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Bug Management Using Machine Learning 

ABSTRACT 

Automated tests of software can often independently log different bugs for the same 

underlying problem (root cause). Manually identifying duplicate bugs is a source of toil for 

engineers. A related problem of bug management is that of bug routing, e.g., determining the 

right team or person to route a bug report to for the purposes of debugging. This disclosure 

describes techniques for bug deduplication and bug routing based on machine learning (ML). Per 

the techniques, a binary machine classification model is trained to aggregate bugs with a 

common root cause. Bugs in a class of bugs with a common root cause are deduplicated, e.g., 

represented by just one of the multiple bugs in the class. Further, a multi-class ML model is 

trained to predict the right team for handling a new (incoming) bug. 
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BACKGROUND 

Automated tests of software can often independently log different bugs (or symptoms) for 

the same underlying problem or root cause. Manually identifying duplicate bugs, e.g., bugs that 

arise from the same root cause, is a source of toil for engineers. 

A related problem of bug management is that of bug routing, e.g., determining the right 

team or person to route a bug report to for the purposes of debugging. In complex software 

development environments, a bug can get bounced amongst many developers before it reaches 

the right person who can take corrective action. Such bouncing around of a bug results in routing 

latency - the delay before a bug is corrected which can potentially block critical releases. It is 

also wasteful of the time of each developer that expends effort examining it only to realize that 

the bug is not theirs to fix.  

Existing techniques for bug deduplication require a user to manually mark bugs as 

duplicates, which only adds to developer toil. Automatic techniques to deduplicate bugs use 

basic distance or term frequency/ inverse document frequency (TF-IDF) semantics. These can be 

error-prone and carry the risk that a bug reaches production code due to incorrectly being marked 

as a duplicate of an existing bug. Such techniques have no mechanism to measure or to fine-tune 

performance. 

DESCRIPTION 

This disclosure describes techniques for bug deduplication and bug routing based on 

machine learning (ML). Per the techniques, a binary machine classification model is trained to 

aggregate bugs with a common root cause. Bugs in a class of bugs with a common root cause are 

deduplicated, such that they are represented by just one of the multiple bugs in the class. Further, 

a multi-class ML model is trained to predict the right team for handling a new (incoming) bug. 

3

Defensive Publications Series, Art. 4666 [2021]

https://www.tdcommons.org/dpubs_series/4666



Bug deduplication 

 
Fig. 1: Bug deduplication 

 Fig. 1 illustrates bug deduplication. A single bug entity comprises various attributes of 

the bug such as title; description; unique identifier; bug type; creation timestamp; name of 

detecting test; status of detecting test; software component where the bug originated; failure 

messages; environment; error category; error logs; exception class; etc. As illustrated, these are 

features (104) provided to the ML model (102). The ML model then generates a prediction (106) 

for the bug and a confidence for the prediction. The bug deduplication model can be a binary 

classification model that predicts if a new (incoming) bug is a duplicate of an existing open bug 

in the database. A duplicate bug is one that shares a root cause with an existing bug in the bug 

database. When a duplicate bug is identified it can be closed automatically, or, alternatively, a 

comment can be inserted linking it to an existing bug in the bug database. 

4

Jindal et al.: Bug Management Using Machine Learning

Published by Technical Disclosure Commons, 2021



 
Fig. 2: Data generation pipeline for training 

  Fig. 2 illustrates a pipeline for generating training data for the bug deduplication ML 

model. Previously resolved bugs are grouped into (source, destination) pairs along with their 

features. The manually determined status of a pair is used to mark the ground truth (output label) 

of the pair, e.g., whether the constituent bugs of the pair are duplicates or not. For example, in 

Fig. 2, the constituents of bug-pairs (1,2), (1,4), and (4,3) are not duplicates, whereas the 

constituents of bug-pair (1,3) are duplicates. Duplicate bugs serve as positive training examples, 
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while non-duplicate bugs serve as negative training examples. Effectively, the data generation 

pipeline uses features extracted from bug entities existing in the database to form their cartesian 

products, which are then provided to the ML model as training data. The pipeline also labels or 

identifies the status of the bugs. 

 During training, the data generation (or preparation) strategy enables the ML bug 

deduplication model to identify correlations in the features of a pair of resolved bugs. The model 

learns the correlations between the input features and the output label (which is indicative of 

whether the input bug-pair constitutes a duplicate or not). During inference, the cartesian product 

of a new (incoming) bug is computed with existing open bugs and fed to the trained model for 

prediction. 

Bug routing 

 
Fig. 3: Bug Routing 

  Fig. 3 illustrates bug routing. A single bug entity comprises bug attributes such as title, 

description, unique identifier, bug type, creation timestamp, last comment, etc., as well as signals 

identified in a test failure, e.g., test name, test status, environment name, error category, 
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exception class, etc. As illustrated, these features (304) are provided as input to a trained multi-

class machine-learning and classification model (302). The model generates a prediction (306) 

for the bug and a confidence for the prediction. 

 The output label generated by the bug-routing model is a prediction of the unique team 

identifier of the team the bug is optimally assigned to. For effective model training, e.g., 

balanced label distribution, the team identifier is advantageously used as output label (rather than 

names of individual developers). Heuristics can be used to generate high fidelity, ground truth, 

output labels that incorporate insights gathered from historically resolved bugs and from teams 

handling the test failures.  

 

Fig. 4: Selecting resolved bugs to be included in the training set for the bug-routing model 
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 Fig. 4 illustrates an example method to select resolved bugs to be included in the training 

set used to train the bug-routing ML model. Generally, fixed bugs that have been resolved by a 

human user (or that are associated with a code change with a human author) can be added to the 

training set. In such cases, the team that the bug is assigned to (the ground truth label) is 

extracted based on updates to the code repository. If there is a code fix from a human author, the 

team that the author belongs to is identified. If no such code fix exists, it is determined whether 

the bug was resolved by a human user, and the team of that human user is identified. An unfixed 

bug with a duplicate is assigned to the team of the duplicate bug. Bugs that don’t fall under the 

above classifications, e.g., bugs that were resolved not by a human user but by a machine user, 

bugs associated with code that was automatically pushed into the repository, or whose change-

list author is a machine user, etc., are discarded. The flowchart of Fig. 4 is also referred to as a 

labeling strategy since it labels the ground truth for the purposes of training and performance 

tuning of the bug-routing ML model.  

 Similar to bug deduplication, the data generation pipeline extracts features from the bugs. 

During training, the labeling procedure (Fig. 4) is used in the data generation pipeline to obtain 

the corresponding output labels. The data source used for training includes resolved bugs in a 

database of bugs. The features and the labels extracted during the data preparation phase enable 

the trained bug routing model to identify and capture different patterns in the resolved bugs. The 

model learns and establishes relationships between the input bug patterns and the output label - 

the appropriate team to handle the bug. 

 During inference, a new (incoming) bug is processed using the data generation pipeline to 

extract its features. The processed bug is fed to the trained bug routing model which provides a 

prediction of the team to which the bug is to be routed. 
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 To ensure that the bug deduplication and bug routing models adapt to the latest trends, 

the models can be periodically re-trained. The inference workflow can be set up to either run on 

a real-time basis (instantaneous prediction) or in batch fashion (scheduled prediction). In 

scenarios where the bug duplication and routing patterns are specific to a particular team or a 

product, customized models can be trained and used. 

CONCLUSION 

This disclosure describes techniques for bug deduplication and bug routing based on 

machine learning (ML). Per the techniques, a binary machine classification model is trained to 

aggregate bugs with a common root cause. Bugs in a class of bugs with a common root cause are 

deduplicated, e.g., represented by just one of the multiple bugs in the class. Further, a multi-class 

ML model is trained to predict the right team for handling a new (incoming) bug. 
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