
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

October 2021 

Identifying Software Projects That Have Matching Static or Identifying Software Projects That Have Matching Static or 

Dynamic Characteristics Dynamic Characteristics 

Andy Lavery 

Eli Daiches 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Lavery, Andy and Daiches, Eli, "Identifying Software Projects That Have Matching Static or Dynamic 
Characteristics", Technical Disclosure Commons, (October 26, 2021) 
https://www.tdcommons.org/dpubs_series/4675 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4675?utm_source=www.tdcommons.org%2Fdpubs_series%2F4675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Identifying Software Projects That Have Matching Static or Dynamic Characteristics 

ABSTRACT 

This disclosure describes techniques to analyze collections of software projects using 

static and dynamic features. Software engineers or operators can query the outcomes of these 

analyses to find cohorts of design patterns that are relevant for the task at hand in their own 

projects, thus helping them identify applications that meet the criteria of interest. The techniques 

can also be applied to generate alerts based on evolution of the matching projects, suggest code 

completion, and to recommend relevant example code or learning resources. Analysis of code 

can be performed internally on codebases controlled by a single business and/or on permitted 

code in a public software ecosystem. Implementation of the techniques described in this 

disclosure can help software engineers be guided by existing projects and potentially foster 

collaborations by connecting those working on similar problems. 

KEYWORDS 

● Software engineering 

● Software development 

● Static analysis 

● Design pattern 

● Example code 

● Code completion 

● Source code repository 

● Code reuse 

● Software project cohort 

BACKGROUND 

Software engineers often consult examples or recipes from other projects for application 

within their own projects. Consulting examples or recipes from existing code from other projects 

allows developers to apply past software engineering knowledge and decisions captured in the 

solution without starting from scratch and duplicating prior effort. Applying the insight and/or 

2

Lavery and Daiches: Identifying Software Projects That Have Matching Static or Dynami

Published by Technical Disclosure Commons, 2021



code from existing repositories can increase the velocity and quality of software development 

outcomes. 

Although software engineers can benefit greatly from finding existing projects similar to 

their own, it can be challenging to identify suitable projects from among the codebases that an 

engineer can access. Code from projects that are dissimilar is of little use since these are 

typically unlikely to be applicable to the task at hand. 

Existing projects that are similar to an engineer’s own project can be determined based on 

static as well as dynamic information about a project. Static information includes the source code 

and the associated libraries, components, stacks, application programming interfaces (APIs), etc. 

Dynamic information is based on runtime and usage parameters, such as load, performance, 

deployment environment, user characteristics, etc., that characterize the operation of the project 

under real-world conditions. Moreover, the project can be impacted by changing trends in the 

relevant software ecosystem applicable to it. 

Static information is typically determined using tools that perform static code analysis of 

a software project. For instance, such analysis can indicate whether a project depends on a 

specific version of a software library. In contrast, dynamic information about a project can be 

obtained via processes that examine runtime characteristics, such as load metrics, transaction per 

second, disk space used by a database, etc. 

Static code analysis cannot be applied to find matching projects based on runtime 

characteristics or API usage, and processes that examine runtime characteristics are typically not 

designed to help software engineers find projects with similar runtime characteristics. Moreover, 

no single tool offers an integrated approach that combines static and runtime analysis to help 

software engineers find suitable projects that match their needs. 

3

Defensive Publications Series, Art. 4675 [2021]

https://www.tdcommons.org/dpubs_series/4675



DESCRIPTION 

This disclosure describes techniques to analyze collections of software projects using 

static and dynamic analysis. Software engineers or operators can query the outcomes of these 

analyses to find cohorts of design patterns that are relevant for the task at hand in their own 

projects, thus helping them identify applications that meet the criteria of interest. For instance, a 

team of engineers can search for projects that use a specific software framework, support internal 

and external users, and employ a given authentication technique. Similarly, developers can 

search for projects that use a given software component and are capable of handling more than N 

queries per second. The techniques further permit observing software trends over time and 

alerting software engineers of changes that are likely to affect their current projects. 

 

Fig. 1 

4

Lavery and Daiches: Identifying Software Projects That Have Matching Static or Dynami

Published by Technical Disclosure Commons, 2021



Fig. 1 shows an operational implementation of the techniques described in this disclosure. 

Static analysis on source code history of software projects as available via a software source 

code repository (102) is used to generate a vector of static features of the project (106). 

Similarly, observation of various runtime deployments of each project (104a-c) yields a vector of 

its dynamic features (108). The static and dynamic features are input to a model (110) that can 

match the features relevant to specific queries. Since software can be updated frequently (e.g., 

daily, weekly, etc.), a history of the classification features can be stored in a repository (112) for 

determining trends over time. A software professional (114) can issue a query (116) for relevant 

projects to find those that match specific static or dynamic characteristics, as described in the 

examples above. 

Static analysis can be based on various aspects of the code, such as: 

● Build rules and tools; 

● Static source code analysis, including specific APIs invoked, software dependencies, 

language(s) used; 

● Deployment configuration (e.g., app manifest, cloud manifest, etc.); 

● Security configuration; etc. 

Observation of dynamic runtime deployments can be performed across all supported 

platforms and include aspects such as: 

● API use based on network requests; 

● API use based on runtime code coverage; 

● Application traffic and performance expectations at runtime (e.g., queries per second); 

● Use of specific authentication mechanisms; 

● Use of specific authorization mechanisms; 

5

Defensive Publications Series, Art. 4675 [2021]

https://www.tdcommons.org/dpubs_series/4675



● Runtime use of cloud resources; 

● Aggregated user characteristics (obtained with the user’s permission), such as internal or 

external user, geographic information, use of human languages, device type, 

characteristics of the user’s network connection, etc. 

The techniques described above can additionally support proactive alerts to inform 

software developers of relevant changes in projects similar to theirs so that they can assess 

whether a similar change is warranted for their own project. For instance, a software engineer 

might have previously queried projects matching a specific type of authentication for particular 

kinds of users and applied the results to the current project. Later on, if projects that match the 

query evolve to switch to a different authentication approach, the software engineer can be 

notified accordingly. 

With developer permission, the techniques can be applied to enhance code completion 

and suggestion features within code editing applications, such as Integrated Development 

Environments (IDEs). For example, a developer working on configuring an authentication 

mechanism can be provided a recommendation of the most common code and/or settings related 

to that authentication mechanism as used in other relevant projects. Recommendations can be 

delivered using code completion features of the editor or shown separately as relevant sample 

code.  

The recommendations can further include suggestions for learning resources or tutorials 

based on similarities and dependencies discovered in common patterns and stacks across cohorts 

of software projects. For instance, developers working on a project that shares multiple 

commonalities with other projects can benefit from learning about pieces in other projects that 

are missing in their own projects. 

6

Lavery and Daiches: Identifying Software Projects That Have Matching Static or Dynami

Published by Technical Disclosure Commons, 2021



Apart from the source code, the techniques described above can include relevant other 

permitted metadata, such as design documents, configuration files, personnel lists, etc. Applying 

natural language processing (NLP) to such metadata can provide additional useful information 

for finding projects matching specific characteristics and enable support for queries using natural 

language. Moreover, the techniques can be leveraged when writing design documents in much 

the same way as their application for writing source code. For instance, consulting related design 

documents can help think through the design with data and ideas from similar projects. 

Implementation of the techniques described in this disclosure can help software 

engineering projects seek guidance from other projects in the form of best practices, code 

examples, design patterns, etc. For instance, developers can study similar projects in terms of 

technology choices, runtime performance, etc. Matches obtained via the techniques can 

additionally help connect a development team with other teams working on similar problems and 

potentially foster collaboration. 

The techniques can be deployed to operate internally within a single business setting. 

Alternatively, or in addition, the techniques can be provided in a public software ecosystem, such 

as that of a cloud service provider, source code hosting service, etc., with permission from users 

of the software platform(s). Depending on choices of developers and users, project matches can 

be anonymized or made visible.  

Source code as well as dynamic information is accessed upon specific permission from 

respective project owners. Project owners can choose to deny permission, restrict permission to 

specific attributes or sections of code, etc. Generation of vectors of static and dynamic features is 

performed based only on the permitted information. Project owners are provided with options to 

modify permissions. 

7

Defensive Publications Series, Art. 4675 [2021]

https://www.tdcommons.org/dpubs_series/4675



CONCLUSION 

This disclosure describes techniques to analyze collections of software projects using 

static and dynamic features. Software engineers or operators can query the outcomes of these 

analyses to find cohorts of design patterns that are relevant for the task at hand in their own 

projects, thus helping them identify applications that meet the criteria of interest. The techniques 

can also be applied to generate alerts based on evolution of the matching projects, suggest code 

completion, and to recommend relevant example code or learning resources. Analysis of code 

can be performed internally on codebases controlled by a single business and/or on permitted 

code in a public software ecosystem. Implementation of the techniques described in this 

disclosure can help software engineers be guided by existing projects and potentially foster 

collaborations by connecting those working on similar problems. 

8

Lavery and Daiches: Identifying Software Projects That Have Matching Static or Dynami

Published by Technical Disclosure Commons, 2021


	Identifying Software Projects That Have Matching Static or Dynamic Characteristics
	Recommended Citation

	tmp.1635140971.pdf.u6TFi

