle that 

users, in the aggregate, tend to travel on optimal routes to reach their destinations. A machine 

learning model is trained using inverse reinforcement learning and provides routes that are 

optimal by the users’ definition of optimality, as determined from a dataset of navigation actions. 
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BACKGROUND 

 Computation of routes in digital map applications is performed by assigning costs to the 

roads interconnecting an origin and a destination and finding a route that optimizes costs. Some 

examples of costs include transit time, bumpiness of road, tolls, distance, etc.  

 However, when looking for directions (without route-finding software), human users 

(cyclists, drivers, walkers, truckers, motorcyclists, etc.) trade off many different criteria, e.g., 
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avoiding traffic, the availability of bicycle lanes (for bicyclists), avoiding hills (for bicyclists, 

pedestrians, and non-motorized road users), etc. It is a priori difficult to build a routing model 

that matches users’ expectations, since the designers of a digital map application may not only be 

unaware of all the criteria but also of the relative importance assigned to the various criteria by 

different users. Manually building a routing model (as is done in route-finding software) not only 

requires a designer to properly account for all observable factors but also to account for factors 

that are not necessarily represented in a data model of the world (e.g., quality of cycling lanes, 

abundance of drivers, scenery, etc.). The problem is made harder by the fact that users 

themselves aren’t necessarily fully aware of the factors that influence their preference for a route 

over another. 

Inverse reinforcement learning (IRL), or inverse shortest-path learning, is a technique 

that enables a machine to learn a behavior by studying user demonstrations. Rather than 

minimize a given cost function, IRL searches for a cost (or reward) function whose minimum 

(maximum) is the observed human behavior. IRL is described in greater detail, for example, in 

[3], while [1] and [2] apply it to route-finding.  

Existing IRL-based route-finding doesn't scale beyond the size of a typical city, whereas 

the route-finding customer can have an interest in finding a continent-spanning route. The 

behavior that existing IRL applications aim to reproduce tends to be simple, e.g., predict the 

behavior of a taxi driver based on about fifteen simple factors such as speed limit and number of 

lanes. There is strong dependency on the accuracy of the dataset of observed routes, e.g., 

sensitivity to noise. 

Existing IRL-based route-finding maximizes the likelihood of routes over all possible 

alternatives or over a static subset of alternatives. Maximizing likelihood over all possible routes 
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is difficult to scale to continent-wide road networks, and historically, has only been implemented 

on networks the size of a small city. Maximizing likelihood over a static subset of alternatives 

can improve scalability but introduces unbounded suboptimality in the learning process. For 

example, the quality of learning depends on the quality of the subset of generated alternatives to 

learn from. For instance, if the alternatives do not contain routes with tolls, then the algorithm is 

not able to learn whether tolls are to be avoided or not. This introduced suboptimality is a 

limitation when routing behavior depends on a large set of factors that are difficult to model. 

Obtaining a dataset that includes location data and can be used for learning is difficult. 

Most current route-finding techniques do not have the capacity to learn routing models in a fully 

privacy-preserving manner. 

DESCRIPTION 

This disclosure describes techniques, referred to as naturalistic routing (NR), that 

improve the quality of routes found by digital map applications based on user-permitted data on 

how users navigate in the real world. The techniques leverage the principle that users, in the 

aggregate, tend to travel on optimal routes to reach their destinations; indeed, the very selection 

of a certain route by a human user over competing routes is an indication of its optimality. A 

machine learning model that reproduces the aggregate behavior of users can thus provide routes 

that are optimal by the users’ definition of optimality.  

NR is a technique that determines a cost function that is such that its optimum 

corresponds to the actual tracks selected by users that have provided permission to access such 

data. It is based on the following components: 

● A dataset of tracks (e.g., sequences of locations obtained by GPS, WiFi triangulation, 

etc.), obtained with user permission, that demonstrate real-world paths selected by users. 
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● A routing engine which generates routes that NR optimizes over. 

● The IRL module which tunes the routing engine using the dataset of tracks. 

 
 

Fig. 1: An example user track from an origin (bottom left) to a destination (top right). The 

blue circles indicate ambiguity in path information: larger diameter circles are more 

ambiguous and vice-versa 

Fig. 1 illustrates an example of a user track from an origin (bottom left) to a destination 

(top right). As indicated by the blue circles, the precision of the location records can change with 

time, and there is some uncertainty in the knowledge of the route the user actually traveled on. 

 

Fig. 2: Naturalistic routing 
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 Fig. 2 illustrates naturalistic routing. For each user track in a dataset of origin-destination 

pairs (202), a routing engine (204) generates multiple alternative routes to travel from the origin 

to the destination of the track. Each route can include roads, sidewalks, bicycle paths, public 

transit, etc., each with its own attributes, e.g., road width, speed, travel time, speed limit, 

weather, bumpiness, etc. Each alternative route is associated with a score, referred to as a mirror 

score, that represents how well the alternative matches the actually selected user track: the higher 

the score, the better the match.  

The goal of the IRL module (206) is to select a route from the routing engine which 

maximizes the mirror score. Optionally, the learned costs from the IRL module may then be used 

to tune the routing engine, which generates new improved alternates, and the entire procedure 

can be repeated. The generation of new alternatives from an increasingly tuned routing engine is 

referred to as outer-loop optimization. The entire optimization procedure may be done with 

differential privacy, ensuring that no user-track information leaks to the tuned routing engine, 

thereby preserving privacy. The reward function that the IRL converges to, whose optimum 

matches the observed paths actually selected by human users, can be used to answer route-

finding queries posed by users. 

Precision of routes and tracks 

 In contrast to existing techniques that maximize the likelihood of reproducing the 

observed, non-ambiguous routes, the described techniques maximize the expected mirror score 

of the alternatives. While existing techniques are predicated on the existence of expensive, high-

quality datasets of routes to learn from, the described techniques decouple the learning process 

from the tracks used to score the alternatives and can handle ambiguous tracks that match 

different alternatives. Thus, the described techniques thus enable learning to occur from data 
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sources with lower precision or quality of routes. In this manner, the described techniques can 

leverage relatively low-quality user tracks (e.g., as obtained from phones carried by users that 

permit use of track data) to build a dataset to learn from in a scalable and cost-effective way 

applicable to diverse regions of the world. 

Learning 

 In contrast to existing techniques that maximize the likelihood of routes over all possible 

alternatives or a static subset of alternatives, the described techniques tune the routing engine 

against a small subset of alternatives and counterbalance the introduced suboptimality by 

continuously including (via the outer loop) new alternatives to re-optimize the routing engine. In 

this manner, the described techniques benefit from the scalability of tuning first against a smaller 

subset of alternatives, then account for factors unaccounted for in previous iterations. The 

described techniques have the advantages of both small subsets of routes as well as global 

optimization over all possible routes. 

 Naturalistic routing, as described herein, uses differential privacy and federated learning 

techniques to learn a routing model without disclosure of user-track (or other user) information. 

The use of federated learning allows learning while location data stays on the user device. 

In this manner, the techniques of naturalistic routing described herein improve the quality 

of directions returned by map applications by learning from actual user demonstrations in a 

scalable, cost-effective, and privacy-preserving manner. 

Further to the descriptions above, a user may be provided with controls allowing the user 

to make an election as to both if and when systems, programs, or features described herein may 

enable the collection of user information (e.g., information about a user’s routes through the 

physical world, a user’s preferences, or a user’s current location), and if the user is sent content 
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or communications from a server. In addition, certain data may be treated in one or more ways 

before it is stored or used so that personally identifiable information is removed. For example, a 

user’s identity may be treated so that no personally identifiable information can be determined 

for the user, or a user’s geographic location may be generalized where location information is 

obtained (such as to a city, ZIP code, or state level) so that a particular location of a user cannot 

be determined. Thus, the user may have control over what information is collected about the 

user, how that information is used, and what information is provided to the user. 

CONCLUSION 

This disclosure describes techniques, referred to as naturalistic routing (NR), that 

improve the quality of routes found by map applications by learning from users’ real-world 

navigation actions, accessed with user permission. The techniques leverage the principle that 

users, in the aggregate, tend to travel on optimal routes to reach their destinations. A machine 

learning model is trained using inverse reinforcement learning and provides routes that are 

optimal by the users’ definition of optimality, as determined from a dataset of navigation actions. 
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