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ABSTRACT 

 

With a text mining and bibliometrics approach, we review the 

literature on the evolution of deep learning in medical image 

literature from 2012 – 2020 in order to understand the current 
state of the research and to identify the major research themes in 

image analysis to answer our research questions: RQ1: What are 

the learning modes that are evident in the literature? RQ2: What 

are the emerging learning modes in the literature? RQ3: What are 

the major themes in medical imaging literature? The analysis of 
8704 resulting from a data collection process from peer-reviewed 

databases, our analysis discovered the six major themes of image 

segmentation studies, studies with image classification,  

evaluation procedures such as sensitivity and specificity, optical 

coherence tomography studies, MRI imaging studies, and Chest 
imaging studies. Additionally, we assessed the number of articles  

published each year, the frequent keywords, the author networks, 

the trending topics, and connections to other topics. We 

discovered that segmenting and classifying the images are the 

most common tasks. Transfer learning is the most researched 
area and cancer is the highly targeted disease and Covid-19 is the 

most recent research trend. 

Keywords: Deep Learning, Medical Image Analysis, Text 

Mining, VosViewer.  

 
 

1.  INTRODUCTION 

 

AI has a long history dating back to 1956 when the term Artificial 

Intelligence was first coined [1]. Algorithms called artificial 
neurons arranged into networks has led to programs that can 

learn. The Perceptron is one of the simplest neural network 

architectures, invented in 1957 [2]. However, only during the 

1990s, the abilities of these neural networks were exploited with 

the introduction of Deep Learning (DL) i.e. development of 
multi-layered neural networks [3]. In 2012, a breakthrough in 

computer vision in ImageNet Large-Scale Visual Recognition 

Challenge [4] has led to the advancement of DL and the 

expansion of AI techniques in the healthcare domain [1].  

 
Deep Transfer Learning (DTL) a sub-field of AI, has gained 

importance in the medical field as an effective tool to perform 

medical image analysis including classification, localization, 

detection, segmentation, and registration [5]. The crux of DTL is 

to apply knowledge obtained from models trained on large data 
sets to different but related tasks in which data sets may be 

limited. While Deep TL systems enable us to leverage knowledge 

from previously trained models to a different domain, it is a novel 

and challenging, yet promising field for research. The potential 

exists for DL/TL research discoveries to predict medical 
outcomes using images by enhancing the model effectiveness of 

solving the new problems when there exists divergence from the 

source to the target domains [6], [7].  

 

DTL, however, possesses several potential disadvantages . 

Accurately labeled data are required for both source and target 
domains, but obtaining large amounts of labeled data is 

considered a fundamental challenge in medical imaging[8]. 

Hierarchical representations learned from pre-trained models  

(under the source domain) may not be very insightful in solving 

the new task when the domains are very different because the 
convolutional layers near input contain generic features and 

layers near the output contain features specific to the target 

problem[9], [10]. To mitigate the limitations of traditional DTL, 

in the latest studies [11]–[13] different learning paradigms are 

emerging - Reinforcement Learning (RL) and Federated 
Learning (FL). In RL, the model learns from interactions between 

its actions and environment contrary to learning directly from 

feedback signals calculated based on the differences between the 

target (ground truth) and prediction. FL enables multiple end 

devices to collaboratively learn a shared predictive model while 
keeping all the training data on the device, avoiding the process 

of aggregating massive data from every network edge to a remote 

cloud server and performing learning tasks at that remote server 

[14]–[16].  

 
Deep Convolutional Neural Networks (DCNNs) and 

accessibility of efficient and powerful graphical processing units  

(GPUs) have made it possible to significantly improve the 

performance of medical image analysis [17], [18]. DCNNs are 

the current state of the art technique in medical image analysis, 
performing better than radiologists in some cases [19]. DCNN 

architectures require large annotated datasets. Overfitting and 

lack of generalization are common issues encountered with 

standard CNNs when the training data provided are insufficient 

[20]. GANs are emerging as an effective method for increasing 
and improving training datasets by generating realistic artificial 

images [21]. 

 

Utilizing DL techniques in Medical image analysis is a fast-

growing research area [5] with several studies being published 
every day in different journals. In today’s world, peer-reviewed 

journals track current innovations and developments in any 

research field, submitting the work in a journal that is popular 

with a high impact factor leads to an increasing number of 

citations [22]. Measuring the research outcomes from these 
journals to gain insights on the evolution of any field is known as 

bibliometrics or scientometric analysis [23]. Our study combines  

the methods of text-mining and bibliometrics to assess the 

evolution of medical image analysis using DL techniques with 

the use of tools NLP and VOS-viewer [24]. 
 



VOS-viewer is a tool built for analyzing a large number of 

research articles with its clustering technique, the VOS 

(Visualization Of Similarities) clustering method. It provides  

graphs that contain the mapping between the key topics to learn 

the relationship strengths among the topics with help of attributes  
such as “occurrences” and ‘total link strength”. Web of Science 

(WOS) is the preferred online library for VOS-viewer 

analysis[22], [25].  WOS tracks the most recent developments in 

all major research areas. Our study uses four different web-based 

libraries along with WOS to build a customized library with a 
comprehensive set of articles in medical image analysis. The 

complete search strategy is explained in Section 3. 

 

The contributions of this Literature-Analysis are the following. 

First, to our knowledge, this is the first effort to explore the 
evolution of DL in medical image literature using the text-mining 

and bibliometrics approach. Second, we attempt to discover the 

issues, challenges, and opportunities to guide our future research 

projects. Third, while we define this proposal as a Literature-

analysis work only, we will extend the findings to propose a 
multi-task and multi-mode learning framework for medical 

imaging as our next research effort that includes extending the 

research papers on different learning modes by utilizing a formal 

SLR methodology. The specific research questions of this study 

are: 1: What are the learning modes that are evident in the 
literature? 2: What are the emerging learning modes in the 

literature? 3: What are the major themes in medical imaging 

literature? 
 

2.  BACKGROUND 

 

Convolutional Neural Networks 

CNNs are a class of deep neural networks, widely utilized for 
image analysis. They contain three different types of layers (a) 

Convolutional layers, (b) Pooling layers, and (c) Fully connected 

layers [26]. Convolutional layers are the crux of the architecture 

consisting of moving filters. A convolution operation is sliding a 
filter across the width and height of the input image area 

(receptive field) to multiply the elements of the corresponding 

receptive field and the filter to produce a feature map[26]. 

 

Transfer Learning 
A person who can play tennis can use the knowledge to learn to 

play baseball. Similarly, in the machine learning context, TL 

refers to a scenario where the features learned in one task are 

leveraged to improve the classification accuracy in another task. 

For instance, in task T1, a Deep CNN gaining insights from 
visual features of dog images will be able to use this knowledge 

to classify the images of cats in task T2. TL is proved to reduce 

the necessity of large amounts of datasets to some extent. This  

idea of learning knowledge from one task and applying it to a 

specific target task has led numerous studies recently to use pre-
trained CNN’s on ImageNet (natural images) [27] dataset for 

various image recognition tasks, especially in Medical Image 

classification [7], [26], [28].TL can be implemented in two 

methods – feature extraction and fine-tuning. 

 
Feature extraction is said to be performed when a CNN network 

learns features from Task 1, then uses the same base network of 

convolution and pooling layers by replacing the fully connected 

layer with Task 2 classifier. During this operation, the weights of 

the convolutional base are frozen and only a new classifier is 
trained for the classification of task 2. In fine-tuning, the weights  

of the convolutional base are slightly altered to match the task 2 

problem after training the network on Task 1 data. Unlike feature 

extraction, fine-tuning requires unfreezing some top-level layers  

of convolution base and a new classifier is added. While 

performing this type of TL, the unfrozen layers of CNN are 

trained along with the fully-connected layer when passed through 

new data [6]. 
 

Generative Adversarial Networks 

GANs are generative models with an adversarial process that 

were first empirically demonstrated by Ian Goodfellow[29]in 

2014. They are used to create new examples of data that are 
similar to training data. For instance, they can generate images of 

human faces based on examples from training data, although 

these faces do not belong to any real person. GANs consist of two 

components – the generator model and the discriminator model. 

The function of the generator is to create realistic artificial 
images and that of the discriminator is to classify whether an 

image is real or artificial.  The generator model takes noise 

(Gaussian or standardized distribution) as input and learns to 

generate synthetic images whereas, the discriminator model 

receives both the generated and original images, it learns to 
distinguish between the two - real or fake images. Both the 

networks try to optimize a different and opposing objective 

function.  

 

Image Segmentation 
Image segmentation is a vital task for the quantitative analysis of 

medical images. It involves compartmentalizing images into 

multiple regions with similar properties [30]. Image 

segmentation is of two different types – semantic segmentation 

(grouping of pixels with semantic labels) or instance 
segmentation ( grouping objects) [31]. Semantic segmentation 

involves labeling each pixel in the image. Instance segmentation 

is a further extension of semantic segmentation as it distinguishes  

each object of interest.   In medical imaging, segmentation is used 

to study the anatomical structure and locate a region of interes t 
(ROI) such as lesions and tumors. Segmentation is performed on 

various medical image modalities such as MRI, CT, X-ray, OCT, 

and PET. In the past, several researchers have proposed various  

segmentation techniques using deep learning methods. For 

instance, in [32], the authors use a supervised method using fully 
connected CNN along with transfer learning to segment retinal 

vessels. Authors of [33], present a method for brain masking 

using the U-net model. Another study [34] proposed a DL 

method for pericardium segmentation using CT images.  

 
Image Classification 

Medical Image Classification (MIC) is another widely studied 

area receiving attention from both medical and research 

communities. MIC is defined as categorizing images into 

different classes. MIC is either a binary class classification (e.g. 
malignant or benign) or multi-class classification (e.g. viral 

pneumonia, bacterial pneumonia, or Covid-19). Hospitals require 

experienced radiologists to classify medical images into various  

classes, which is time-consuming and vulnerable to instability 

and nonreproducible results. Effective application of MIC in 
hospitals could assist doctors in diagnosing diseases at a faster 

and more accurate rate [19]. Numerous studies involving the 

classification of medical images have been conducted for 

example, in [35], the authors performed 3-class classification to 

separate glioma, meningioma, and pituitary tumors using brain 
MRI images. In, [36], transfer learning techniques are employed 

to improve the accuracy of liver lesion classification using CT 

images. Yet another study [37], a novel CAD system to identify 

bacterial and viral pneumonia in chest radiography is proposed.  

 



3.  METHODOLOGY 

 

Search Strategy and Data Collection 

To attempt a reproducible and rigorous Analysis, the data 

collection procedure is conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) [38]. After defining the objectives of the 

meta-analysis, we selected the following databases for searching 

the relevant articles. PubMed, IEEE Xplore, Web of Knowledge, 

and ACM were searched for articles written in English. A major 
reason to select these databases is that the articles found in these 

web libraries are peer-reviewed. As DL techniques started to gain 

attention in 2012 [4], we targeted our search from 2012 to 2020. 

We prepared a customized query using the specific keywords 

employed for search such as “Transfer Reinforcement Learning”, 
“Federated Deep Reinforcement Learning”, “Federated Deep 

Transfer Learning”, “Federated Transfer”, “Deep Learning”, 

“Transfer Learning”, “medical img*”, “image analysis”, 

“radiography” “x-ray” “mammogra*”, CT, “MRI”, “PET”, 

“ultrasound”, “therapy”, “radiology”, “MR”, “SPECT”. This is 
done to capture a rich set of relevant papers from the above 

digital libraries and facilitate insightful text mining. After 

removing duplicate articles, we have a dataset of 8704 articles . 

Along with the current study, this article collection will be used 

in our future projects, especially in the Systematic Literature 
Review. 

 

Data Analysis 

From this rich text collection, we used our text mining process 

depicted in figure 1 to complete our analysis. We first pre-
processed the abstract data to remove numbers, punctuations, and 

stop words. Next, we performed tokenization that can be used to 

prepare a word cloud and N-gram analysis. While a word cloud 

depicts the frequency of the words, N-gram analysis provides an 

overview of the specific keyword occurrences. Then we 
performed text-mining on the abstract data of the 8704 articles  

using VOS-viewer clustering. VOS-viewer tool uses a unified 

approach to mapping and clustering of bibliographic networks 

that is suitable to identify the main topics in the text data and then 

find relationships between the topics[39].  

 
Figure 1. Our Text Mining process 

 
 

4.  RESULTS  

 

Exploratory Data Analysis 

A simple descriptive data analysis was conducted to gain insights  
into current trends using the gathered articles. This involved 

calculating 1. The number of articles published each year, 2. 

Word frequency of top ten words, 3. Word cloud, 4. Bi-gram 

analysis.  

 
The number of articles published in each year from 2012 to 2020 

is shown in figure 2. The articles published in the year 2015 have 

more than doubled. From the year 2016, the increase in 

publications is ascending followed by a slight drop in the year 

2020. 

 
Figure 2. Number of articles published in each year 

 

Figure 3 depicts the top 10 words in the corpus. Not surprisingly,  

‘learning’, ‘deep’ and ‘neural’ are the top most words with a 

frequency range between 7000to 12000. Followed by 

‘segmentation’, ‘convolutional’, and ‘classification’ with a 
frequency range between slightly lesser than 4000 to 6000. 

‘Artificial’ and ‘intelligence’ also have a high frequency. The 

most frequent disease referenced in the corpus is ‘cancer’ with 

around 2000 counts. Examining single terms from the corpus 

does not provide rich insights on the themes, hence we further 
analyze the corpus using a word cloud.  

 

 
Figure 3. Top 10 most frequent words 

 

Word clouds are a simple and fast approach that enables  

perceiving the most prominent terms from a large corpus of text 

data. They provide an overall sense of the data. The size of each 
term represents its frequency and/or importance.  From the figure 

below, it is evident and quite expected that ‘deep learning’ is the 

most prominent word in our corpus. ‘Segmentation’ and 

‘classification’ are the most dominant medical image processing 

tasks performed. Other image analysis tasks such as registration, 
recognition, and localization are less prominent. The most 

prevailing technique used for medical image analysis is the 

‘convolutional neural network’. The most focused diseases are 

breast cancer, brain tumor, skin cancer, diabetic retinopathy, and 

Alzheimer in decreasing order. 
 

Although the word cloud provided an overall sense of the data, 

the specific learning modes – TL, RL, FL did not appear. To gain 

insights into the specific learning modes we performed a bi-gram 

analysis.  
 



 
Figure 4. Word Cloud 

 

Distribution of learning modes 

The following figure represents the frequency distribution of 

learning modes from 2012 to 2020. As the figure depicts, 
Transfer learning is the most prevalent mode used since 2012. 

Reinforcement learning has also been used since 2012 however 

comparatively to a smaller extent. In 2014, reinforcement 

learning is almost as prevalent as transfer learning. While transfer 

learning usage increased in the following years, RL did not see 
much growth. Generative Adversarial Network is employed in 

medical imaging since 2018. A slight increase is visible in the 

following years. Compared to RL, GANs have been used more 

despite being proposed only in 2018. Federated learning is fairly 

new in the medical domain. It is barely visible in 2019 with a 
slight increase in 2020. While all the learning modes are 

individually researched in the medical image analysis field, the 

convergence of the learning modes is yet to ensue. Figure 5 

depicts the distribution of learning modes that answers our RQ1 

and RQ2. 

 
Figure 5. Distribution of learning modes 

 

Research Themes  

RQ3: What are the major themes in medical imaging literature? 

is answered with Figure 6, as indicated in the diagram below, six 
themes of medical image analysis studies are present. The Red 

cluster involved image segmentation studies, the green cluster 

involved studies with image classification, the dark blue cluster 

focused on evaluation procedures such as sensitivity and 

specificity, the light blue cluster involved Optical Coherence 
Tomography (OCT) studies, the yellow cluster involved MRI 

imaging studies, and purple cluster involved chest imaging 

studies. The bigger the size of the circle, the higher the 

occurrences of the word, the circles are connected with links, and 

the “total link strength” attribute in VOS-viewer is used to 
measure the relationship strength between the topics. Among the 

themes, the image segmentation has the highest link strength 

(total link strength = 9967) and strongly connected to a variety of 

topics in all clusters especially Computed Tomography (CT) 

imaging, U-Net, and Magnetic Resonance Imaging.  The 

research theme with the lowest link strength is OCT, it is (total 

link strength=1137) connected to both image segmentation and 

image classification themes.  

 

 
Figure 6. Clustering analysis using VosViewer 

(Left:Network Visualization, Right: Density Visualization) 

  

Trending Topics 
Figure 7 depicts the trending topics from the text data used from 

2018 to 2020. The most recent words used in articles are colored 

in yellow and the oldest topics are colored in purple. The most 

recent medical image publications targeted towards U-net, 

GANs, covid, chest, f1 score, ResNet, DenseNet, VGG. Topics 
such as Support Vector Machine, Alzheimer, mild cognitive 

impairment, heart, mammogram were published more in early 

2018. Cancer, image segmentation, image classification,  

specificity, sensitivity, early detection are published more 

between 2018 and 2019.  
 

Figure 7. Trending Topics in Medical Imaging 

 
 

5.  DISCUSSION 

 

In the current study, 8704 articles on medical image analysis  

from the four major databases are analyzed. The current literature 
on medical image analysis has six different themes image 

segmentation, image classification, evaluation processes, MRI, 

chest imaging, and OCT imaging. Among the DL techniques, TL 

is the most prolific with a total link strength of 3984, the second 

most used learning mode is GANs with total link strength of 956. 
Unfortunately, RL and FL did not appear in the VOS-viewer 

clustering as their occurrences are significantly less when 

compared with the other two learning modes. However, from the 

n-gram analysis, it is evident that FL papers are being published 

from 2019 and publications increased in 2020 suggesting that it 
is fairly new and there is an opportunity to further investigate in 

this area. For RL, even though their overall occurrences are less 

than 100, the publication number increased consistently from the 

year 2012 to 2020 suggesting the trend will continue in the 

coming years.  



 
Figure 8. TL connections with other topics 

 

Among the themes, the strong connection of image segmentation 

task towards U-Net, GAN, and MRI imaging suggests the 

preference of using U-Nets and GANs in segmentation processes 
for MRI imaging. On the other hand, the image classification task 

has a strong connection to topics such as TL, ResNet, DenseNet, 

ImageNet, AlexNet, VGG suggests the preference of using 

ImageNet pre-trained networks to apply TL in medical image 

classification tasks. In the evaluation procedures, sensitivity 
(total link strength =6740) and specificity (total link strength 

=5692) have strong links to all themes with topics such as 

dermatology, diabetic retinopathy, chest, radiologist, glaucoma, 

Alzheimers, CT, OCT, MRI, etc. suggesting the importance of 

these two evaluation procedures in different areas of medical 
imaging.  

 
Figure 9. GAN connections with other topics 

 

Among the learning modes, while GAN connections are limited 

with topics such as CT and MRI imaging modalities, TL is highly 
connected with various imaging technologies such as OCT, MRI, 

X-ray, mammogram, etc. suggesting the widespread applications  

of TL. Anatomical areas and diseases such as chest, lung, skin, 

cancer, alzheimers, pneumonia, covid, etc are strongly connected 

with TL. This depicts TL is still relevant even with the most 
recent medical image analysis studies. GANs are depicted in a 

yellow circle in figure 7 suggesting it is a new learning mode with 

connections to MRI and CT. These results suggest that currently, 

TL is an established approach in medical image research while 

the other learning modes are fast-growing approaches with room 
to immensely expand individually and with hybrid approaches by 

combining with other learning modes. 

 

In the network visualization diagram, the disease keyword is one 

of the most frequent keywords with a total link strength of 8922 
and 1764 occurrences. The topics that are strongly connected to 

the disease include cancer, Alzheimer, pneumonia, glaucoma, 

Parkinson, covid, etc. Among these diseases, cancer has the 

highest total link strength of 3704 with 744 occurrences  

suggesting the wide applications of DL in cancer diagnosis.  

Covid, as depicted in figure 7 is the most recent application with 

a close relation to pneumonia. Also, several medical imaging 

areas such as diabetic retinopathy, radiology, CT, OCT occur 

more than 100 in the year 2020 depicting the fast-growing nature 

of DL applications in these areas.  
 

6.  CONCLUSION 

 

To conclude, in this research study we conducted a literature-

analysis to explore the current DL trends in medical image 
analysis. We discovered that TL is the most highly researched 

learning paradigm followed by GANs. Nevertheless, RL and FL 

are also gaining attention from researchers in medical imaging. 

From a disease perspective, Cancer being a highly targeted 

disease and Covid diagnosis is the most recent DL application 
trend. Sensitivity and Specificity are the widely used evaluation 

metrics of DL models. Among the medical image tasks, image 

segmentation and classification are the major applications in 

different anatomical areas, classification tasks prefer using the 

CNNs AlexNet, VGG, DenseNet, GoogleNet, and segmentation 
tasks prefer using U-Nets. This finding is in alignment with 

previous comprehensive literature reviews in medical imaging 

analysis[8]. This study is not without limitations, we included 

only peer-reviewed online libraries in this study, databases such 

as ArXiv are excluded that contains pre-prints and early access  
articles that may not be considered peer-reviewed but they 

contain the most recent technical developments. In the future, we 

plan to perform a systematic literature review to learn about the 

convergence of different learning modes and the issues affecting 

their convergence. 
 

7.  REFERENCES 

 

[1] S. Russell and P. Norvig, “Artificial intelligence: a 

modern approach,” 2002. 
[2] A. Géron, Neural Networks and Deep Learning. O’Reilly, 

2018. 

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” 

Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 

10.1038/nature14539. 
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet 

classification with deep convolutional neural networks,” 

in Advances in neural information processing systems, 

2012, pp. 1097–1105. 

[5] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep Learning 
Applications in Medical Image Analysis,” IEEE Access,  

vol. 6, pp. 9375–9389, 2018, doi: 

10.1109/ACCESS.2017.2788044. 

[6] G. Litjens et al., “A survey on deep learning in medical 

image analysis,” Med. IMAGE Anal., vol. 42, pp. 60–88, 
Dec. 2017, doi: 10.1016/j.media.2017.07.005. 

[7] H.-C. Shin et al., “Deep Convolutional Neural Networks 

for Computer-Aided Detection: CNN Architectures , 

Dataset Characteristics and Transfer Learning,” IEEE 

Trans. Med. IMAGING, vol. 35, no. 5, SI, pp. 1285–1298, 
May 2016, doi: 10.1109/TMI.2016.2528162. 

[8] F. Altaf, S. M. S. Islam, N. Akhtar, and N. K. Janjua, 

“Going Deep in Medical Image Analysis: Concepts, 

Methods, Challenges and Future Directions,” 

ArXiv190205655 Cs, Feb. 2019. 
[9] R. K. Samala, H.-P. Chan, L. M. Hadjiiski, M. A. Helvie, 

and C. D. Richter, “Generalization error analysis for deep 

convolutional neural network with transfer learning in 

breast cancer diagnosis.,” Phys. Med. Biol., vol. 65, no. 



10, p. 105002, May 2020, doi: 10.1088/1361-

6560/ab82e8. 

[10] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How 

transferable are features in deep neural networks?,” in 

Advances in Neural Information Processing Systems 27, 
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, 

and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, 

pp. 3320–3328. 

[11] F. C. Ghesu, B. Georgescu, S. Grbic, A. Maier, J. 

Hornegger, and D. Comaniciu, “Towards intelligent 
robust detection of anatomical structures in incomplete  

volumetric data.,” Med. Image Anal., vol. 48, pp. 203–

213, Aug. 2018, doi: 10.1016/j.media.2018.06.007. 

[12] I. Ali et al., “Lung Nodule Detection via Deep 

Reinforcement Learning.,” Front. Oncol., vol. 8, p. 108, 
2018, doi: 10.3389/fonc.2018.00108. 

[13] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. 

Bakas, “Multi-Institutional Deep Learning Modeling 

Without Sharing Patient Data: A  Feasibility Study on 

Brain Tumor Segmentation.,” Brainlesion Glioma Mult. 
Scler. Stroke Trauma. Brain Inj. BrainLes Workshop, vol. 

11383, pp. 92–104, 2019, doi: 10.1007/978-3-030-11723-

8_9. 

[14] W. Y. B. Lim et al., “Federated Learning in Mobile Edge 

Networks: A Comprehensive Survey,” ArXiv190911875 
Cs Eess, Feb. 2020. 

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and 

B. A. y Arcas, “Communication-Efficient Learning of 

Deep Networks from Decentralized Data,” 

ArXiv160205629 Cs, Feb. 2017.  
[16] H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, 

“Federated Deep Reinforcement Learning,” 

ArXiv190108277 Cs, Feb. 2020. 

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual 

Learning for Image Recognition,” ArXiv151203385 Cs, 
Dec. 2015. 

[18] K. Simonyan and A. Zisserman, “Very Deep 

Convolutional Networks for Large-Scale Image 

Recognition,” ArXiv14091556 Cs, Apr. 2015.  

[19] P. Rajpurkar et al., “CheXNet: Radiologist-Level 
Pneumonia Detection on Chest X-Rays with Deep 

Learning,” ArXiv171105225 Cs Stat, Nov. 2017. 

[20] R. Godasu, D. Zeng, and K. Sutrave, “Transfer Learning 

in Medical Image Classification: Challenges and 

Opportunities,” p. 7, 2020. 
[21] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. 

Goldberger, and H. Greenspan, “GAN-based synthetic 

medical image augmentation for increased CNN 

performance in liver lesion classification,” 

NEUROCOMPUTING, vol. 321, pp. 321–331, Dec. 2018, 
doi: 10.1016/j.neucom.2018.09.013. 

[22] V. Joshua and S. Sivaprakasam, “Coronavirus: 

Bibliometric analysis of scientific publications from 1968 

to 2020,” Med J Islam Repub Iran, p. 8, 2020. 

[23] W. W. Hood and C. S. Wilson, “The Literature of 
Bibliometrics, Scientometrics, and Informetrics,” 

Scientometrics, vol. 52, no. 2, p. 291, Oct. 2001, doi: 

10.1023/A:1017919924342. 

[24] N. J. van Eck and L. Waltman, “Software survey: 

VOSviewer, a computer program for bibliometric 
mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 

Aug. 2010, doi: 10.1007/s11192-009-0146-3. 

[25] Y. Yu et al., “A bibliometric analysis using VOSviewer 

of publications on COVID-19,” Ann. Transl. Med., vol. 8, 

no. 13, Jul. 2020, doi: 10.21037/atm-20-4235. 

[26] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, 

“Convolutional neural networks: an overview and 

application in radiology,” Insights Imaging, vol. 9, no. 4, 

pp. 611–629, Aug. 2018, doi: 10.1007/s13244-018-0639-

9. 
[27] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-

Fei, “ImageNet: A large-scale hierarchical image 

database,” in 2009 IEEE Conference on Computer Vision 

and Pattern Recognition, Jun. 2009, pp. 248–255, doi: 

10.1109/CVPR.2009.5206848. 
[28] J. Gao, Q. Jiang, B. Zhou, and D. Chen, “Convolutional 

neural networks for computer-aided detection or 

diagnosis in medical  image analysis: An overview.,” 

Math. Biosci. Eng. MBE, vol. 16, no. 6, pp. 6536–6561, 

Jul. 2019, doi: 10.3934/mbe.2019326. 
[29] I. Goodfellow et al., “Generative Adversarial Nets,” in 

Advances in Neural Information Processing Systems 27, 

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, 

and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, 

pp. 2672–2680. 
[30] R. Szeliski, Computer Vision: Algorithms and 

Applications. Springer Science & Business Media, 2010. 

[31] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. 

Kehtarnavaz, and D. Terzopoulos, “Image Segmentation 

Using Deep Learning: A Survey,” ArXiv200105566 Cs, 
Nov. 2020.  

[32] Z. Jiang, H. Zhang, Y. Wang, and S.-B. Ko, “Retinal 

blood vessel segmentation using fully convolutional 

network with transfer learning,” Comput. Med. IMAGING 

Graph., vol. 68, pp. 1–15, Sep. 2018, doi: 
10.1016/j.compmedimag.2018.04.005. 

[33] Y. Yang, C. Ye, X. Guo, C. Yang, and H. T. Ma, 

“Automatic Brain Mask Segmentation for Mono-Modal 

MRI,” in Proceedings of the 2020 10th International 

Conference on Bioscience, Biochemistry and 
Bioinformatics, New York, NY, USA, 2020, pp. 124–128, 

doi: 10.1145/3386052.3386073. 

[34] Z. Li, L. Zou, and R. Yang, “A Neural Network-based 

Method for Automatic Pericardium Segmentation,” 2019, 

doi: 10.1145/3339363.3339372. 
[35] S. Deepak and P. M. Ameer, “Brain tumor classification 

using deep CNN features via transfer learning,” Comput. 

Biol. Med., vol. 111, Aug. 2019, doi: 

10.1016/j.compbiomed.2019.103345. 

[36] W. Wang et al., “Classification of Focal Liver Lesions 
Using Deep Learning with Fine-Tuning,” in 

PROCEEDINGS OF 2018 INTERNATIONAL 

CONFERENCE ON DIGITAL MEDICINE AND IMAGE 

PROCESSING (DMIP 2018), 2018, pp. 56–60, doi: 

10.1145/3299852.3299860. 
[37] X. Gu, L. Pan, H. Liang, and R. Yang, “Classification of 

Bacterial and Viral Childhood Pneumonia Using Deep 

Learning in Chest Radiography,” in PROCEEDINGS OF 

2018 THE 3RD INTERNATIONAL CONFERENCE ON 

MULTIMEDIA AND IMAGE PROCESSING (ICMIP 
2018), 2018, pp. 88–93, doi: 10.1145/3195588.3195597. 

[38] A. Liberati et al., “The PRISMA statement for reporting 

systematic reviews and meta-analyses of studies that 

evaluate health care interventions: explanation and 

elaboration,” PLoS Med., vol. 6, no. 7, p. e1000100, 2009. 
[39] L. Waltman, N. J. van Eck, and E. C. M. Noyons, “A 

unified approach to mapping and clustering of 

bibliometric networks,” ArXiv10061032 Phys., Jun. 2010. 

 


	A Meta-Analysis of Evolution of Deep Learning Research in Medical Image Analysis
	Recommended Citation

	tmp.1634834943.pdf.Q8bBv

