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ABSTRACT 

  Stress initiates behavioral disturbances, which are often seen as symptoms of psychiatric 

disorders, like post-traumatic stress disorder (PTSD), depression, and anxiety.  While stress is 

involved in the formation of disordered states, only certain individuals are vulnerable to, and 

therefore experience, these outcomes.  Further, females are more likely to be diagnosed with 

stress-induced psychiatric disorders.  Elements within stress neurocircuitry offer insight into 

differential behavioral outcomes associated with stressful experiences; and the basolateral 

amygdala (BLA), where pro- and anti-stress signals are integrated, is likely an important 

mediator in phenotype development.  The orexin system, too, while being strongly associated 

with sleep, motivation, and arousal, is critical for directing stress-induced responses.  Produced 

in the hypothalamus, orexins (OrxA and OrxB) are released into the BLA where they target and 

activate two receptor subtypes: Orx1R and Orx2R.  These receptors are found on different cells 

within BLA microcircuits, with Orx1R predominantly being localized to glutamatergic neurons 

and Orx2R having slightly higher expression in GABAergic cells.  Pharmacological inhibition of 

Orx1R in the BLA rescues resilient behavior in stress vulnerable mice, while reducing fear 

freezing behavior, and promoting social learning.  Alternatively, Orx2R inhibition in the BLA 

upsets fear learning in resilient populations, but enhances social avoidance.  Alternatively, 

activation of Orx2R in BLA cells reduces fear freezing and increases social preference.  Female 

mice exhibit unique behavioral patterns as a result of social stress compared to males, but 

phenotypic responses are observed when females are administered an Orx2R antagonist.  While 

females have higher Orx2R expression in the BLA compared to males, pharmacological 

intervention with an Orx2R antagonist reveals even further distinctions within female behavioral 

phenotypes.  Together, these results suggest the orexin system is important for defining 

behavioral outcomes after stress, and while sexual dimorphism exists in behavior and 

physiology, orexin receptor activity in the BLA appears to be a critical gating mechanism in both 

male and female stress-induced phenotype development. 
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Chapter 1:  Counterbalanced microcircuits for Orx1R and Orx2R regulation of stress 

reactivity 

 

ABSTRACT 

Orexins are hypothalamic neuropeptides regulating a range of behaviors broadly associated with 

sleep, motivation, and feeding.  These responses highlight the importance of orexins in 

maintaining foundational biological processes, but also indicate a connection to stress-related 

dysfunction, which results in aberrations to normal states of sleep, motivation, and feeding.  As 

such, we predict, based on clinical and preclinical evidence, that irregularities in orexin signaling 

contribute to changes in affect and the formation of psychological disorders.  In support of this, 

orexin-producing neurons innervate several brain areas important for mediating stress responses, 

including the prefrontal cortex and amygdala, where intracellular signaling results from 

activation of orexin receptors (Orx1R and Orx2R).  While stimulation of Orx1R and Orx2R 

initiate similar intracellular pathways, signaling dynamics may be modified through receptor 

location, dimerization, or genetic regulation.  We further note, based on evidence from our lab, 

that Orx1R and Orx2R elicit opposing stress responses after activation, suggesting the existence 

of a counterbalanced mechanism for inducing physiological and behavioral stress states.  Our 

research and others’ demonstrate that antagonistic neurocircuits promoting either pro- or anti-

stress responses, may be bidirectionally shifted with activation of Orx1R or Orx2R.  Although 

clinically approved drugs that target the orexin system, like dual orexin receptor antagonists 

(DORAs), are moderately effective for the treatment of sleep- and, perhaps, addiction-related 

disorders, they may inadvertently disrupt mood or exaggerate existing affective dysfunction.  

We propose a novel idea for pharmacological intervention that accounts for the counterbalanced 

influence of orexin receptor activity on stress-induced behaviors: selective orexin receptor 
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crossover drugs (SORCOs).  These SORCOs are hypothesized to potently shift signaling biases 

and restore balance in stress neurocircuitry.  

 

OREXINS – HYPOCRETINS 

A novel pair of related neuropeptides/hormones was discovered in 1998 by the de Lecea, 

Kilduff, Sakurai, Sutcliffe, and Yanagisawa labs [1, 2] and given different names – hypocretins 

(Hcrt) or orexins (Orx) – based on what each lab was investigating.  The name “orexin” refers to 

the molecule’s role in feeding and appetitive behavior (from the Greek orexis, “appetite”); 

“hypocretin” comes from its site of synthesis (hypothalamus) and from a molecule with which it 

shares homology (secretin).  Much of the early work by these labs focused on excitatory 

function in feeding, arousal, and sleep-wake regulation [3-13].  The two orexins, or two 

hypocretins, OrxA (Hcrt1) and OrxB (Hcrt2), are cleaved equally from a single prepro-orexin 

peptide [2], and bind to two receptor subtypes derived from separate genes, Orx1R (gene: 

HcrtR1) and Orx2R (HcrtR2)  [14].  However, binding affinity of OrxA is high for both Orx1R 

and Orx2R, but is 5-100 times greater than OrxB for the Orx1R [14, 15].  The Orx2R is bound and 

activated equally well by both OrxA and OrxB [15].  

Synthesis of the OrxA/OrxB neuropeptides is limited to the perifornical region of the 

hypothalamus [16, 17], and is functionally divided into lateral (LH) and dorsomedial-

perifornical (DMH/PeF) subgroups [18].  Importantly, synthesis of Orx, and activation of LH-

DMH/PeF Orx neurons is greater in females [19, 20].  Most orexinergic neurons colocalize the 

excitatory amino acid transmitter, glutamate (Glu), the inhibitory opiate, dynorphin (Dyn), and 

the neuropeptides, neurotensin and neuronal activity-regulated pentraxin (NARP), which modify 

and increase the potential actions of these neurons [21-28].  Additionally, orexin-producing 
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neurons are commonly found in close proximity to cells that synthesize melanin-concentrating 

hormone (MCH), which often has opposing actions [16, 29] and those that serve a similar 

function, but express pyroglutamylated arginine-phenylalanine-amide peptide (QRFP) [30].  

Although orexin perikarya are located exclusively in the hypothalamus, orexinergic projections 

and receptors are distributed throughout the brain [31, 32].  The LH-DMH/PeF orexinergic 

system has broadly projecting axons and terminals, innervating numerous limbic and cortical 

structures, such as the prefrontal cortex (PFC), nucleus accumbens (NAc) shell, septum, 

hypothalamus (paraventricular [PVN], anterior [AH], arcuate [ARC], dorsomedial [DMH], and 

ventromedial [VMH] nuclei), bed nucleus of the stria terminalis (BNST), thalamus, and 

amygdala [17, 33, 34].  These projections are reciprocated, with limbic and cortical regions 

sending numerous afferents to orexinergic neurons [35, 36].  Reciprocal connections with such a 

comprehensive assortment of brain regions may explain how orexins are implicated in such a 

wide variety of physiological and behavioral functions [3, 14]. 

Orexin projections, functioning by means of Orx1R and Orx2R, promote stimulatory (for the 

most part, see Receptor intracellular signaling and dimerization) influence [37] via activation of 

coupled G proteins [14], which in turn promote downstream signaling pathways like cyclic 

adenosine monophosphate (cAMP), phospholipase C (PLC), and extracellular signal-regulated 

kinase (ERK) [14, 38, 39].  Orexin receptors have also been demonstrated to modulate molecular 

systems that control neural plasticity, including Protein Kinase B (Akt), mammalian target of 

rapamycin (mTOR) intracellular signaling [40, 41], and brain-derived neurotrophic factor 

(BDNF) expression [39, 42, 43].  Additionally, excitatory functions of Orx may be enhanced by 

Glu release as a co-transmitter, or inhibited by Dyn co-transmission [24-26].   

While much of the early work on Orx focused on excitatory roles in arousal, sleep-wake 
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regulation, and feeding [3-13], OrxA and/or OrxB have also been implicated in a wide variety of 

physiological and behavioral functions [3, 14], which include learning [44-51], reward [18, 52-

56], and stress [46, 57-61].  As stress has significance in many other orexin-linked actions such 

as food seeking [62, 63], reward [18, 52-56], biorhythms [64-67], and arousal [5, 55, 59, 68], it 

may be that orexin’s most important roles involve “stress responsiveness.”  Given that chronic 

stress is a reliable predictor of depression and may be necessary for its establishment [69-71], 

manipulation of the Orx system via Orx1R or Orx2R [14] could prove to hold therapeutic value 

in treating depression and similarly pernicious affective disorders [72], as they have pro-

depressive and anti-depressive effects, respectively [73, 74].  It is important to note that while 

Orx1R and Orx2R may have opposing actions relative to stress-regulation and affect in some 

regions of the brain (see sections below), in other regions they may work in concordance relative 

to these functions [75, 76]. 

 

QUALITIES OF OREXIN RECEPTORS 

Difficult to consider, and often ignored when discussing influence over the signaling balance 

of neurocircuits, are certain receptor features like location, intracellular signaling, dimerization, 

and genetic regulation.  While not easily evaluated for their functional contributions to 

microcircuit tone, these receptor capacities support changes in neural signaling and behavioral 

output.  Some of these receptor attributes will go unacknowledged in our own predicted 

description of Orx1R-Orx2R interplay (see COUNTERBALANCED Orx1R VS Orx2R 

MODULATION), but here we recognize Orx receptor dynamics as multifaceted and important 

instruments for managing stress responsiveness. 
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Receptor location 

Unlike Orx signaling peptides (OrxA & OrxB), which are processed from a single prepro-

orexin molecule [2], Orx receptors are not bound by shared transcriptional and translational 

processes.  As such, Orx1R and Orx2R are not always found together, with mRNA [31, 33, 77] 

and protein [77, 78] distributions varying based on brain location.  This differential expression 

suggests distinct physiological functions of the Orx receptor subtypes. 

Even more specifically, Orx receptors are found on different neuronal populations.  

Examples of Orx receptors concentrating on glutamatergic [79-83] and GABAergic [82, 84, 85] 

neurons have been reported.  Guiding system tone, Orx receptors also function directly on 

serotoninergic cells [86, 87], adrenergic neurons [88, 89], histamine-producing cells [90], 

dopaminergic neurons [91], microglia [92], and astrocytes [93].  In hypothalamic cell 

populations, Orx1R is co-localized with numerous peptides, including Orx, corticotropin 

releasing factor (CRF), and MCH [94].  Furthermore, orexin-producing neurons express Orx2R, 

which may initiate a positive feedback mechanism for enhancing broadly dispersed orexinergic 

tone [95].  However, more recent evidence suggests that Orx neurons do not express 

autoreceptors [96], suggesting that feedback requires indirect mechanisms. These examples 

demonstrate a selective influence of Orx signaling over specific neural systems and cell types 

that may collectively work to balance physiological and behavioral responses. 

Still more precise, Orx receptors can function on various locations on neurons.  For example, 

in the central amygdala (CeA) [79] and PFC [80, 81], Orx receptors have been suggested to 

mediate glutamatergic signaling presynaptically.  However, Orx receptors appear to also 

regulate cell activity from dendrites and cell bodies [87, 95, 97].  Together, these results 

demonstrate a diverse profile of Orx receptors to control neurophysiological responses through 
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regional specificity at both the tissue and cellular levels.  Signaling characteristics of Orx1R and 

Orx2R may further expand influence over intracellular mechanisms. 

Receptor intracellular signaling and dimerization 

Receptor signaling cascades are intricate and while we will not go into immense detail (see 

Kukkonen & Leonard, 2014 and Leonard & Kukkonen, 2014 for reviews), it is possible that 

some features associated with orexin’s intracellular signaling dynamics derive from unique 

qualities of the Orx1R and Orx2R subtypes, and potentially from cellular mechanisms that 

modify the cascade, such as dimerization.  Noteworthy, Orx receptor signaling cascades, as well 

as those from other G protein-coupled receptors (GPCR), are not fully understood, in part, due 

to limitations in methodologies [98].  However, we will describe some broad qualities of Orx 

receptor signaling (Fig. 1) with the caveat that a complete understanding of the underlying 

signaling mechanisms remains unknown. 

As stimulation of Orx receptors results in elevated Ca2+ [2, 39] and PLC activation [99], it is 

presumed that they work as GPCRs of the Gq variety.  In support of this, Orx1R stimulation in 

the prelimbic region of the PFC (PrL) leads to activation of phosophokinase C (PKC) and the 

suppression of hyperpolarization-activated/cyclic nucleotide (HCN) currents [97].  However, in 

human adrenal tissue, Orx2R may couple with Gq, Gs, or Gi [100, 101].  In the dorsal raphe 

(DRN), locus coeruleus (LC), and pontine reticular nuclei, OrxA promotes coupling of Gi; an 

effect that is suppressed with an Orx1R antagonist [102].  Further, hypothalamic Orx receptors 

can couple with Gq, Gs, Go, or Gi; and during food deprivation, coupling preference shifts to 

favor Gq, Gs, or Go, over Gi [103].  Specificity and coupling of G proteins may be dependent on 

ligand concentration, with Gi and Gq pathways being preferred and Gs contributing only when 

Orx levels are elevated [104].  Interestingly, bound Orx1R is also capable of interacting with β-
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arrestins, prompting receptor internalization [105, 106].  Also, activation of Orx1R or Orx2R in 

mouse hypothalamic neurons triggers signaling cascades through the mTOR pathway [40, 41], 

which may stimulate cell growth and neuroplasticity. 

Cell signaling initiated by Orx receptor activation, while plastic in the ability to trigger 

multiple downstream effectors, is further diversified during dimerization with other GPCRs 

where signaling cascades may be altered (Fig. 1).  Orexin receptor subtypes can form 

homodimers/oligomers [107].  Curiously, Orx1R homodimers/oligomers may be abundant at 

stable cellular states, where receptor activation leads to more dimerization and inhibition 

promotes separation into the monomer formation [108].  Splice variants of Orx2R (Orx2Rα & 

Orx2Rβ), with distinct C-terminus regions, also dimerize, resulting in enhanced Ca2+ signaling 

[109].   

It is important to note that most therapeutic drugs have not been assessed for binding affinity 

to receptor dimers.  Understanding the potential dimerization of these receptors is critical for 

pharmacotherapeutics since these dimers may either modify the desired actions of drugs or be 

required for their actions.  Several heterodimers form as a result of Orx1R interacting with other 

GPCRs, including Orx2R [107], Cb1 [107, 110, 111], pyroglutamylated RFamide (QRFP; an 

orexin-like peptide) receptor [112], CRF1 [113], CRF2 [114], kappa opioid receptor (ΚOR) 

[115], cholecystokinin type 1 (CCK1) [116], and ghrelin receptors, GHSR1a [117] and GHSR1b 

[118].  Though not as heavily explored, Orx2R has been demonstrated to form heterodimers with 

Cb1 [107], QRFP receptor [112], and 5-HT1A [119].  While the neurophysiological significance 

of GPCR dimers remains uncertain, they are, perhaps, functioning in a way that mediates cell 

signaling and downstream transcriptional changes.  Further, it is not clear what effect genetic 

variation imposes on receptor dimerization capabilities [120]. 
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Receptor genetics 

In humans, genetic variants of both Orx1R and Orx2R have been linked to stress-related 

dysfunction.  For example, the Orx1R gene (HcrtR1) variant that leads to an amino acid 

substitution at the 408th position (Ile408Val) has been linked to increased mood disorders [121, 

122], elevated stress-induced aggressive behaviors [123], and polydipsic schizophrenia [124].  

Similarly, the HcrtR2 variant that results in an amino acid substitution at the 308th position 

(Val308Ile) is associated with panic disorders in females [125] and nicotine dependence [126].  

Other HcrtR2 variants were discovered in patients experiencing daytime sleepiness (Pro10Ser) 

or Tourette’s syndrome (Pro11Thr) symptoms [127].  Although it is unknown whether variants 

of Orx receptors are functional [120], it is clear when the Orx system is disrupted, stress-induced 

disorders become more prevalent. 

Changes in transcriptional control of Orx receptors has been demonstrated in many systems, 

but we focus on just a few examples related to stress and stress-provoked behavioral 

abnormalities.  Unpredictable chronic mild stress (UCMS) in female rodents increases Orx1R 

mRNA expression [128], while chronic alcohol reduces Orx1R mRNA in the PFC [129].  Our 

own lab demonstrated that Orx1R mRNA in the PrL does not change with ten days of social 

defeat [130].  Single prolonged stress induces upregulation of Orx1R in both the hypothalamus 

and hippocampus [131].  Further, we have demonstrated that social stress enhances Orx1R and 

reduces Orx2R mRNA in the basolateral amygdala (BLA) of (susceptible) mice that demonstrate 

social avoidance behavior in the Social Preference/Interaction (SIP) test [130], or animals that 

demonstrate social avoidance behavior in the Social Interaction/Preference (SIP) test.  In 

humans, males that have committed suicide exhibit elevated Orx2R mRNA in the anterior 

cingulate cortex (ACC) [128].  Interestingly, HcrtR2 expression undergoes diurnal fluctuations 
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in both the hypothalamus and cortex (HcrtR1 shows this expression pattern in only the cortex), 

and is correlated with expression patterns of Bmal1, a gene important in establishing circadian 

rhythms [132].  Together, these examples highlight the intricacies of homeostatic and 

physiological balance during periods of stress; they identify Orx receptors as important 

contributors for establishing neural and behavioral normalcy.   

 

OREXINS AND PSYCHIATRIC DISORDERS 

The critical element in the relationship between Orx activity and psychiatric disorders is 

stress [72].  Stress responsiveness is a crucial factor in the promotion of dysfunctional affect and 

maladaptive behavior in numerous psychological conditions including attention deficit disorder 

(ADD), anxiety disorders, autism spectrum disorders, bipolar disorder, major depressive disorder 

(MDD), drug addiction, eating disorders, obsessive-compulsive disorder (OCD), panic, post-

traumatic stress disorder (PTSD), reactive attachment disorders, schizophrenia, and sleep 

disorders [133, 134].  It is significant that females and males respond differently to stress [135], 

with women reported to have twice the rates of affective disorder diagnoses [136, 137].  In 

addition to significantly more women being diagnosed with stress-promoted behavioral disorders 

[138] such as major depression, high comorbidity with anxiety exacerbates this problem [139, 

140].  What is more, human neuroimaging and animal studies suggest that neural atrophy and 

other structural deficits, which play key roles in these disorders, are exacerbated by stress [141-

149].  The most intense stressors experienced by humans are social [150-153].  As social stress is 

the most intensive [154] and unpredictable [155] of stressors, it specifically promotes 

maladaptive behavior, including depression, anxiety, PTSD, sociophobia, loss of self-esteem, 

and other behavioral symptoms in humans [151, 153].  The incidence rates of adult affective 
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disorders steeply rise during adolescence in parallel with a structural and functional 

reorganization of the neural circuitry underlying stress reactivity [156-160].  Further, stress 

circuits and neuromodulatory factors are predisposing factors for human depression [161-163] 

and anxiety [161, 162].  Orexin fibers heavily innervate stress-related brain regions important for 

stress-induced affective disorders, including the amygdala [62, 164, 165].  This structure’s 

connectome [34, 58, 164] implicates roles for Orx in arousal [1, 18, 55, 58, 166-168], food 

regulation [2-4, 8, 10, 47, 62], and reward [18, 56]; but because these functions are relevant to 

affective disorders, Orx is also likely to be involved in fear, anxiety [57, 130, 169-172], and 

depression [73, 173-178].  Social stress is strongly influenced by Orx and Orx receptor actions, 

and these data are strongly suggestive of their direct involvement in psychological disorders [72, 

179]. 

Clinical studies and trials 

Orexins appear to play a role in many psychological disorders [180-183].  Orexinergic cell 

function is reliably dysregulated by depression [184].  In depressed patients, mean cerebrospinal 

fluid (CSF) Orx levels are elevated, but also show reduced diurnal fluctuation [182].  Depressed 

patient CSF orexin levels, however, are diminished after attempted suicide [180, 181].  Human 

brain, blood, and CSF levels of orexins fluctuate with steady state disruptions occurring as a 

result of childhood mistreatment [185], anxiety [172, 185], sleep disorders [186-194] panic 

[172], schizophrenia [195, 196], traumatic brain injury [197, 198], Alzheimer’s Disease [186, 

199, 200], and heart disease [201], as well as by depression and suicide [180-182, 185].  These 

reports together suggest that reduced Orx is critically associated with depression and preclinical 

depressive behavior [184, 202, 203].  This interpretation of these data is consistent with reported 

effects in animal models, in which, orexins prevent depressive behavior by promoting stress 
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resilience (see section Preclinical evidence) [84, 177, 204-207]. 

There appear to be clinically relevant sex differences in Orx function with respect to stress 

and affect [208].  While there are no significant differences in plasma OrxA in healthy younger 

women and men [209], among older subjects, women have higher levels of OrxA in CSF than 

men [210].  Interestingly, narcolepsy which is associated with profound reductions in neural 

orexinergic function, does not distinguish patients’ plasma levels of OrxA, which are more 

commonly male, from those without narcolepsy [211].  Sleep disturbance appears to be divided 

by sex along lines associated with Orx function. The probability of reduced Orx function and 

greater narcolepsy in males, and potentially increased Orx function leading to insomnia in 

females [212, 213], are suggestive of brain Orx systems differentiated by sex.  Female patients 

with major depression exhibit elevated OrxA in PFC [128], which is not seen in healthy females 

or males [128, 209].  Interestingly, these female patients were postmenopausal, suggesting that 

any sex differences were not due directly to sex hormone actions, although indirect long-term 

effects may have contributed the differences.  The relationship between Orx function and 

affective disorders seems to be worth further investigation. 

However, while Orx receptor antagonist drugs have been approved for treatment of insomnia 

[214, 215], virtually no large-scale clinical examinations of Orx1R- or Orx2R-related drug 

effectiveness specifically for psychiatric disorder treatment has been undertaken.  The dual 

orexin receptor antagonist (DORA) sleep-promoting drug, suvorexant (Belsomra), is clinically 

approved as a treatment to encourage somnolence by reducing arousal and wakefulness [216].  It 

will be important to clinically examine its effects on stress and affect.  Suvorexant lowers stress 

hormone levels of cortisol and norepinephrine, and reduces the severity of anxiety and 

depression in psychiatric patients with insomnia [217], while effectively reducing sleep onset 
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times and increasing sleep duration, without rebound or withdrawal [218].  These results are 

consistent with the Orx1R antagonist activities of the drug, but different from those expected for 

its Orx2R antagonist actions [179].  Interestingly, in a preclinical trial of the competitive Orx1R + 

Orx2R antagonist, almorexant, a DORA that had been in phase II clinical trials, anxious and 

depressive behavior were reduced to the same extent as with the antidepressant, fluoxetine [219].  

As chronic insomnia is highly comorbid with affective disorders, and is associated with up to a 

4-fold increased risk of developing major depression [220-222], it seems appropriate to test 

interactions between drugs, such as DORAs, taken for insomnia and antidepressants [223].  Drug 

interactions between desipramine, a tricyclic antidepressant (TCA), and almorexant, revealed 

that the enzyme primarily responsible for metabolism of the antidepressant is inhibited by 

almorexant.  Not surprisingly, almorexant increased exposure to desipramine by nearly four 

times, whereas the antidepressant had no relevant pharmacokinetic effects on almorexant.  There 

was, however, a slight increase in calmness in patients using almorexant.  Regrettably, this 

DORA with possible capacity for lowering affective symptoms was removed from clinical trials 

based on its safety profile [224].  Filorexant (MK-6096) is another dual Orx receptor antagonist 

in phase II trials for patients with major depression, but these were terminated early, without 

showing a significant difference in depression rating [225].  One of the two most common 

adverse events for filorexant was suicidal ideation, which is common in this type of patient.  

Recent development and clinical trials for two new single orexin receptor antagonist (SORA) 

drugs have presented potentially promising treatments for anxiety and depression through Orx1R 

or Orx2R inhibition, respectively. The clinical potential for limiting Orx1R activity has been 

successfully examined in phase I trials, with the Orx1R antagonist, ACT-539313, developed 

specifically for the purpose of reducing anxiety [226, 227].  The other SORA drug is an Orx2R 
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antagonist, seltorexant JNJ-42847922/MIN-202, designed to reduce insomnia [178, 228-230], 

which was demonstrated to be safe and effective in clinical phase 1, 1b and 2 trials for that 

purpose.  Importantly, this Orx2R antagonist was also demonstrated to reduce self-reported 

depression in some of these small sample trials.  The potential antidepressant action of this 

Orx2R antagonist runs counter to the primary hypothesis of this paper, that Orx2R stimulation 

inhibits stress-responsive neurocircuitry to limit anxious and depressive behavior.  A different 

Orx2R antagonist, MK-1064, delivered icv or directly into the BLA of the mouse brain, increases 

stress responsiveness and behavior [179].  We are excited by the development of these new 

SORA drugs, and are anxious to test their activity on stress-related neurocircuitry with objective 

measures of behavior in our animal model (see COUNTERBALANCED Orx1R VS Orx2R 

MODULATION). This kind of comparison will be necessary to help determine the value of our 

suggestion of a clever new type of drug or combination of drugs awaiting drug discovery, 

selective orexin receptor crossover (SORCO), which makes use of the opposing functional 

effects of Orx1R and Orx2R actions [72], which was derived solely from pre-clinical studies.  

Preclinical evidence 

The effects of OrxA peptide action in emotion-related regions of the brain (sometimes via 

systemic delivery) promote anxious behavior or anxiety [204, 231-234].  The actions of OrxA 

often shows similar effects to those of Orx1R agonists, suggesting that the more common Orx1R 

binding is the primary transducer for OrxA.  Effects of whole brain (intracerebroventricular [icv]) 

infusion of OrxA in mice increases anxiogenic behaviors in the Light-Dark Test (LDT) and 

Elevated Plus Maze (EPM) [235]; while effective pharmacological reversal (using antagonists 

selective for dopamine or serotonin receptors - haloperidol, ritanserin, or metergoline) of the 

anxious behaviors stimulated by icv injection of OrxA or OrxB is highly dependent on the drug’s 
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specificity for monoaminergic receptors [236].  Stress induced through corticosterone 

administration in mice promotes anxious responses in EPM, commensurate with increased OrxA 

[237].  Furthermore, orexin-deficient mice exhibit reduced reactivity to foot shocks, heightened 

anxious behavior in open field (OF) and LDT paradigms, and an increased fear response to 

predatory odors [204].  In contrast, optogenetic excitation of Orx cells in rats increases 

anxiogenic aversion for a social target, enhances exploratory behaviors, and results in the 

internalization of Orx1R in the paraventricular thalamus (PVT) and locus coeruleus (LC) [233].  

Optogenetic stimulation of mouse hypothalamic Orx neurons or terminals activates the 

noradrenergic LC, which when those Orx terminals in LC are optogenetically stimulated results 

in enhanced fearful threat learning [238] and fear generalization [89, 239].  Interestingly, 

optogenetic studies reveal the LC is one of the structures that Orx stimulates to promote 

wakefulness [88, 240].  A combination of optogenetic and chemogenetic tools helped identify 

another circuit associated with anxious behavior from GABAergic CRF and cholecystokinin 

neurons in the BNST to hypothalamic Orx neurons [241]. In this circuit, optogenetic and 

chemogenetic stimulation of CRF or CCK BNST neurons projecting on to Orx neurons increased 

anxious behavior.  Additionally, optogenetic activation of Orx neurons in the LH that target the 

PVN is sufficient to stimulate hormone secretion from the HPA axis [242].  These data suggest 

the hypothalamic orexinergic system is a hub for arousal of stress responses and motivation [243, 

244]. 

Chronic corticosterone-induced stress also promotes depressive reactions in Tail Suspension 

Test (TST) trials in mice, but further is associated with increased OrxA-containing cells in the 

hypothalamus [237].  Wistar-Kyoto rats, a strain demonstrating depressive behaviors and 

disrupted sleep patterns, possess fewer OrxA-expressing neurons, and these cells have a reduced 
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size in comparison to Wistar control rats [205]. Contrastingly, in a genetic animal model of 

depression, the Flinders Sensitive Line, female mice exhibit an elevated number of Orx neurons 

in the hypothalamus [173].  Following traumatic stress, in a predator-odor model of PTSD, 

hypothalamic OrxA and OrxB levels are significantly lower in individuals with extreme 

behavioral disruption (PTSD-phenotype) compared to those with minimal disruption, who 

display up-regulated OrxA and OrxB [245].  Similarly, social defeat-induced depressive behavior 

in rats is accompanied by a reduction of OrxA and OrxB in tissue samples taken from the ventral 

tegmental area (VTA), medial prefrontal cortex (mPFC), and hypothalamus [246].  Levels of 

OrxA and OrxB may be influenced by age as well as affective state. In the clomipramine-induced 

depression model, juvenile Long-Evans rats exhibit reduced Orx levels, but in adults they are 

significantly enhanced [247].  Administered into distinct areas of the stress circuit, such as the 

BNST [234], CeA [169], and BLA [82], Orx produces anxious and depressive behavior.  In 

addition, chronic social defeat epigenetically reduces prepro-orexin mRNA, but calorie 

restriction thereafter enhances activation of Orx cells, which results in an antidepressive response 

[177].  Similarly, early life stress dampens restraint-stimulated Orx cell activity, and produces a 

depressive behavioral phenotype, all of which can be reversed by exercise in adolescent male 

rats [248].  These reports together suggest that reduced Orx is critically associated with 

depression and preclinical depressive behavior [203, 249, 250].  What is more, in genetic models 

of depression, reduced Orx levels have also been measured [205, 206].  

Downstream of Orx neurons, and OrxA + OrxB release, most work in animal models has 

focused on the effects of Orx1R actions, which influence emotion-related regions of the brain 

(sometimes via systemic delivery) to promote anxious behavior or panic [57, 171, 172, 204, 231-

234, 251].  In some regions of the brain, like the CeA, the effect of OrxA to produce anxious or 
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conditioned fear behavior appears to depend only on the Orx1R [79, 252].  Rodents bred with the 

Orx1R gene knocked out exhibit increased anxious responses [207], reduced depressive 

behaviors [74, 207], and impaired fear conditioning in reaction to cued and contextual stimuli 

[89, 253].  Injections of SB-334867 (intraperitoneal [ip]), a potent selective antagonist of Orx1R, 

can mimic the response of Orx1R null mice, showing reduced depressive reactions in tests of 

behavioral despair (forced swim test [FST] and TST) [74] and fear conditioning paradigms 

[253].  Intra-amygdalar injections of Orx1R antagonist diminishes anxiety and fear conditioning, 

but also decreases memory acquisition in a rodent model of PTSD [254].  In contrast, SB-334867 

(ip) inhibits the reported antidepressive actions of whole brain (icv) OrxA in the FST, and 

prevents orexin-induced proliferation in the dentate gyrus (DG) [176].  

Interestingly, oral delivery of a dual Orx1R/Orx2R antagonist (SB-649868) limits elevation of 

the pituitary stress hormone adrenocorticotropic hormone (ACTH) stimulated by mild cage 

exchange stress, but not as effectively as a selective Orx2R antagonist (JNJ-42847922), or in 

Orx2R knockout animals [255].  The authors suggest that the results are consistent with 

predominant Orx2R expression in the PVN [31, 33], however, the systemic delivery makes it 

unclear whether the effects were neural or hormonal.   

Again, it is likely that animal models will reveal sex differences in Orx function as an 

important component of stress-related responses [208].  While plasma levels of estrogens appear 

to correlate positively with Orx neural activation, those of testosterone do not [208].  Further, 

there appears to be a relationship between estrous cycle and expression (both mRNA and 

protein) of orexins and their receptors [256-258], but neither orchidectomy nor estrogen or 

testosterone replacement has an influence on Orx neuronal transcripts of prepro-orexin or Orx 

receptors [20], perhaps explaining why other studies have not measured a relationship between 
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estrous cycling and hypothalamic Orx mRNA [259].  These data suggest that direct influences on 

Orx synthesis due to reproductive cycling may be extra-hormonal, but Orx neuron activity is 

enhanced by estrogens.  Nevertheless, prepro-orexin mRNA is twice as high in female compared 

to male rats [20], plus elevated hypothalamic Orx neuron activation along with higher CSF OrxA 

concentrations in females [19].  Additionally, Orx1R and Orx2R mRNA have been shown to be 

higher in female PVN and whole hypothalamus compared to males [20, 260].  Therefore, there is 

ample evidence to suggest that there are sex differences in Orx function, that Orx plays a role in 

affective disorders, and that those psychological disorders are influenced, even driven, by stress. 

 

OREXINS IN STRESS 

Orexins are important for arousal and for the reactive transition to coping with stressful 

provocations because they play a critical role in modulating the neural systems that respond to 

stressful stimuli [208, 261].  Stressful conditions potently modify Orx and Orx receptor 

expression in the brain [254].  Beginning in the hypothalamus, where orexins are made in the 

LH-DMH/PeF, these neurons are activated by acute stress [73, 262, 263], producing elevated 

plasma and CSF levels of OrxA [262, 264].  Additionally, orexins have a cross-connected 

interactive relationship with the primary stress neuropeptide CRF [58, 59, 265-267].  Specific 

GABAergic CRF and CCK neurocircuitries form the BNST activate hypothalamic orexinergic 

neurons, and influence emotional and stressful outcomes [241].  In addition to CRF, Orx neurons 

link emotional stress to autonomic responses  [268].  What is more, persistent pain and stress 

activate Orx pathways [269].  Stressful behavioral paradigms, such as fear conditioning, increase 

Orx1R in the amygdala [254].  Stress-activated Orx neurons exhibit upregulated expression of 

BDNF, and another stress regulatory neuromodulator, neuropeptide Y (NPY) [245]. 
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The chief output region of the amygdala is the CeA, which regulates hypothalamic 

neuroendocrine (hypothamo-pituitary-adrenal [HPA] axis) function, and extrahypothalamic 

stress-related functions such as anxiety.  In the CeA, Orx1R, but not Orx2R, activity modifies 

neuronal depolarization and firing rate [79, 252].  The initial hormone in the HPA cascade, CRF 

(produced and secreted as a hormone from the PVN and as a neuromodulator in the CeA and 

BNST) increases Orx neuronal activity [58, 241].  Downstream, Orx2R is implicated in stress-

induced secretion of adrenocorticotropic hormone (ACTH) release from the pituitary [263].  

Taken together, the evidence from recent experiments suggests that Orx plays an important role 

in most, if not all, stress-induced responses [58, 59, 68, 265, 270]. 

 

OREXINS AND STRESS NEUROCIRCUITRY 

Orexinergic innervation of stress-related neurocircuitry is evident in both behaviorally relevant 

limbic structures and, with significant overlap, limbic plus hypothalamic structures regulating 

neuroendocrine stress hormone output (see previous section).  Applicable to the specific 

neurocircuitry necessary to produce affective behavior and fear learning, Orx neurons innervate 

the thalamic terminals in mPFC.  They also innervate BLA neurons receiving inputs from mPFC, 

CeA neurons receiving input from BLA, and periaqueductal gray (PAG) neurons, which receives 

input from the CeA.  Additionally, as the regions of extended amygdala play important roles in 

anxiety and depression, orexinergic projections to the BNST and the dopaminergic reward 

circuitry from VTA to NAc and the surrounding ventral striatum may be important for those 

affective responses.  This latter relationship is evident in work linking Orx and stress to addiction 

[271-276].  Recent evidence points to another specific Orx stress circuit that promotes addiction 

and relapse, beginning in the Neuropeptide S (NPS) neurons of the Kölliker-Fuse nucleus of the 
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parabrachial nucleus (PBN) and the region around the LC, which directly stimulate hypothalamic 

Orx neurons. These Orx neurons project to the VTA, and through binding of Orx1R and  

PLC 2nd messenger, stimulate production of the endocannabinoid 2-AG, which disinhibits VTA 

dopaminergic neurons by way of Cb1 receptors [277-281].  However, there are specific 

additional neurocircuits for stress-related activity, from BNST, via GABAergic CRF and CCK 

neurons, to hypothalamic Orx neurons [241], and then to noradrenergic neurons in the LC [89, 

238, 239].  The interactive relationship between stress neurocircuitry and Orx also importantly 

connects the food-seeking function of the peptide, with both reward and arousal [282-286].  

These cross-linked functional roles have suggested that the primary role for Orx is motivational 

[287, 288].  Further, recent work from our lab suggests Orx acts in decision-making 

neurocircuitry (which also overlaps stress neurocircuitry) with definitive effects on behavioral 

choice outcomes [72, 179].  As stress, arousal, reward, anhedonia, and modified decision-making 

are all critical elements related to the onset of anxiety and/or depression, it seems likely that Orx 

also plays a role in regulating the neurocircuitry involved in affective disorders [72, 73, 130, 

179].  

 

MEDIAL PREFRONTAL CORTEX (mPFC) AND AMYGDALA MICROCIRCUITS 

The mPFC has a critical role in cognition, learning, executive control of emotional states, 

stress-coping strategies, decision-making, and social interaction.  Similarly, the amygdala is 

involved in determining and learning emotional behavior, stress-coping strategies, and 

behavioral responses to aversive and rewarding stimuli.  Even though mPFC and amygdala are 

involved in many overlapping functions related to emotional learning, the sub-nuclei of these 

regions display unique patterns of connectivity, suggesting distinct parallel circuits between the 
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mPFC and amygdala (Fig. 2) that preferentially drive behaviors and emotion-related learning. 

Prelimbic (PrL) and infralimbic (IL) cortices 

In the rodent brain, the mPFC is composed of three main subregions: anterior cingulate 

(ACC; Brodmann Area 24 in humans), prelimbic (PrL; BA 32 in humans), and infralimbic (IL; 

BA 25 in humans) cortices.  In these regions, layer V pyramidal neurons provide output to 

subcortical structures like amygdala, hippocampus, and striatum [289-291].  Additionally, 

inhibitory interneurons containing gamma-aminobutyric acid (GABA) in the mPFC regulate the 

outgoing signal of pyramidal neurons, or other interneurons. 

Activity in the PrL and IL is predominantly involved in opposing aspects of emotional 

learning [292].  Together, activation of terminals in the PrL and IL projecting from the BLA 

causes anxiogenic behaviors and a reduction in social preference; while inhibition of these 

terminals produces the opposite effect [293].  However, individual activation of the PrL and IL 

promotes unique responses, suggesting each region serves distinctive functions [294-299].  

These response-specific features, perhaps, derive from differential and reciprocal projection 

patterns with the BLA, NAc, VTA, BNST, dorsal raphe (DRN), LC, hippocampus, 

hypothalamus, and thalamus [300].  While the PrL primarily mediates cognitive-limbic functions 

like decision-making, goal-directed behavior, and working memory, IL activity tends to 

influence visceral/autonomic functions like heart rate, gastrointestinal functions, blood pressure, 

and respiration [300]. 

 Activity in the PrL is critical for the expression of fear, as well as forming and maintaining 

fear memories, which can be enhanced or diminished upon PrL stimulation or inhibition 

respectively [294-297].  Conversely, learning and maintaining behaviors related to reward, 

including those associated with fear extinction, are increased with stimulation of IL and 
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suppressed during IL inhibition [294-297].  Important for its role in fear extinction, IL activation 

can simulate inhibitory interneurons in the ventral intercalated region of the amygdala (vITC), 

which suppress medial CeA (mCeA) neurons that become disinhibited to trigger fear responses 

[297, 298]. 

Anterior and posterior basolateral amygdala 

The BLA receives input from brain structures relaying information about external and 

internal sensory information, memory, and decision-making.  This cortex-like structure consists 

of about ~80-85% glutamatergic pyramidal projection neurons (PNs) and ~15-20% GABAergic 

inhibitory interneurons [301, 302], which act together to regulate BLA signaling.  In the BLA, 

PNs are the main source of output, exciting cells in numerous downstream brain regions.  

Interneurons act by inhibiting PNs and/or other interneurons, thereby modifying the outgoing 

signal. Acquisition of a fear or reward memory occurs from the convergence of sensory 

information projecting to the lateral (LA) portion of the BLA [301], which drives appropriate 

projections and activity in the more basal area.  Interneurons (specifically those expressing 

parvalbumin [PV+]) supply inhibitory tone to pyramidal neurons in the LA, but dampen their 

suppressive effect during fear conditioning [303].  The resulting excitatory signal from BLA 

activates the main fear output of the amygdala, the CeA.  

The CeA is a striatal-like structure almost entirely composed of medium spiny GABAergic 

interneurons and inhibitory projection neurons [302].  Expression of fear is ultimately the result 

of activating inhibitory neurons in the mCeA, which are usually under inhibitory control of 

neurons originating in the lateral CeA (lCeA) [304].  Projections from interconnected inhibitory 

circuits of the lateral capsular CeA (lcCeA), lCeA, and mCeA regulate inhibitory tone over 

stress-induced behaviors, like freezing.  
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Distinct populations of BLA pyramidal neurons become activated in response to either 

aversive or appetitive unconditioned stimuli.  Selectively activating these cells produces innate 

fear or reward behaviors and can reinforce learning of either fear or reward [305].  Additionally, 

“fear” neurons, projecting from the BLA to the PrL, increase their firing rate in response to fear 

conditioning and decrease their activity following extinction learning; alternatively, “extinction” 

neurons of the BLA become more activated in response to extinction learning, and innervate the 

IL and CeA [306, 307].  During extinction learning, previously formed fear memories are not 

erased (or unlearned), but rather, suppressed to allow the new extinction memory to become 

expressed.  A potential mechanism underlying extinction memory expression is the silencing of 

BLA “fear” neurons through inhibitory signaling of PV+ interneurons [308].  These studies 

identify separate BLA neuronal populations acting within microcircuits to mediate behavioral 

and emotional output. 

Two genetically unique populations of excitatory PNs in the BLA preferentially process 

positive (rewarding) or negative (aversive) valence, as well as guide behavioral responses to 

seek and avoid these types of stimuli respectively [299].  These nearly non-overlapping 

populations along the anterior-posterior axis make up almost all the glutamatergic neurons 

within the BLA.  The anterior BLA (aBLA) contains magnocellular glutamatergic PNs that 

express the genetic marker R-spondin 2 (Rspo2+), which are preferentially activated by aversive 

stimuli, and, upon stimulation, decrease motivation to seek reward and increase freezing 

behavior [299].  These aBLA neurons send dense projections to the capsular CeA (cCeA) and 

PrL, and send ~30% of the projections from the BLA to NAc [299].  In contrast, the posterior 

BLA (pBLA) preferentially contains parvocellular glutamatergic PNs that express the genetic 

marker Ppp1r1b, encoding for the dopamine- and cAMP-regulated neuronal phosphoprotein 
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(DARPP-32) [299].  These pBLA neurons become activated by exposure to rewarding stimuli, 

and when optogenetically stimulated, disrupt aversive behavioral response [299].  Connections 

from Ppp1r1b+ neurons target the lCeA, mCeA, and IL, and make up ~70% of the connections 

from the BLA to the NAc [299].  Furthermore, Rspo2+ and Ppp1r1b+ neurons reciprocally 

suppress each other’s activity; however, ~25% of connections from Ppp1r1b+ to Rspo2+ and  

~17% from Rspo2+ to Ppp1r1b+ neurons produce excitatory effects [299]. 

Pro-stress microcircuits 

Through reciprocal connectivity, the PrL and aBLA promote learning and expression of fear-

related behaviors and therefore describe the “pro-stress” microcircuits (Fig. 2A) [307, 309].  

Projections from the BLA to the PrL are triggered during high fear states [310], providing 

bottom-up negative valence processing that requires excitation of Rspo2+ PNs [299].  

Furthermore, BLA neurons that target the CeA, presumably Rspo2+ cells innervating the cCeA 

[299], are activated during cue-induced fear responses [307].  Interestingly, while activation of 

the PrL reduces social preference, this motivational social learning is driven through PrL to NAc 

connections and not PrL innervations of the amygdala or VTA [311].  Therefore, bottom-up 

signaling to the PrL from specific aBLA neurons may prompt social aversion [293] through 

downstream projection pathways.  Collectively, these findings illustrate a pro-stress microcircuit 

centered around aBLA neurons that send/receive signals to the PrL, as well as relay behavioral 

output information to the CeA.  

Anti-stress microcircuits   

The IL and pBLA Ppp1r1b+ neurons, through reciprocal connections, are important for 

consolidating fear extinction memories and driving reward-related behaviors.  Although only 

~8% of neurons in the IL project to the BLA in rats [312], enhanced activity in the IL and pBLA 
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circuits are considered “anti-stress” microcircuits (Fig. 2B) that become activated upon exposure 

to safety and rewarding cues.  While BLA neurons innervating the IL display enhanced 

excitation during fear extinction learning, and BLA-activated ventral PAG-projecting IL neurons 

are also essential for fear extinction [313-315].  Further, activation of pyramidal neurons in the 

IL results in inhibition of pro-stress PrL pyramidal neurons [316], perhaps, as a result of IL-

originating NPY-positive (NPY+) GABAergic neurons that project to the PrL [317].  In the 

BLA, neurons innervating the IL are more susceptible to activity-dependent suppression than 

those connecting with PrL, an effect that is mediated through endocannabinoid signaling 

dynamics onto BLA interneurons (specifically cholecystokinin-positive [CCK+] cells) [310].  

Additionally, social behaviors, perhaps associated with Ppp1r1b+ neurons projecting to the NAc 

[299], are modulated by endocannabinoid interaction with BLA cells [318].   In sum, these 

results indicate that anti-stress microcircuits are distinct from pro-stress circuits (Fig. 2), and 

primarily involve signaling between the IL and pBLA.  

The concept of counterbalanced microcircuits 

While it is easier to consider stress reactivity in the guise of “stress on” and “stress off” 

conditions, microcircuits exist in dynamic relationships where stressful events skew response 

signaling to favor one behavioral state over another.  When equilibrium is shifted, the 

permanence associated with the manifestation of phenotypic display is largely dependent on the 

degree to which the neural signaling is altered.  This counterbalance theory of stress 

responsiveness predicts that the realignment of pro- and anti-stress signaling to a more balanced 

state may serve to correct affective dysfunction.   

Amygdala hyperactivity in response to threat has been observed in clinical anxiety disorders 

[319], and may serve to predict future risk of developing anxious or depressive disorders [320].  
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Brain imaging and post-mortem studies show hypoactivity and reduced volumes in the PFC of 

humans with depression [321].  Individuals that are better able to suppress negative emotions 

display greater attenuation of amygdalar activity and higher inversive coupling between the 

ventromedial PFC (vmPFC; human IL homologue) and amygdala [322].  This suggests mood 

disorders may manifest due to changes in connectivity and functionality of the mPFC and 

amygdala, with heightened amygdalar and reduced PFC activity upsetting executive control over 

emotions.  However, distinguishing specific mechanistic frameworks in BLA-mPFC pro- and 

anti-stress microcircuits that work in a counterbalanced fashion may provide insight as to how 

stress-related dysfunctions arise and, perhaps more importantly, how to correct them.  One such 

system, potent and dualistic in its physiological and behavioral provocations during periods of 

stress, includes the targets of orexins: the Orx receptors. 

 

OREXIN RECEPTORS AND STRESS RESPONSIVENESS 

Stress-induced behavioral and physiological responses are mediated through complex 

interactions of genetic and environmental influences that direct signaling biases in pro- and anti-

stress microcircuits.  Within these circuits, Orx receptors (Orx1R and Orx2R) gate the emergence 

of stress-related behaviors.  While evidence for Orx receptor modulation of stress responses 

exists outside the microcircuits highlighted above (see Summers et al., 2020 for review), in this 

section we will focus on findings that specifically incorporate the PFC and amygdala. 

Gating stress responses through the prefrontal cortex (PFC) 

The PrL and IL divisions of the PFC are heavily innervated by glutamatergic neurons 

originating in the thalamus, particularly mediodorsal (MDT) and PVT nuclei [323].  Orexin-

producing neurons of the hypothalamus densely project to the PVT [34] where OrxA, and OrxB 
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to a greater extent, activate glutamatergic cells [324].  Direct infusions of OrxA or OrxB into the 

PVT enhance anxious responses in the EPM; and EPM-related anxious behaviors can be 

alleviated by blocking Orx1R [75] or Orx2R [76] in the PVT.  A homeostatic consequence of 

activating orexin-producing neurons is internalization of PVT-expressing Orx1R [233]; an effect 

that is reversed with Orx1R antagonism in the PVT [75].  Although the Orx system can alter 

PFC activity indirectly through thalamic nuclei, orexinergic projections also supply direct 

signaling to the PFC [34].  

Transcriptional expression of Orx1R is moderate in both the IL and PrL; however, Orx2R is 

expressed minimally in the IL and appears to be absent in the PrL [33].  In the PrL, Orx1R is 

localized to cell bodies and neuronal processes of pyramidal neurons of layer V [97].  Further, 

Orx2R activation increases Ca2+ in the presynaptic terminals of axons projecting from the 

thalamus to layer V PFC neurons [81].  Interestingly, in layer V of frontal area 2 (FA2), a large 

PFC region lateral to the PrL, Orx1R is localized on intracortical glutamatergic presynaptic 

terminals, but not on thalamocortical terminals [80].  Together, these findings suggest that 

within the PFC, there is a regional dependence of Orx system control over signaling tone; and 

this is initiated through direct activation of PFC neurons or regulation of Glu release from 

thalamocortical inputs.  However, social stress leads to a reduction in hypothalamic release of 

OrxA and OrxB to the PFC [246], diminishing orexin-induced activation of PFC neurons.   

The significance of Orx2R signaling in the PFC with respect to stress responses can only be 

hypothesized (see section COUNTERBALANCED Orx1R VS Orx2R MODULATION); 

however, few studies have considered the role of Orx1R-containing PFC neurons in behaviors 

relevant to stress circuitry.  For example, chronic alcohol exposure reduces Orx1R mRNA in the 

PFC [129], which possibly contributes to alcohol- and withdrawal-induced changes in signaling 



   

27 
 

dynamics of the PFC [325] and amygdala [326] that lead to hyperreactive stress states [327].  

Also, blocking Orx1R in the PFC, specifically the ACC and orbitofrontal cortex (OFC), interferes 

with stable decision-making strategies [328], a characteristic applicable to stress-induced 

affective disorders [329].  Further, blocking Orx1R in the PFC abolishes cue-induced feeding 

behavior [330], a response associated with stress-provoked eating [331, 332].  Systemic 

administration of an Orx1R antagonist also reduces cue-induced feeding behavior and increases 

neuronal activity of the IL, PrL, and PVT [333]. 

Gating stress responses through the amygdala 

In the BLA, Orx receptors are localized to both glutamatergic and GABAergic neurons [82, 

83].  Optogenetic activation of glutamatergic neurons in the perifornical region (PeF) of the 

hypothalamus that project to the amygdala exaggerates the fear expression profile in rats [334].  

Blocking intra-amygdalar Orx1R suppresses anxiety and fear responses in stressed rodents [83, 

254].  Similarly, systemic (ip) administration of an Orx1R antagonist reduces contextual and 

cued fear learning responses [253] and is associated with activation of IL-projecting BLA cells 

and calbindin-expressing BLA interneurons [335].  Perhaps these effects, in part, are related to 

impairments in spatial learning that are associated with intra-BLA Orx receptor antagonism 

[336], which can reduce long-term potentiation (LTP) in DG granular cells [337]; however, 

recent preliminary results from our lab suggest that small doses of an Orx1R antagonist into the 

BLA enhances spatial learning during periods of stress [83].  This finding remains consistent 

with the report that intra-BLA antagonism of Orx1R or Orx2R does not impair memory retrieval, 

but does impact consolidation [336].  Systemic (ip) Orx2R inhibition has also been shown to 

diminish contextual fear responses but has no effect on cued fear expression [253].  In our lab, 

we demonstrated that cued fear associated with social stress can be reduced through icv infusion 
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of a small dose of an Orx2R agonist [179].  Additionally, repeated restraint stress in mice 

increases Orx release to the BLA, and this increase BLA Orx is associated with depressive 

behaviors [82]. 

Orexin-producing neurons send projections to the CeA where they regulate release of Glu by 

targeting presynaptic Orx1R [79].  As the CeA houses predominantly GABAergic neurons 

[338,339], some of which are CRF-producing [340, 341], presynaptic Orx1R may be localized 

on the terminals of BLA projection cells.  Microinfusions of either OrxA or OrxB into the CeA 

increases anxious behaviors in the LDT and EPM [169].  Inhibition of CeA Orx1R can reduce 

conditioned fear [79]. 

Collectively, these examples demonstrate the ability of Orx receptor activity in PFC and 

amygdala microcircuits to bias stress reactivity.  Further, these data indicate that Orx1R and 

Orx2R opposition is not a fundamental element of Orx functioning everywhere in the brain, and 

that these two receptors can regulate stress and affect concordantly.  While a complete 

understanding of the cellular and molecular mechanisms employed to shift stress responses 

remains an ambitious and long-term goal of ours, in the following section we will predict, based 

on evidence from our lab, a counterbalanced mechanism for mediating stress-induced behaviors 

via Orx1R and Orx2R interaction. 

 

COUNTERBALANCED Orx1R VS Orx2R MODULATION 

The idea of the Orx system contributing to bidirectional stress responses is not novel.  

Discrete and parallel circuits, incorporating the lateral hypothalamus and orexin-producing 

neurons, initiate opposing behavioral responses to emotionally relevant stimuli [241].  

Furthermore, motivated behavior promoted through Orx release is antagonistic to the action of 
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Dyn, an endogenous opioid that is co-expressed with Orx, in the VTA [27].  At the level of 

synapses, Orx1R activation through Gq signaling can lead to the production and release of 2-

arachidonoylglycerol (2-AG) (Fig. 4C) [342], which may suppress the initial Orx system 

stimulation in circuits tied to food-seeking and pain [343].  While these examples demonstrate 

orexin’s involvement in opposing systems, we propose that dualistic Orx1R versus Orx2R 

signaling within stress microcircuits shifts behavioral responses to favor maladaptive or adaptive 

outcomes. 

Inhibition of Orx1R in stress microcircuits 

Using a test of behavioral despair, we observed a positive relationship between despair 

(immobility) and amygdalar Orx1R mRNA levels [73].  Additionally, we detected elevated 

Orx1R mRNA in the BLA of individuals displaying susceptibility after 10 days of social defeat 

[130].  These transcription levels of Orx1R were further negatively correlated with social 

preference behavior [130].  Together, these results suggest that Orx1R activity in the BLA is 

important for one side of a system that balances stress reactivity. 

Using a preclinical social stress paradigm designed by our lab, called the Stress Alternatives 

Model (SAM), we set out to determine if pharmacological manipulation of Orx1R in the BLA 

(intra-BLA) could shift stress responsivity (Fig. 3).  The SAM takes advantage of the fact that 

when mice are exposed to intense stress (like social stress), they diverge into behavioral 

phenotypes, adopting either active or passive coping strategies [344-346].  We have 

demonstrated that mice displaying the active strategy (called Escape mice) are behaviorally and 

physiologically resilient to stress, while those of the passive phenotype (called Stay mice) are 

susceptible to stress [179, 347].  Following phenotype commitment in the SAM, antagonism of 

Orx1R in the BLA shifted behaviorally susceptible (Stay) individuals toward the resilient 



   

30 
 

(Escape) phenotype (Fig. 3E), suggesting a positive influence of drug delivery on decision-

making during stress [83].  Inhibition of Orx1R also reduced fear learning responses (Fig. 3A) in 

mice conditioned to associate a tone with social aggression [83].  In a similar way, blocking 

intra-BLA Orx1R decreased aggression-induced conflict-freezing responses, but had no effect on 

fear-related startle response (Fig. 3B, C) [83].  It is noteworthy that stimulation of Orx1R in the 

BLA produced opposing effects [83]. 

Our results support the prediction that Orx1R activity in the BLA drives pro-stress responses 

and blocking these receptors biases anti-stress microcircuit signaling.  Several other studies 

provide complimentary findings that bolster our claim that inhibition of Orx1R promotes positive 

behavioral outcomes to stressful events [74, 75, 170-172, 251, 253, 254, 330, 348-350].  We 

propose that selective Orx1R inhibition may provide a potential therapeutic quality for affective 

disturbances, like those observed in MDD, by correcting signaling imbalances within stress 

neurocircuitry.  However, our results establish an equally viable pharmacological target in the 

Orx2R (Fig. 3). 

Orx2R stimulation in stress microcircuits 

 In response to social defeat, susceptible individuals express lower levels of Orx2R mRNA in 

the BLA and the level of expression is positively correlated with social preference [130].  In the 

SAM, we demonstrated that inhibition of whole brain (icv) Orx2R enhanced susceptible 

behaviors in previously resilient mice, including the blockade of escape behavior, enhanced 

freezing, increased startle, and diminished social preference [179].  We observed similar results 

with intra-BLA infusion of an Orx2R antagonist [83]. 

In contrast, rescue of escape behavior in susceptible (Stay) mice was possible using whole 

brain [179] and intra-BLA [83] administration of an Orx2R agonist (Fig. 3E).  Further, we 
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observed a reduction in fear-related conditioned/conflict freezing and startle (Fig. 3B, C) [83, 

179].  The SAM paradigm incorporates decision-making [344-346] and allows for measurements 

of motivated behaviors that are sometimes blunted during periods of stress, like escape-seeking 

behavior (called Attention Toward Escape) [83, 179].  Stimulation of Orx2R [83, 179] and 

inhibition of Orx1R [83] activate this adaptive response in susceptible mice (Fig. 3D).  Although 

few studies have directly addressed Orx2R activity in response to stress-related behaviors, there 

are those that complement our findings [74, 84].  Collectively, these observations expose a 

mechanism by which Orx1R and Orx2R activity bidirectionally balances stress responsivity.  

Importantly, our preclinical results illustrate that Orx receptor signaling in stress microcircuits 

mediates stress reactivity by altering behavioral output related to fear, decision-making, and 

motivation (Fig. 3).  We posit that simultaneous antagonism of Orx1R and stimulation of Orx2R 

(see section THE POTENTIAL FOR SELECTIVE OREXIN RECEPTOR CROSSOVER 

DRUGS (SORCOs)) would provide a potent effect on biasing resilient behaviors in response to 

stress. 

Competing Orx1R and Orx2R signaling to balance pro- and anti-stress microcircuits 

Focusing on a small piece of the overall stress neurocircuitry, namely distinct areas of the 

mPFC (IL & PrL) and the amygdala, we can offer simplistic predictions as to how signaling 

from Orx1R and Orx2R work to oppose biases in stress responsivity (Fig. 4).  Expression of 

Orx1R in both the IL and PrL is limited in deep cortical layers (layers V & VI) but more 

abundant in layer II [33], suggesting a regional dependence on signaling that may more 

effectively drive signals from interneurons within layer II/III.  However, in the PrL Orx1R is 

found on pyramidal cell bodies and neuronal processes [97], indicating a potentially potent pro-

stress response upon activation (Fig. 4A).   
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In the PrL, Orx2R mRNA is possibly absent; however, some expression exists within the IL 

[33].  In addition, Orx2R enhances thalamocortical signaling from thalamus-projecting 

presynaptic terminals [81], perhaps further potentiating IL activity (Fig. 4B).  These observations 

advocate a preference for anti-stress signaling upon Orx2R activation. 

Amygdalar Orx receptors are less characterized; however, Orx1R signaling from presynaptic 

terminals in the mCeA [79], may originate from glutamatergic projection neurons in the BLA 

(Fig. 4D).  This prediction is not baseless as glutamate-producing neurons in the BLA have been 

shown to express Orx1R [82, 83, 351].  As antagonism of Orx1R in the BLA results in activation 

of IL-projecting neurons as well as calbindin-positive (Calb+) GABA cells [335], we predict 

blockade of Orx1R on CeA-projecting pyramidal neurons deactivates endocannabinoid-mediated 

suppression of Calb+ GABA neurons (Fig. 4C; similar to mechanisms proposed by Berrendero, 

Flores, & Robledo, 2018) and allows for Orx2R signaling bias of IL-targeting fear extinction 

circuits.   

Expression of Orx receptors have also been identified in GABA neurons [82] and with whole 

brain Orx2R stimulation, PV+ GABA cells in intercalated/BLA regions of the amygdala (Fig. 4C) 

become activated [179].  Intercalated GABA cells that suppress pro-stress responses [352] are 

activated by inputs from the IL [353], so activation of Orx2R within the IL may induce anti-stress 

reactivity (Fig. 4B).  It is also possible that Orx2R activation of IL-projecting neurons results in a 

positive feedforward of circuit control that directs adaptive stress responses.   

The Orx1R-Orx2R signal balance may also be achieved through regional expression in 

anterior and posterior BLA neurons.  The configuration of non-overlapping aBLA and pBLA 

cells that antagonistically regulate emotional responsivity [299] suggests there may be an 

organizational structure from which balance of the Orx system stabilizes reactions to stress.  In 
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this model, Orx1R activation may selectively activate aBLA circuits, while Orx2R stimulation 

shows bias towards the pBLA connections (Fig. 4C, E).   

All predictions reported here may work individually or in combination to support the 

opposing actions of Orx1R and Orx2R regulation of stress neurocircuitry (Fig. 4).  

Counterbalance theory of stress responsiveness suggests that upsetting stable states in PFC and 

BLA results in imbalances that may be corrected through opposing systems.  During stress-

induced disorders, including affective disorders, we argue that pro-stress microcircuits become 

favorable leading to behavioral disturbances.  We hypothesize, based on supporting evidence 

presented here, that Orx1R-Orx2R counterbalanced systems are responsible, in part, for 

establishing equilibrium during periods of stress.  As such, we propose a novel idea for 

therapeutic intervention of stress-related disorders through simultaneous inhibition of Orx1R and 

stimulation of Orx2R. 

 

THE POTENTIAL FOR SELECTIVE OREXIN RECEPTOR CROSSOVER DRUGS 

(SORCOs) 

Our proposal for a hypothetical class of drugs or combined drug treatment is based on two 

important factors.  The first is that the mPFC-BLA microcircuits play an important role, perhaps 

even a dominant role, in the regulation of stress responsiveness and emotional behavior.  To be 

sure, however, mPFC-BLA are not the only stress-related specific microcircuits in the brain. 

Other circuits, including those emanating from GABAergic CRF and CCK neurons in the 

BNST, stimulating hypothalamic Orx neurons, which innervate important stress/arousal regions 

of the brain, such as the LC [89, 238, 239, 241], and perhaps also influence the mPFC-BLA 

microcircuits.   
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In the mPFC-BLA reciprocal set of microcircuitries, the functions of Orx1R and Orx2R 

appear to be opposing, primarily because their expression is likely segregated to functionally 

distinct cell types. The critical role of the mPFC-BLA systems regulating stress-related functions 

and behaviors remains to be more carefully demonstrated. The evidence thus far for its 

importance, comes from experiments using icv injection of Orx2R agonist and antagonist drugs, 

with a potentially pan-brain exposure suggesting that Orx2R function is primarily anti-stress.  

Similarly, systemic delivery of Orx1R antagonists reduces stress-related functions and behavior, 

suggesting a pro-stress function for Orx1R. It is clear however, that in some regions of the brain, 

the Orx1R and Orx2R appear to function concordantly, and this may be the prevalent disposition 

of these two receptors in the brain.  Further clarification will be necessary to determine if the 

kind of drug or drug combination that we propose below is appropriate. 

The currently available Orx drugs (and those in clinical trials) are antagonists of both Orx1R 

and Orx2R called DORAs as well as selective receptor antagonists (SORAs) for Orx1R or 

Orx2R, which were developed for use in treatment of insomnia [178, 228-230, 354] or anxiety 

[226, 227], and with some effectively yielding sleep-promoting results [178, 216, 218, 228-230], 

have been suggested to be potentially useful in treatment of addiction [355] and depression [178, 

228] as well.  These drugs, though not selective for the Orx1R alone, have also displayed some 

promise as therapeutic tools for relieving signs of affect.  Orally administered DORA-12 

enhances social interaction time in rats subjected to high levels of CO2 to promote a panic state 

[251].  Almorexant, a competitive Orx receptor antagonist designed to treat insomnia, lowers 

blood pressure (BP) in hypertensive rats, while having no impact on the resting BP of wildtype 

animals [356].  Further, almorexant, in a dose-dependent fashion, reduces fear-potentiated startle 

in conditioned rats, while having no myorelaxant effects [51].  When administered almorexant 
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daily, mice experience decreased anxious and depressive behaviors in an UCMS model for 

depression that are comparable to fluoxetine-treated animals [219].  The effectiveness of 

DORAs suggests the Orx receptors function in a similar fashion, which is often true relative to 

sleep-wake cycles, insomnia, and narcolepsy, but not always, as Orx1R may oppose the sleep-

inducing effects of Orx2R [357], and SORA Orx2R antagonist drugs differentially increase 

NREM sleep [358, 359] over REM-induction by DORAs.  We make the point that it is also not 

true for stress neurocircuitry and responsiveness or behavioral affect [72, 73, 83, 130, 179, 351].  

Consequently, sometimes the typical, presumably Orx1R-mediated, effect is not manifest, such 

as the case with the predator odor PTSD model, in which rats treated with almorexant display a 

higher prevalence of the PTSD phenotype [245].  Therefore, to achieve an effective, efficient 

anxiolytic or anti-depressant drug based on specific Orx1R and Orx2R functions [72, 83, 130, 

179, 351] in the stress neurocircuitry that regulates enhanced responsiveness and affect, a 

distinctively new kind of drug, or drug combination is necessary.  The need for a singular or 

dual drug with the ability to modify both pro-stress and anti-stress circuitries seems to be critical 

for the treatment anxiety and/or depression [72, 73, 83, 130, 179, 351].  This new drug should 

limit the output of pro-stress circuitries through inhibition of Orx1R and promote anti-stress 

circuitries and actions by means of stimulation of Orx2R. A selective orexin receptor crossover 

(SORCO) drug or combination of drugs would, we believe, produce a complete treatment 

related to specific causes of anxiety and depression, and not just to symptomology. In the 

process, SORCO actions could positively modify behavior associated with stress, arousal, 

reward, anhedonia, and modified decision-making thereby limiting significant elements related 

to the etiologies of those affective disorders. 

We make one additional point regarding the clinical implications for DORAs and SORAs 
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used for treatment of insomnia in comparison with the potential actions of a SORCO designed to 

limit anxiety or depression.  However, comparisons may be difficult, since the dosages used for 

rodent experiments are on the order of ten-fold higher (compared only within a treatment type, 

such as icv injection) in sleep- or wake-promoting treatments, than for our studies related to 

stress responsiveness [72, 179].  This difference in dosage is significant for several reasons, the 

first of which is that cross effects, and side effects, may be avoided, although significant further 

testing would be necessary to determine this.  Suggesting that some Orx system-targeting drugs 

may have a wide range of efficacy, anxious, panic, and depressive behavior can be inhibited by 

doses of Orx1R and Orx2R antagonists SB334867, ACT-539313 and JNJ-42847922 (seltorexant) 

drugs similar to those used for sleep induction [72, 170-172, 251].  The low doses necessary to 

produce anxiolytic or antidepressive actions from Orx2R agonist treatment may prove to be a 

therapeutic advantage [72].  Thus, inhibition of Orx1R, and stimulation of Orx2R, both appear to 

have the potential for anxiolytic and antidepressive actions.  While DORA treatment confounds 

the opposing actions of Orx1R and Orx2R in the mPFC-BLA microcircuits, it seems likely that  

anti-panic effects derive mostly from antagonizing Orx1R actions [251], given the evidence that 

blocking Orx2R is anxiogenic and pro-depressive (for icv and intra-BLA injections) [179].  

Additionally, at first blush, these promising results based on the new Orx2R antagonist 

seltorexant (JNJ-42847922) suggest the opposite action for Orx2R than the anti-stress function 

that we suggest. It may be that our suggestion for Orx2R anti-stress function is limited to a 

specific neurocircuitry (see sections above).  However, results from icv injection of both Orx2R 

agonist and antagonist [179] suggest that the anti-stress/anxiolytic/antidepressant role for Orx2R 

is more systemic, at least within the brain. While early clinical trials with limited sample sizes 

support antidepressant actions for seltorexant, which are potentially very important, there are 
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also precautions that should be taken based on subjective (self-report) data that also may be 

reliant on codependent physiological actions, such as sleep.  As the authors of those studies note, 

insomnia or sleep dysregulation powerfully predisposes subjects to depressive affect, and 

resolving dysfunctional sleep, may have a potent antidepressive effect, without actually engaging 

or chemically realigning the neurocircuitry that is primarily responsible for anxiety or 

depression.  At doses that do not affect activity or sleep, Orx2R-targeting drugs may influence 

stress responsiveness and affective behavior in a way that suggests that these receptors promote 

resilience in pre-clinical studies.  

 

SUMMARY 

Parallel pro-stress and anti-stress neurocircuitries exist between the prefrontal cortices and 

the basolateral amygdala, and these reciprocal and interacting circuits are critical for the 

development and expression of affective behaviors and disorders.  Projecting neurons from the 

orexin-producing region of the hypothalamus modulate both pro-stress and anti-stress elements 

by means of Orx1R and Orx2R.  The affect-related functions of Orx1R and Orx2R are opposing, 

with Orx1R promoting anxious, panic, and despair-related behaviors, and Orx2R limiting those 

responses as well as reinforcing behavior associated with stress resilience.  The evidence 

suggests that DORAs work at counter purposes related to affective behavior, and that a new 

selective crossover drug (or combination of drugs) that inhibits type 1 Orx receptors while 

stimulating type 2 receptors (SORCO) is a potentially effective method to reorient mood and 

behavior associated with affective disorders.  



   

38 
 

References 

1. de Lecea L, Kilduff T, Peyron C, Gao X-B, Foye P, Danielson P, et al. (1998): The hypocretins: 

hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy 

of Sciences. 95:322-327. 

 

2. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. (1998): Orexins and 

orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that 

regulate feeding behavior. Cell. 92:573-585. 

 

3. de Lecea L, Sutcliffe JG (1999): The hypocretins/orexins: novel hypothalamic neuropeptides 

involved in different physiological systems. Cellular and Molecular Life Sciences CMLS. 56:473-

480. 

 

4. Dube MG, Kalra SP, Kalra PS (1999): Food intake elicited by central administration of 

orexins/hypocretins: identification of hypothalamic sites of action. Brain Research. 842:473-477. 

 

5. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, et al. (1999): Orexin A activates 

locus coeruleus cell firing and increases arousal in the rat. Proceedings of the National Academy of 

Sciences. 96:10911-10916. 

 

6. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999): Interacting Appetite-Regulating 

Pathways in the Hypothalamic Regulation of Body Weight. Endocrine Reviews. 20:68-100. 

 

7. Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S (1999): Widespread 

Distribution of Orexin in Rat Brain and Its Regulation upon Fasting. Biochemical and Biophysical 

Research Communications. 256:495-499. 

 

8. Sakurai T (1999): Orexins and orexin receptors: implication in feeding behavior. Regulatory 

Peptides. 85:25-30. 

 

9. Sutcliffe JG, de Lecea L (1999): Novel neurotransmitters for sleep and energy homeostasis. Results 

and Problems in Cell Differentiation. 26:239-255. 

 

10. Sweet DC, Levine AS, Billington CJ, Kotz CM (1999): Feeding response to central orexins. Brain 

Research. 821:535-538. 

 

11. Bourgin P, Huitrón-Reséndiz S, Spier AD, Fabre V, Morte B, Criado JR, et al. (2000): Hypocretin-1 

modulates rapid eye movement sleep through activation of locus coeruleus neurons. Journal of 

Neuroscience. 20:7760-7765. 

 

12. Mullett MA, Billington CJ, Levine AS, Kotz CM (2000): Hypocretin I in the lateral hypothalamus 

activates key feeding-regulatory brain sites. Neuroreport. 11:103-108. 

 

13. Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, et al. 

(2000): Hypothalamic arousal regions are activated during modafinil-induced wakefulness. Journal 

of Neuroscience. 20:8620-8628. 

 



   

39 
 

14. Kukkonen JP (2013): Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. 

American Journal of Physiology - Cell Physiology. 304:C2. 

 

15. Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, et al. (2003): 

Distinct Recognition of OX1 and OX2 Receptors by Orexin Peptides. Journal of Pharmacology and 

Experimental Therapeutics. 305:507. 

 

16. Broberger C, De Lecea L, Sutcliffe J, Hökfelt T (1998): Hypocretin/orexin‐and melanin‐

concentrating hormone‐expressing cells form distinct populations in the rodent lateral hypothalamus: 

relationship to the neuropeptide Y and agouti gene‐related protein systems. Journal of Comparative 

Neurology. 402:460-474. 

 

17. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999): Distribution of orexin 

neurons in the adult rat brain. Brain Research. 827:243-260. 

 

18. Harris GC, Aston-Jones G (2006): Arousal and reward: a dichotomy in orexin function. Trends in 

Neurosciences. 29:571-577. 

 

19. Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S (2017): Orexins Mediate Sex Differences in 

the Stress Response and in Cognitive Flexibility. Biological Psychiatry. 81:683-692. 

 

20. Jöhren O, Neidert SJ, Kummer M, Dominiak P (2002): Sexually dimorphic expression of prepro-

orexin mRNA in the rat hypothalamus. Peptides. 23:1177-1180. 

 

21. Blouin AM, Thannickal TC, Worley PF, Baraban JM, Reti IM, Siegel JM (2005): Narp 

immunostaining of human hypocretin (orexin) neurons: loss in narcolepsy. Neurology. 65:1189-

1192. 

 

22. Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, et al. (2013): Neurotensin 

Co-Expressed in Orexin-Producing Neurons in the Lateral Hypothalamus Plays an Important Role in 

Regulation of Sleep/Wakefulness States. PLOS ONE. 8:e62391. 

 

23. Reti IM, Reddy R, Worley PF, Baraban JM (2002): Selective expression of Narp, a secreted neuronal 

pentraxin, in orexin neurons. J Neurochem. 82:1561-1565. 

 

24. Schöne C, Cao ZFH, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D (2012): 

Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons 

in situ. Journal of Neuroscience. 32:12437-12443. 

 

25. Schöne C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014): Coreleased orexin and 

glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Reports. 

7:697-704. 

 

26. Torrealba F, Yanagisawa M, Saper C (2003): Colocalization of orexin a and glutamate 

immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience. 

119:1033-1044. 

 



   

40 
 

27. Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, et al. (2014): 

Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter 

dynorphin in ventral tegmental area. Proceedings of the National Academy of Sciences. 111:E1648. 

 

28. Risold P, Griffond B, Kilduff T, Sutcliffe J, Fellmann D (1999): Preprohypocretin (orexin) and 

prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area. 

Neuroscience Letters. 259:153-156. 

 

29. Takenoya F, Hirayama M, Kageyama H, Funahashi H, Kita T, Matsumoto H, et al. (2005): Neuronal 

interactions between galanin-like-peptide-and orexin-or melanin-concentrating hormone-containing 

neurons. Regulatory Peptides. 126:79-83. 

 

30. Okamoto K, Yamasaki M, Takao K, Soya S, Iwasaki M, Sasaki K, et al. (2016): QRFP-deficient 

mice are hypophagic, lean, hypoactive and exhibit increased anxiety-like behavior. PloS one. 

11:e0164716. 

 

31. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg L, Guan X-M (1998): Distribution of orexin receptor 

mRNA in the rat brain. FEBS letters. 438:71-75. 

 

32. Chen C-T, Dun S, Kwok E, Dun N, Chang J-K (1999): Orexin A-like immunoreactivity in the rat 

brain. Neuroscience Letters. 260:161-164. 

 

33. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. (2001): 

Differential expression of orexin receptors 1 and 2 in the rat brain. Journal of Comparative 

Neurology. 435:6-25. 

 

34. Peyron C, Tighe DK, Van Den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, et al. (1998): Neurons 

containing hypocretin (orexin) project to multiple neuronal systems. Journal of Neuroscience. 

18:9996-10015. 

 

35. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, et al. (2005): Input of 

orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 46:297-308. 

 

36. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE (2006): Afferents to the orexin 

neurons of the rat brain. Journal of Comparative Neurology. 494:845-861. 

 

37. Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones B, et al. (2006): Excitatory action of 

hypocretin/orexin on neurons of the central medial amygdala. Neuroscience. 142:999-1004. 

 

38. Gorojankina T, Grébert D, Salesse R, Tanfin Z, Caillol M (2007): Study of orexins signal 

transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line 

Odora: multiple orexin signaling pathways. Regulatory Peptides. 141:73-85. 

 

39. Lund P-E, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, et al. (2000): The 

orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase 

C. Journal of Biological Chemistry. 275:30806-30812. 

 



   

41 
 

40. Ju S-J, Zhao Y, Chang X, Guo L (2014): Orexin A protects cells from apoptosis by regulating FoxO1 

and mTORC1 through the OX1R/PI3K/AKT signaling pathway in hepatocytes. International 

Journal of Molecular Medicine. 34:153-159. 

 

41. Wang Z, Liu S, Kakizaki M, Hirose Y, Ishikawa Y, Funato H, et al. (2014): Orexin/hypocretin 

activates mTOR complex 1 (mTORC1) via an Erk/Akt-independent and calcium-stimulated 

lysosome v-ATPase pathway. Journal of Biological Chemistry. 289:31950-31959. 

 

42. Akbari E, Motamedi F, Davoodi FG, Noorbakhshnia M, Ghanbarian E (2011): Orexin-1 receptor 

mediates long-term potentiation in the dentate gyrus area of freely moving rats. Behavioural Brain 

Research. 216:375-380. 

 

43. Yamada N, Katsuura G, Tatsuno I, Kawahara S, Ebihara K, Saito Y, et al. (2009): Orexins increase 

mRNA expressions of neurotrophin-3 in rat primary cortical neuron cultures. Neuroscience Letters. 

450:132-135. 

 

44. Li J, Hu Z, de Lecea L (2014): The hypocretins/orexins: integrators of multiple physiological 

functions. Br J Pharmacol. 171:332-350. 

 

45. Aou S, Li X-L, Li A-J, Oomura Y, Shiraishi T, Sasaki K, et al. (2003): Orexin-A (hypocretin-1) 

impairs Morris water maze performance and CA1-Schaffer collateral long-term potentiation in rats. 

Neuroscience. 119:1221-1228. 

 

46. Selbach O, Bohla C, Barbara A, Doreulee N, Eriksson K, Sergeeva O, et al. (2010): 

Orexins/hypocretins control bistability of hippocampal long‐term synaptic plasticity through co‐

activation of multiple kinases. Acta Physiologica. 198:277-285. 

 

47. Sharf R, Sarhan M, Brayton CE, Guarnieri DJ, Taylor JR, DiLeone RJ (2010): Orexin signaling via 

the orexin 1 receptor mediates operant responding for food reinforcement. Biological Psychiatry. 

67:753-760. 

 

48. Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, et al. (2013): Hypocretin/orexin neurons 

contribute to hippocampus-dependent social memory and synaptic plasticity in mice. Journal of 

Neuroscience. 33:5275-5284. 

 

49. Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, et al. (2011): Optogenetic 

disruption of sleep continuity impairs memory consolidation. Proceedings of the National Academy 

of Sciences. 108:13305-13310. 

 

50. Sil’kis I (2013): Possible mechanisms for the effects of orexin on hippocampal functioning and 

spatial learning (analytical review). Neuroscience and Behavioral Physiology. 43:1049-1057. 

 

51. Steiner MA, Lecourt H, Jenck F (2012): The brain orexin system and almorexant in fear-conditioned 

startle reactions in the rat. Psychopharmacology. 223:465-475. 

 



   

42 
 

52. von der Goltz C, Koopmann A, Dinter C, Richter A, Grosshans M, Fink T, et al. (2011): Involvement 

of orexin in the regulation of stress, depression and reward in alcohol dependence. Hormones and 

Behavior. 60:644-650. 

 

53. España RA (2012): Hypocretin/orexin involvement in reward and reinforcement. Vitamins & 

Hormones: Elsevier, pp 185-208. 

 

54. Plaza-Zabala A, Maldonado R, Berrendero F (2012): The hypocretin/orexin system: implications for 

drug reward and relapse. Molecular Neurobiology. 45:424-439. 

 

55. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Bassetti CL, et al. (2010): Abnormal activity 

in reward brain circuits in human narcolepsy with cataplexy. Annals of Neurology: Official Journal 

of the American Neurological Association and the Child Neurology Society. 67:190-200. 

 

56. Hutcheson DM, Quarta D, Halbout B, Rigal A, Valerio E, Heidbreder C (2011): Orexin-1 receptor 

antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement 

and the expression of amphetamine-conditioned reward. Behavioural Pharmacology. 22:173-181. 

 

57. Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A (2012): Orexin, stress, and anxiety/panic 

states.  Progress in Brain Research: Elsevier, pp 133-161. 

 

58. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, et al. (2004): 

Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel 

circuit mediating stress response. Journal of Neuroscience. 24:11439-11448. 

 

59. Winsky-Sommerer R, Boutrel B, de Lecea L (2005): Stress and arousal: The corticotrophin-releasing 

factor/hypocretin circuitry. Molecular Neurobiology. 32:285-294. 

 

60. Weintraub A, Singaravelu J, Bhatnagar S (2010): Enduring and sex-specific effects of adolescent 

social isolation in rats on adult stress reactivity. Brain Research. 1343:83-92. 

 

61. Kuwaki T, Zhang W (2012): Orexin neurons and emotional stress.  Vitamins & Hormones: Elsevier, 

pp 135-158. 

 

62. Avolio E, Alò R, Mele M, Carelli A, Canonaco A, Bucarelli L, et al. (2012): Amygdalar 

excitatory/inhibitory circuits interacting with orexinergic neurons influence differentially feeding 

behaviors in hamsters. Behavioural Brain Research. 234:91-99. 

 

63. Ford GK, Al-Barazanji KA, Wilson S, Jones DN, Harbuz MS, Jessop DS (2005): Orexin expression 

and function: glucocorticoid manipulation, stress, and feeding studies. Endocrinology. 146:3724-

3731. 

 

64. Tsuneki H, Wada T, Sasaoka T (2018): Chronopathophysiological implications of orexin in sleep 

disturbances and lifestyle-related disorders. Pharmacology & Therapeutics. 186:25-44. 

 



   

43 
 

65. Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, et al. (2014): Acute 

suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. 

Journal of Neuroscience. 34:3607-3621. 

 

66. Klisch C, Inyushkin A, Mordel J, Karnas D, Pévet P, Meissl H (2009): Orexin A modulates neuronal 

activity of the rodent suprachiasmatic nucleus in vitro. European Journal of Neuroscience. 30:65-75. 

 

67. Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD (2008): Circadian and 

dark-pulse activation of orexin/hypocretin neurons. Molecular Brain. 1:19. 

 

68. Berridge CW, España RA, Vittoz NM (2010): Hypocretin/orexin in arousal and stress. Brain 

Research. 1314:91-102. 

 

69. Duric V, Duman RS (2013): Depression and treatment response: dynamic interplay of signaling 

pathways and altered neural processes. Cellular and Molecular Life Sciences. 70:39-53. 

 

70. Hammen C, Kim EY, Eberhart NK, Brennan PA (2009): Chronic and acute stress and the prediction 

of major depression in women. Depression and Anxiety. 26:718-723. 

 

71. Hammen C, Brennan PA, Keenan‐Miller D, Hazel NA, Najman JM (2010): Chronic and acute stress, 

gender, and serotonin transporter gene–environment interactions predicting depression symptoms in 

youth. Journal of Child Psychology and Psychiatry. 51:180-187. 

 

72. Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR (2020): Orexin/hypocretin 

receptor modulation of anxiolytic and antidepressive responses during social stress and decision-

making: Potential for therapy. Brain Research. 1731:146085. 

 

73. Arendt DH, Ronan PJ, Oliver KD, Callahan LB, Summers TR, Summers CH (2013): Depressive 

behavior and activation of the orexin/hypocretin system. Behavioral Neuroscience. 127:86. 

 

74. Scott MM, Marcus JN, Pettersen A, Birnbaum SG, Mochizuki T, Scammell TE, et al. (2011): Hcrtr1 

and 2 signaling differentially regulates depression-like behaviors. Behavioural Brain Research. 

222:289-294. 

 

75. Heydendael W, Sharma K, Iyer V, Luz S, Piel D, Beck S, et al. (2011): Orexins/hypocretins act in 

the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel 

stress. Endocrinology. 152:4738-4752. 

 

76. Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010): Orexins in the paraventricular nucleus of the 

thalamus mediate anxiety-like responses in rats. Psychopharmacology. 212:251-265. 

 

77. Hervieu G, Cluderay J, Harrison D, Roberts J, Leslie R (2001): Gene expression and protein 

distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience. 103:777-797. 

 

78. Cluderay J, Harrison D, Hervieu G (2002): Protein distribution of the orexin-2 receptor in the rat 

central nervous system. Regulatory Peptides. 104:131-144. 

 



   

44 
 

79. Dustrude ET, Caliman IF, Bernabe CS, Fitz SD, Grafe LA, Bhatnagar S, et al. (2018): Orexin 

Depolarizes Central Amygdala Neurons via Orexin Receptor 1, Phospholipase C and Sodium-

Calcium Exchanger and Modulates Conditioned Fear. Frontiers in Neuroscience. 12. 

 

80. Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A (2013): Hypocretin (Orexin) Regulates 

Glutamate Input to Fast-Spiking Interneurons in Layer V of the Fr2 Region of the Murine Prefrontal 

Cortex. Cerebral Cortex. 25:1330-1347. 

 

81. Lambe EK, Aghajanian GK (2003): Hypocretin (Orexin) Induces Calcium Transients in Single 

Spines Postsynaptic to Identified Thalamocortical Boutons in Prefrontal Slice. Neuron. 40:139-150. 

 

82. Kim T-K, Kim J-E, Park J-Y, Lee J-E, Choi J, Kim H, et al. (2015): Antidepressant effects of 

exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in 

the basolateral amygdala. Neurobiology of Disease. 79:59-69. 

 

83. Yaeger JDW, Krupp KT, Jones NT, Meyerink BM, Summers TR, Cain JT, et al. (2019): Stress 

responses are bidirectionally regulated through amygdalar orexin 1 and 2 receptors.  Society for 

Neuroscience Abstracts. Chicago, IL. 

 

84. Ji M-J, Zhang X-Y, Chen Z, Wang J-J, Zhu J-N (2018): Orexin prevents depressive-like behavior by 

promoting stress resilience. Molecular Psychiatry. 

 

85. Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, et al. (2020): Orexin signaling in 

GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature 

Neuroscience.1-13. 

 

86. Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002): Convergent excitation of dorsal raphe 

serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). 

Journal of Neuroscience. 22:8850-8859. 

 

87. Wang Q-P, Koyama Y, Guan J-L, Takahashi K, Kayama Y, Shioda S (2005): The orexinergic 

synaptic innervation of serotonin-and orexin 1-receptor-containing neurons in the dorsal raphe 

nucleus. Regulatory Peptides. 126:35-42. 

 

88. Horvath TL, Peyron C, Diano S, Ivanov A, Aston‐Jones G, Kilduff TS, et al. (1999): Hypocretin 

(orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. Journal of 

Comparative Neurology. 415:145-159. 

 

89. Soya S, Shoji H, Hasegawa E, Hondo M, Miyakawa T, Yanagisawa M, et al. (2013): Orexin 

receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory 

consolidation. Journal of Neuroscience. 33:14549-14557. 

 

90. Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001): Orexin/hypocretin excites the histaminergic 

neurons of the tuberomammillary nucleus. Journal of Neuroscience. 21:9273-9279. 

 



   

45 
 

91. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003): Excitation of ventral 

tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. Journal of 

Neuroscience. 23:7-11. 

 

92. Xiong X, White RE, Xu L, Yang L, Sun X, Zou B, et al. (2013): Mitigation of Murine Focal Cerebral 

Ischemia by the Hypocretin/Orexin System is Associated With Reduced Inflammation. Stroke. 

44:764-770. 

 

93. Woldan-Tambor A, Biegańska K, Wiktorowska-Owczarek A, Zawilska JB (2011): Activation of 

orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes. 

Pharmacological Reports. 63:717-723. 

 

94. Bäckberg M, Hervieu G, Wilson S, Meister B (2002): Orexin receptor-1 (OX-R1) immunoreactivity 

in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of 

food and water intake. European Journal of Neuroscience. 15:315-328. 

 

95. Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M (2010): Orexin Directly Excites 

Orexin Neurons through Orexin 2 Receptor. Journal of Neuroscience. 30:12642-12652. 

 

96. Vassalli A, Li S, Tafti M (2015): Comment on "Antibodies to influenza nucleoprotein cross-react 

with human hypocretin receptor 2". Sci Transl Med. 7:314le312. 

 

97. Li B, Chen F, Ye J, Chen X, Yan J, Li Y, et al. (2009): The Modulation of Orexin A on HCN 

Currents of Pyramidal Neurons in Mouse Prelimbic Cortex. Cerebral Cortex. 20:1756-1767. 

 

98. Kukkonen JP, Leonard CS (2014): Orexin/hypocretin receptor signalling cascades. Br J Pharmacol. 

171:314-331. 

 

99. Holmqvist T, Åkerman KE, Kukkonen JP (2002): Orexin signaling in recombinant neuron‐like cells. 

FEBS Letters. 526:11-14. 

 

100. Karteris E, Randeva H, Grammatopoulos D, Jaffe R, Hillhouse E (2001): Expression and 

coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals. The Journal 

of Clinical Endocrinology & Metabolism. 86:4512-4519. 

 

101. Randeva H, Karteris E, Grammatopoulos D, Hillhouse E (2001): Expression of orexin-A and 

functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and 

energy homeostasis. The Journal of Clinical Endocrinology & Metabolism. 86:4808-4813. 

 

102. Bernard R, Lydic R, Baghdoyan HA (2003): Hypocretin-1 causes Gprotein activation and 

increases ACh release in rat pons. European Journal of Neuroscience. 18:1775-1785. 

 

103. Karteris E, Machado RJ, Chen J, Zervou S, Hillhouse EW, Randeva HS (2005): Food deprivation 

differentially modulates orexin receptor expression and signaling in rat hypothalamus and adrenal 

cortex. American Journal of Physiology-Endocrinology and Metabolism. 288:E1089-E1100. 

 



   

46 
 

104. Leonard CS, Kukkonen JP (2014): Orexin/hypocretin receptor signalling: a functional 

perspective. Br J Pharmacol. 171:294-313. 

 

105. Evans NA, Groarke DA, Warrack J, Greenwood CJ, Dodgson K, Milligan G, et al. (2001): 

Visualizing differences in ligand‐induced β‐arrestin–GFP interactions and trafficking between three 

recently characterized G protein‐coupled receptors. Journal of Neurochemistry. 77:476-485. 

 

106. Milasta S, Evans Nicholas A, Ormiston L, Wilson S, Lefkowitz Robert J, Milligan G (2005): The 

sustainability of interactions between the orexin-1 receptor and β-arrestin-2 is defined by a single C-

terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. 

Biochemical Journal. 387:573-584. 

 

107. Jäntti MH, Mandrika I, Kukkonen JP (2014): Human orexin/hypocretin receptors form 

constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid 

receptors. Biochemical and Biophysical Research Communications. 445:486-490. 

 

108. Xu TR, Ward RJ, Pediani JD, Milligan G (2011): The orexin OX(1) receptor exists 

predominantly as a homodimer in the basal state: potential regulation of receptor organization by 

both agonist and antagonist ligands. The Biochemical Journal. 439:171-183. 

 

109. Wang C, Pan Y, Zhang R, Bai B, Chen J, Randeva HS (2014): Heterodimerization of Mouse 

Orexin type 2 receptor variants and the effects on signal transduction. Biochimica et Biophysica Acta 

(BBA) - Molecular Cell Research. 1843:652-663. 

 

110. Ellis J, Pediani JD, Canals M, Milasta S, Milligan G (2006): Orexin-1 receptor-cannabinoid CB1 

receptor heterodimerization results in both ligand-dependent and -independent coordinated 

alterations of receptor localization and function. The Journal of Biological Chemistry. 281:38812-

38824. 

 

111. Ward RJ, Pediani JD, Milligan G (2011): Heteromultimerization of cannabinoid CB1 receptor 

and orexin OX1 receptor generates a unique complex in which both protomers are regulated by 

orexin A. Journal of Biological Chemistry. 286:37414-37428. 

 

112. Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, et al. (2015): Orexin receptors 

exert a neuroprotective effect in Alzheimer’s disease (AD) via heterodimerization with GPR103. 

Scientific Reports. 5:12584. 

 

113. Navarro G, Quiroz C, Moreno-Delgado D, Sierakowiak A, McDowell K, Moreno E, et al. 

(2015): Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area 

as Targets for Cocaine. The Journal of Neuroscience. 35:6639-6653. 

 

114. Navarro G, Medrano M, Aguinaga D, Vega-Quiroga I, Lillo A, Jiménez J, et al. (2019): 

Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin 

OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology. 152:102-111. 

 

115. Chen J, Zhang R, Chen X, Wang C, Cai X, Liu H, et al. (2015): Heterodimerization of human 

orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element 

binding protein signaling via a Gαs-mediated mechanism. Cellular Signalling. 27:1426-1438. 



   

47 
 

 

116. Bai B, Chen X, Zhang R, Wang X, Jiang Y, Li D, et al. (2017): Dual-agonist occupancy of 

orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein–dependent 

signaling and migration in the human colon cancer cell line HT-29. Biochimica et Biophysica Acta 

(BBA) - Molecular Cell Research. 1864:1153-1164. 

 

117. Xue Q, Bai B, Ji B, Chen X, Wang C, Wang P, et al. (2018): Ghrelin Through GHSR1a and 

OX1R Heterodimers Reveals a Gαs–cAMP-cAMP Response Element Binding Protein Signaling 

Pathway in Vitro. Frontiers in Molecular Neuroscience. 11. 

 

118. Wang Q, Xiao W, Li Y, Liu Z, Li H, Wang J, et al. (2019): Signaling of ghrelin at GHSR1b and 

OX1R receptor heterodimers. Molecular Biology of the Cell. mbc. E19-06-0326. 

 

119. Wang Q-Q, Wang C-M, Cheng B-H, Yang C-Q, Bai B, Chen J (2019): Signaling transduction 

regulated by 5-hydroxytryptamine 1A receptor and orexin receptor 2 heterodimers. Cellular 

Signalling. 54:46-58. 

 

120. Thompson M, Sakurai T, Rainero I, Maj M, Kukkonen J (2017): Orexin receptor multimerization 

versus functional interactions: Neuropharmacological implications for opioid and cannabinoid 

signalling and pharmacogenetics. Pharmaceuticals. 10:79. 

 

121. Harro J, Laas K, Eensoo D, Kurrikoff T, Sakala K, Vaht M, et al. (2019): Orexin/hypocretin 

receptor gene (HCRTR1) variation is associated with aggressive behaviour. Neuropharmacology. 

 

122. Cengiz M, Karaj V, Kocabasoğlu N, Gozubatik-Celik G, Dirican A, Bayoglu B (2019): 

Orexin/hypocretin receptor, Orx1, gene variants are associated with major depressive disorder. 

International Journal of Psychiatry in Clinical Practice. 23:114-121. 

 

123. Rainero I, Ostacoli L, Rubino E, Gallone S, Picci LR, Fenoglio P, et al. (2011): Association 

between major mood disorders and the hypocretin receptor 1 gene. Journal of Affective Disorders. 

130:487-491. 

 

124. Meerabux J, Iwayama Y, Sakurai T, Ohba H, Toyota T, Yamada K, et al. (2005): Association of 

An Orexin 1 Receptor 408Val Variant with Polydipsia–Hyponatremia in Schizophrenic Subjects. 

Biological Psychiatry. 58:401-407. 

 

125. Annerbrink K, Westberg L, Olsson M, Andersch S, Sjodin I, Holm G, et al. (2011): Panic 

disorder is associated with the Val308Iso polymorphism in the hypocretin receptor gene. Psychiatric 

Genetics. 21:85-89. 

 

126. Nishizawa D, Kasai S, Hasegawa J, Sato N, Yamada H, Tanioka F, et al. (2015): Associations 

between the orexin (hypocretin) receptor 2 gene polymorphism Val308Ile and nicotine dependence in 

genome-wide and subsequent association studies. Molecular Brain. 8:50. 

 

127. Thompson MD, Comings DE, Abu-Ghazalah R, Jereseh Y, Lin L, Wade J, et al. (2004): Variants 

of the orexin2/hcrt2 receptor gene identified in patients with excessive daytime sleepiness and 



   

48 
 

patients with Tourette's syndrome comorbidity. American Journal of Medical Genetics Part B: 

Neuropsychiatric Genetics. 129B:69-75. 

 

128. Lu J, Zhao J, Balesar R, Fronczek R, Zhu Q-B, Wu X-Y, et al. (2017): Sexually Dimorphic 

Changes of Hypocretin (Orexin) in Depression. EBioMedicine. 18:311-319. 

 

129. Airapetov M, Sekste E, Eresko S, Bychkov E, Lebedev A, Shabanov P (2019): Chronic 

Alcoholism Influences the mRNA Level of the Orexin Receptor Type 1 (OX1R) in Emotiogenic 

Structures of the Rat Brain. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 

13:93-96. 

 

130. Arendt DH, Hassell J, Li H, Achua JK, Guarnieri DJ, DiLeone RJ, et al. (2014): Anxiolytic 

function of the orexin 2/hypocretin A receptor in the basolateral amygdala. 

Psychoneuroendocrinology. 40:17-26. 

 

131. Han D, Han F, Shi Y, Zheng S, Wen L (2020): Mechanisms of memory impairment induced by 

orexin-A via orexin 1 and orexin 2 receptors in post-traumatic stress disorder rats. Neuroscience. 

432:126-136. 

 

132. Ventzke K, Oster H, Jöhren O (2019): Diurnal Regulation of the Orexin/Hypocretin System in 

Mice. Neuroscience. 421:59-68. 

 

133. Heim C, Nemeroff CB (2001): The role of childhood trauma in the neurobiology of mood and 

anxiety disorders: preclinical and clinical studies. Biological psychiatry. 49:1023-1039. 

 

134. Dadomo H, Gioiosa L, Cigalotti J, Ceresini G, Parmigiani S, Palanza P (2018): What is stressful 

for females? Differential effects of unpredictable environmental or social stress in CD1 female mice. 

Hormones and Behavior. 98:22-32. 

 

135. Brivio E, Lopez JP, Chen A (2020): Sex differences: Transcriptional signatures of stress 

exposure in male and female brains. Genes, Brain and Behavior. 19:e12643. 

 

136. Kroenke K, Spitzer RL, Williams JB, Monahan PO, Löwe B (2007): Anxiety disorders in 

primary care: prevalence, impairment, comorbidity, and detection. Annals of Internal Medicine. 

146:317-325. 

 

137. Berton O, Nestler EJ (2006): New approaches to antidepressant drug discovery: beyond 

monoamines. Nature Reviews Neuroscience. 7:137-151. 

 

138. Albert PR (2015): Why is depression more prevalent in women? Journal of Psychiatry & 

Neuroscience: JPN. 40:219. 

 

139. Kessler RC, Bromet EJ (2013): The epidemiology of depression across cultures. Annual Review 

of Public Health. 34:119-138. 

 

140. Kessler RC, Ruscio AM, Shear K, Wittchen H-U (2009): Epidemiology of anxiety disorders.  

Behavioral Neurobiology of Anxiety and its Treatment: Springer, pp 21-35. 



   

49 
 

 

141. Arnsten AF (2009): Stress signalling pathways that impair prefrontal cortex structure and 

function. Nature Reviews Neuroscience. 10:410-422. 

 

142. Autry AE, Monteggia LM (2012): Brain-derived neurotrophic factor and neuropsychiatric 

disorders. Pharmacological Reviews. 64:238-258. 

 

143. Christoffel DJ, Golden SA, Russo SJ (2011): Structural and synaptic plasticity in stress-related 

disorders. Reviews in the Neurosciences. 22:535-549. 

 

144. Duman RS, Aghajanian GK (2012): Synaptic dysfunction in depression: potential therapeutic 

targets. Science. 338:68-72. 

 

145. Izquierdo A, Wellman CL, Holmes A (2006): Brief uncontrollable stress causes dendritic 

retraction in infralimbic cortex and resistance to fear extinction in mice. Journal of Neuroscience. 

26:5733-5738. 

 

146. Pittenger C, Duman RS (2007): Stress, Depression, and Neuroplasticity: A Convergence of 

Mechanisms. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 33:88. 

 

147. Qiao H, Li M-X, Xu C, Chen H-B, An S-C, Ma X-M (2016): Dendritic spines in depression: 

what we learned from animal models. Neural Plasticity. 2016. 

 

148. Russo SJ, Nestler EJ (2013): The brain reward circuitry in mood disorders. Nature Reviews 

Neuroscience. 14:609-625. 

 

149. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. (2018): Psychedelics 

promote structural and functional neural plasticity. Cell Reports. 23:3170-3182. 

 

150. Brown GW, Prudo R (1981): Psychiatric disorder in a rural and an urban population: 1. 

Aetiology of depression. Psychological Medicine. 11:581-599. 

 

151. Björkqvist K (2001): Social defeat as a stressor in humans. Physiology & Behavior. 73:435-442. 

 

152. Kessler RC (1997): The effects of stressful life events on depression. Annual Review of 

Psychology. 48:191-214. 

 

153. Huhman KL (2006): Social conflict models: can they inform us about human psychopathology? 

Hormones and Behavior. 50:640-646. 

 

154. Koolhaas J, De SB, De AR, Meerlo P, Sgoifo A (1997): Social stress in rats and mice. Acta 

Physiologica Scandinavica Supplementum. 640:69-72. 

 

155. Summers CH, Forster GL, Korzan WJ, Watt MJ, Larson ET, Øverli Ø, et al. (2005): Dynamics 

and mechanics of social rank reversal. Journal of Comparative Physiology A. 191:241-252. 



   

50 
 

 

156. Andersen SL (2003): Trajectories of brain development: point of vulnerability or window of 

opportunity? Neuroscience & Biobehavioral Reviews. 27:3-18. 

 

157. Bernstein DP, Cohen P, Skodol A, Bezirganian S, Brook JS (1996): Childhood antecedents of 

adolescent personality disorders. The American Journal of Psychiatry. 

 

158. Hankin BL, Abramson LY, Moffitt TE, Silva PA, McGee R, Angell KE (1998): Development of 

depression from preadolescence to young adulthood: emerging gender differences in a 10-year 

longitudinal study. Journal of Abnormal Psychology. 107:128. 

 

159. Coppens CM, Siripornmongcolchai T, Wibrand K, Nordheim Alme M, Buwalda B, De Boer SF, 

et al. (2011): Social defeat during adolescence and adulthood differentially induce BDNF-regulated 

immediate early genes. Frontiers in Behavioral Neuroscience. 5:72. 

 

160. Romeo RD, McEWEN BS (2006): Stress and the adolescent brain. Annals of the New York 

Academy of Sciences. 1094:202-214. 

 

161. Binder EB, Nemeroff CB (2010): The CRF system, stress, depression and anxiety—insights 

from human genetic studies. Molecular Psychiatry. 15:574-588. 

 

162. Swaab DF, Bao A-M, Lucassen PJ (2005): The stress system in the human brain in depression 

and neurodegeneration. Ageing Research Reviews. 4:141-194. 

 

163. Waters RP, Rivalan M, Bangasser D, Deussing J, Ising M, Wood S, et al. (2015): Evidence for 

the role of corticotropin-releasing factor in major depressive disorder. Neuroscience & Biobehavioral 

Reviews. 58:63-78. 

 

164. Ciriello J, Rosas-Arellano MP, Solano-Flores LP, de Oliveira CV (2003): Identification of 

neurons containing orexin-B (hypocretin-2) immunoreactivity in limbic structures. Brain Research. 

967:123-131. 

 

165. Schmitt O, Usunoff KG, Lazarov NE, Itzev DE, Eipert P, Rolfs A, et al. (2012): Orexinergic 

innervation of the extended amygdala and basal ganglia in the rat. Brain Structure and Function. 

217:233-256. 

 

166. Sutcliffe JG, de Lecea L (2002): The hypocretins: setting the arousal threshold. Nature Reviews 

Neuroscience. 3:339-348. 

 

167. de Lecea L (2012): Hypocretins and the neurobiology of sleep–wake mechanisms.  Progress in 

Brain Research: Elsevier, pp 15-24. 

 

168. de Lecea L (2010): A decade of hypocretins: past, present and future of the neurobiology of 

arousal. Acta Physiologica. 198:203-208. 

 



   

51 
 

169. Avolio E, Alò R, Carelli A, Canonaco M (2011): Amygdalar orexinergic–GABAergic 

interactions regulate anxiety behaviors of the Syrian golden hamster. Behavioural Brain Research. 

218:288-295. 

 

170. Johnson PL, Samuels BC, Fitz SD, Federici LM, Hammes N, Early MC, et al. (2012): Orexin 1 

receptors are a novel target to modulate panic responses and the panic brain network. Physiology & 

Behavior. 107:733-742. 

 

171. Johnson PL, Samuels BC, Fitz SD, Lightman SL, Lowry CA, Shekhar A (2012): Activation of 

the orexin 1 receptor is a critical component of CO2-mediated anxiety and hypertension but not 

bradycardia. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 37:1911. 

 

172. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, et al. (2010): A key role for 

orexin in panic anxiety. Nature Medicine. 16:111-115. 

 

173. Mikrouli E, Wörtwein G, Soylu R, Mathé AA, Petersén Å (2011): Increased numbers of 

orexin/hypocretin neurons in a genetic rat depression model. Neuropeptides. 45:401-406. 

 

174. Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauß M, et al. (2011): CSF-

hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. 

Psychiatry Research. 190:240-243. 

 

175. Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S (2011): Activation of orexin 

neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of 

depression. Neuropharmacology. 61:336-346. 

 

176. Ito N, Yabe T, Gamo Y, Nagai T, Oikawa T, Yamada H, et al. (2008): I.C.V. administration of 

orexin-A induces an antidepressive-like effect through hippocampal cell proliferation. Neuroscience. 

157:720-732. 

 

177. Lutter M, Krishnan V, Russo SJ, Jung S, McClung CA, Nestler EJ (2008): Orexin Signaling 

Mediates the Antidepressant-Like Effect of Calorie Restriction. Journal of Neuroscience. 28:3071-

3075. 

 

178. Recourt K, de Boer P, Zuiker R, Luthringer R, Kent J, van der Ark P, et al. (2019): The selective 

orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting 

effects in patients with major depressive disorder. Translational Psychiatry. 9:216. 

 

179. Staton CD, Yaeger JD, Khalid D, Haroun F, Fernandez BS, Fernandez JS, et al. (2018): Orexin 2 

receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social 

stress, anxiety and depression. Neuropharmacology. 143:79-94. 

 

180. Brundin L, Petersén Å, Björkqvist M, Träskman-Bendz L (2007): Orexin and psychiatric 

symptoms in suicide attempters. Journal of Affective Disorders. 100:259-263. 

 



   

52 
 

181. Brundin L, Björkqvist M, Petersén Å, Träskman-Bendz L (2007): Reduced orexin levels in the 

cerebrospinal fluid of suicidal patients with major depressive disorder. European 

Neuropsychopharmacology. 17:573-579. 

 

182. Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, Zeitzer JM, et al. (2003): Diurnal 

variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. 

Biological Psychiatry. 54:96-104. 

 

183. Ebrahim IO, Semra YK, De Lacy S, Howard RS, Kopelman MD, Williams A, et al. (2003): CSF 

hypocretin (Orexin) in neurological and psychiatric conditions. Journal of Sleep Research. 12:83-84. 

 

184. Bowrey HE, James MH, Aston‐Jones G (2017): New directions for the treatment of depression: 

targeting the photic regulation of arousal and mood (PRAM) pathway. Depression and Anxiety. 

34:588-595. 

 

185. Ozsoy S, Olguner Eker O, Abdulrezzak U, Esel E (2017): Relationship between orexin A and 

childhood maltreatment in female patients with depression and anxiety. Social Neuroscience. 12:330-

336. 

 

186. Fronczek R, van Geest S, Frölich M, Overeem S, Roelandse FW, Lammers GJ, et al. (2012): 

Hypocretin (orexin) loss in Alzheimer's disease. Neurobiology of Aging. 33:1642-1650. 

 

187. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000): Hypocretin (orexin) deficiency 

in human narcolepsy. The Lancet. 355:39-40. 

 

188. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. (2000): A mutation in a 

case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic 

brains. Nature Medicine. 6:991-997. 

 

189. Nishino S, Mignot E (2002): Article reviewed: plasma orexin-A is lower in patients with 

narcolepsy. Sleep Medicine. 3:377-378. 

 

190. Hong S-C, Leen-Kim, Park S-A, Han J-H, Lee S-P, Lin L, et al. (2002): HLA and Hypocretin 

Studies in Korean Patients with Narcolepsy. Sleep. 25:432-436. 

 

191. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. (2002): The Role 

of Cerebrospinal Fluid Hypocretin Measurement in the Diagnosis of Narcolepsy and Other 

Hypersomnias. Archives of Neurology. 59:1553-1562. 

 

192. Arii J, Kanbayashi T, Tanabe Y, Sawaishi Y, Kimura S, Watanabe A, et al. (2004): CSF 

hypocretin-1 (orexin-A) levels in childhood narcolepsy and neurologic disorders. Neurology. 

63:2440. 

 

193. John J, Wu M-F, Maidment NT, Lam HA, Boehmer LN, Patton M, et al. (2004): Developmental 

changes in CSF hypocretin-1 (orexin-A) levels in normal and genetically narcoleptic Doberman 

pinschers. The Journal of Physiology. 560:587-592. 

 



   

53 
 

194. Higuchi S, Usui A, Murasaki M, Matsushita S, Nishioka N, Yoshino A, et al. (2002): Plasma 

orexin-A is lower in patients with narcolepsy. Neuroscience Letters. 318:61-64. 

 

195. Nishino S, Ripley B, Mignot E, Benson KL, Zarcone VP (2002): CSF hypocretin-1 levels in 

schizophrenics and controls: relationship to sleep architecture. Psychiatry Research. 110:1-7. 

 

196. Dalal MA, Schuld A, Pollmächer T (2003): Lower CSF orexin A (hypocretin-1) levels in patients 

with schizophrenia treated with haloperidol compared to unmedicated subjects. Molecular 

Psychiatry. 8:836-837. 

 

197. Baumann CR, Stocker R, Imhof HG, Trentz O, Hersberger M, Mignot E, et al. (2005): 

Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology. 65:147. 

 

198. Rejdak K, Petzold A, Lin L, Smith M, Kitchen N, Thompson EJ (2005): Decreased CSF 

hypocretin-1 (orexin-A) after acute haemorrhagic brain injury. Journal of Neurology, Neurosurgery 

& Psychiatry. 76:597. 

 

199. Heywood WE, Hallqvist J, Heslegrave AJ, Zetterberg H, Fenoglio C, Scarpini E, et al. (2018): 

CSF pro-orexin and amyloid-β38 expression in Alzheimer's disease and frontotemporal dementia. 

Neurobiology of Aging. 72:171-176. 

 

200. Wennström M, Londos E, Minthon L, Nielsen HM (2012): Altered CSF Orexin and α-Synuclein 

Levels in Dementia Patients. Journal of Alzheimer's Disease. 29:125-132. 

 

201. Dohi K, Nishino S, Nakamachi T, Ohtaki H, Morikawa K, Takeda T, et al. (2006): CSF orexin A 

concentrations and expressions of the orexin-1 receptor in rat hippocampus after cardiac arrest. 

Neuropeptides. 40:245-250. 

 

202. James MH, Campbell EJ, Dayas CV (2017): Role of the Orexin/Hypocretin System in Stress-

Related Psychiatric Disorders. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of 

Orexin/Hypocretin. Cham: Springer International Publishing, pp 197-219. 

 

203. Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV (2014): Orexin antagonists for 

neuropsychiatric disease: progress and potential pitfalls. Frontiers in Neuroscience. 8:36. 

 

204. Khalil R, Fendt M (2017): Increased anxiety but normal fear and safety learning in orexin-

deficient mice. Behavioural Brain Research. 320:210-218. 

 

205. Allard JS, Tizabi Y, Shaffery JP, Trouth CO, Manaye K (2004): Stereological analysis of the 

hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides. 38:311-

315. 

 

206. Taheri S, Gardiner J, Hafizi S, Murphy K, Dakin C, Seal L, et al. (2001): Orexin A 

immunoreactivity and prepro-orexin mRNA in the brain of Zucker and WKY rats. NeuroReport. 12. 

 



   

54 
 

207. Abbas MG, Shoji H, Soya S, Hondo M, Miyakawa T, Sakurai T (2015): Comprehensive 

Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, 

Anxiety, and Social Behavior. Frontiers in Behavioral Neuroscience. 9:324. 

 

208. Grafe LA, Bhatnagar S (2020): The contribution of orexins to sex differences in the stress 

response. Brain Research. 1731:145893. 

 

209. Arihara Z, Takahashi K, Murakami O, Totsune K, Sone M, Satoh F, et al. (2001): 

Immunoreactive orexin-A in human plasma. Peptides. 22:139-142. 

 

210. Schmidt FM, Kratzsch J, Gertz H-J, Tittmann M, Jahn I, Pietsch U-C, et al. (2013): 

Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in 

Alzheimer’s disease. PloS one. 8. 

 

211. Dalal MA, Schuld A, Haack M, Uhr M, Geisler P, Eisensehr I, et al. (2001): Normal plasma 

levels of orexin A (hypocretin-1) in narcoleptic patients. Neurology. 56:1749. 

 

212. Mallampalli MP, Carter CL (2014): Exploring Sex and Gender Differences in Sleep Health: A 

Society for Women's Health Research Report. Journal of Women's Health. 23:553-562. 

 

213. Nakamura M, Kanbayashi T, Sugiura T, Inoue Y (2011): Relationship between clinical 

characteristics of narcolepsy and CSF orexin-A levels. Journal of Sleep Research. 20:45-49. 

 

214. Osborne R (2013): First-in-class insomnia drug on the brink of approval nod. Nature Reviews 

Drug Discovery. 12:492-493. 

 

215. Citrome L (2014): Suvorexant for insomnia: a systematic review of the efficacy and safety 

profile for this newly approved hypnotic – what is the number needed to treat, number needed to 

harm and likelihood to be helped or harmed? International Journal of Clinical Practice. 68:1429-

1441. 

 

216. Howland RH (2014): Suvorexant: a novel therapy for the treatment of insomnia. Journal of 

Psychosocial Nursing and Mental Health Services. 52:23-26. 

 

217. Nakamura M, Nagamine T (2017): Neuroendocrine, autonomic, and metabolic responses to an 

orexin antagonist, suvorexant, in psychiatric patients with insomnia. Innovations in Clinical 

Neuroscience. 14:30. 

 

218. Owen RT (2016): Suvorexant: efficacy and safety profile of a dual orexin receptor antagonist in 

treating insomnia. Drugs Today (Barc). 52:29-40. 

 

219. Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S (2012): Neurogenesis-independent 

antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in 

a rodent model of depression. Neuropsychopharmacology: Official Publication of the American 

College of Neuropsychopharmacology. 37:2210. 

 

220. Staner L (2010): Comorbidity of insomnia and depression. Sleep Medicine Reviews. 14:35-46. 



   

55 
 

 

221. Baglioni C, Riemann D (2012): Is Chronic Insomnia a Precursor to Major Depression? 

Epidemiological and Biological Findings. Current Psychiatry Reports. 14:511-518. 

 

222. Blake MJ, Trinder JA, Allen NB (2018): Mechanisms underlying the association between 

insomnia, anxiety, and depression in adolescence: Implications for behavioral sleep interventions. 

Clinical Psychology Review. 63:25-40. 

 

223. Cruz HG, Hay JL, Hoever P, Alessi F, te Beek ET, van Gerven JMA, et al. (2014): 

Pharmacokinetic and pharmacodynamic interactions between almorexant, a dual orexin receptor 

antagonist, and desipramine. European Neuropsychopharmacology. 24:1257-1268. 

 

224. Sifferlen T, Boller A, Chardonneau A, Cottreel E, Hoecker J, Aissaoui H, et al. (2014): 

Discovery of substituted lactams as novel dual orexin receptor antagonists. Synthesis, preliminary 

structure–activity relationship studies and efforts towards improved metabolic stability and 

pharmacokinetic properties. Part 1. Bioorganic & Medicinal Chemistry Letters. 24:1201-1208. 

 

225. Connor KM, Ceesay P, Hutzelmann J, Snavely D, Krystal AD, Trivedi MH, et al. (2017): Phase 

II Proof-of-Concept Trial of the Orexin Receptor Antagonist Filorexant (MK-6096) in Patients with 

Major Depressive Disorder. International Journal of Neuropsychopharmacology. 20:613-618. 

 

226. Kaufmann P, Ort M, Golor G, Kornberger R, Dingemanse J (2020): First-in-human study with 

ACT-539313, a novel selective orexin-1 receptor antagonist. British Journal of Clinical 

Pharmacology. 86:1377-1386. 

 

227. Berger B, Kaufmann P, Koch A, Dingemanse J (2020): Impact of the Selective Orexin-1 

Receptor Antagonist ACT-539313 on the Pharmacokinetics of the CYP3A Probe Drug Midazolam in 

Healthy Male Subjects. The Journal of Clinical Pharmacology. 60:931-941. 

 

228. Brooks S, Jacobs GE, de Boer P, Kent JM, Van Nueten L, van Amerongen G, et al. (2019): The 

selective orexin-2 receptor antagonist seltorexant improves sleep: An exploratory double-blind, 

placebo controlled, crossover study in antidepressant-treated major depressive disorder patients with 

persistent insomnia. Journal of Psychopharmacology. 33:202-209. 

 

229. De Boer P, Drevets WC, Rofael H, van der Ark P, Kent JM, Kezic I, et al. (2018): A randomized 

Phase 2 study to evaluate the orexin-2 receptor antagonist seltorexant in individuals with insomnia 

without psychiatric comorbidity. Journal of Psychopharmacology. 32:668-677. 

 

230. van der Ark PD, Golor G, van Nueten L, Nandy P, de Boer P (2018): Multiple daytime 

administration of the selective orexin-2 receptor antagonist JNJ-42847922 induces somnolence in 

healthy subjects without residual central effects. Journal of Psychopharmacology. 32:1330-1340. 

 

231. Alò R, Avolio E, Mele M, Fazzari G, Carelli A, Facciolo RM, et al. (2017): Role of leptin and 

orexin-A within the suprachiasmatic nucleus on anxiety-like behaviors in hamsters. Molecular 

Neurobiology. 54:2674-2684. 

 



   

56 
 

232. Azogu I, Plamondon H (2017): Inhibition of TrkB at the nucleus accumbens, using ANA-12, 

regulates basal and stress-induced orexin A expression within the mesolimbic system and affects 

anxiety, sociability and motivation. Neuropharmacology. 125:129-145. 

 

233. Heydendael W, Sengupta A, Beck S, Bhatnagar S (2014): Optogenetic examination identifies a 

context-specific role for orexins/hypocretins in anxiety-related behavior. Physiology & Behavior. 

130:182-190. 

 

234. Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, et al. (2012): Orexin-A 

induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of 

the stria terminalis of rats. Physiology & Behavior. 107:726-732. 

 

235. Suzuki M, Beuckmann CT, Shikata K, Ogura H, Sawai T (2005): Orexin-A (hypocretin-1) is 

possibly involved in generation of anxiety-like behavior. Brain Research. 1044:116-121. 

 

236. Matsuzaki I, Sakurai T, Kunii K, Nakamura T, Yanagisawa M, Goto K (2002): Involvement of 

the serotonergic system in orexin-induced behavioral alterations in rats. Regulatory Peptides. 

104:119-123. 

 

237. Jalewa J, Wong-Lin K, McGinnity TM, Prasad G, Hölscher C (2014): Increased number of 

orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behavioural 

Brain Research. 272:196-204. 

 

238. Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, LeDoux JE (2013): 

Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus 

coeruleus. Proceedings of the National Academy of Sciences.201320325. 

 

239. Soya S, Takahashi TM, McHugh TJ, Maejima T, Herlitze S, Abe M, et al. (2017): Orexin 

modulates behavioral fear expression through the locus coeruleus. Nature Communications. 8:1606. 

 

240. Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L (2012): Mechanism for 

Hypocretin-mediated sleep-to-wake transitions. Proceedings of the National Academy of Sciences. 

109:E2635-E2644. 

 

241. Giardino WJ, Eban-Rothschild A, Christoffel DJ, Li S-B, Malenka RC, de Lecea L (2018): 

Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing 

emotional states. Nature Neuroscience. 21:1084-1095. 

 

242. Bonnavion P, Jackson AC, Carter ME, de Lecea L (2015): Antagonistic interplay between 

hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nature Communications. 

6:6266. 

 

243. Sargin D (2019): The role of the orexin system in stress response. Neuropharmacology. 154:68-

78. 

 

244. Tyree SM, Borniger JC, de Lecea L (2018): Hypocretin as a Hub for Arousal and Motivation. 

Frontiers in Neurology. 9. 



   

57 
 

 

245. Cohen S, Matar MA, Vainer E, Zohar J, Kaplan Z, Cohen H (2020): Significance of the 

orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress 

disorder. Translational Psychiatry. 10:10. 

 

246. Nocjar C, Zhang J, Feng P, Panksepp J (2012): The social defeat animal model of depression 

shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin 

and orexin in the hypothalamus. Neuroscience. 218:138-153. 

 

247. Feng P, Vurbic D, Wu Z, Hu Y, Strohl K (2008): Changes in brain orexin levels in a rat model of 

depression induced by neonatal administration of clomipramine. Journal of Psychopharmacology. 

22:784-791. 

 

248. James MH, Campbell EJ, Walker FR, Smith DW, Richardson HN, Hodgson DM, et al. (2014): 

Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats. 

Frontiers in Behavioral Neuroscience. 8:244. 

 

249. Bowrey HE, James MH, Aston-Jones G (2017): New directions for the treatment of depression: 

Targeting the photic regulation of arousal and mood (PRAM) pathway. Depression and Anxiety. 

34:588-595. 

 

250. James MH, Mahler SV, Moorman DE, Aston-Jones G (2017): A Decade of Orexin/Hypocretin 

and Addiction: Where Are We Now? Current Topics in Behavioral Neurosciences. 33:247-281. 

 

251. Johnson PL, Federici LM, Fitz SD, Renger JJ, Shireman B, Winrow CJ, et al. (2015): Orexin 1 

and 2 receptor involvement in CO(2)-induced panic-associated behavior and autonomic responses. 

Depression and Anxiety. 32:671-683. 

 

252. Pan Y-P, Liu C, Liu M-F, Wang Y, Bian K, Xue Y, et al. (2020): Involvement of orexin-A in the 

regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides. 

80:102019. 

 

253. Flores Á, Valls-Comamala V, Costa G, Saravia R, Maldonado R, Berrendero F (2014): The 

hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology: 

Official Publication of the American College of Neuropsychopharmacology. 39:2732-2741. 

 

254. Salehabadi S, Abrari K, Salmani ME, Nasiri M, Lashkarbolouki T (2020): Investigating the role 

of the amygdala orexin receptor 1 in memory acquisition and extinction in a rat model of PTSD. 

Behavioural Brain Research. 384:112455. 

 

255. Yun S, Wennerholm M, Shelton JE, Bonaventure P, Letavic MA, Shireman BT, et al. (2017): 

Selective Inhibition of Orexin-2 Receptors Prevents Stress-Induced ACTH Release in Mice. 

Frontiers in Behavioral Neuroscience. 11. 

 

256. Porkka-Heiskanen T, Kalinchuk A, Alanko L, Huhtaniemi I, Stenberg D (2004): Orexin A and B 

levels in the hypothalamus of female rats: the effects of the estrous cycle and age. European Journal 

of Endocrinology. 150:737-742. 



   

58 
 

 

257. Silveyra P, Catalano PN, Lux-Lantos V, Libertun C (2007): Impact of proestrous milieu on 

expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: actions of 

Cetrorelix and Nembutal. American Journal of Physiology-Endocrinology and Metabolism. 

292:E820-E828. 

 

258. Silveyra P, Cataldi NI, Lux-Lantos VA, Libertun C (2010): Role of orexins in the hypothalamic-

pituitary-ovarian relationships. Acta Physiologica. 198:355-360. 

 

259. Wang J-B, Murata T, Narita K, Honda K, Higuchi T (2003): Variation in the expression of 

orexin and orexin receptors in the rat hypothalamus during the estrous cycle, pregnancy, parturition, 

and lactation. Endocrine. 22:127-134. 

 

260. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al. (2017): Sex-

specific differences in cardiovascular and metabolic hormones with integrated signalling in the 

paraventricular nucleus of the hypothalamus. Experimental Physiology. 102:1373-1379. 

 

261. Kuwaki T, Zhang W, Deng B, Watanabe S, Sakurai T, Yanagisawa M, et al. (2005): Role of 

orexin and co-transmitters in the defense response against stress.  Journal of Pharmacological 

Sciences. pp 137P-137P. 

 

262. Grafe LA, Eacret D, Luz S, Gotter AL, Renger JJ, Winrow CJ, et al. (2017): Orexin 2 receptor 

regulation of the hypothalamic–pituitary–adrenal (HPA) response to acute and repeated stress. 

Neuroscience. 348:313-323. 

 

263. Chang H, Saito T, Ohiwa N, Tateoka M, Deocaris CC, Fujikawa T, et al. (2007): Inhibitory 

effects of an orexin-2 receptor antagonist on orexin A- and stress-induced ACTH responses in 

conscious rats. Neuroscience Research. 57:462-466. 

 

264. Messina G, Bernardo GD, Viggiano A, Luca VD, Monda V, Messina A, et al. (2016): Exercise 

increases the level of plasma orexin A in humans. J Basic Clin Physiol Pharmcol. 27:611. 

 

265. Ida T, Nakahara K, Kuroiwa T, Fukui K, Nakazato M, Murakami T, et al. (2000): Both 

corticotropin releasing factor and neuropeptide Y are involved in the effect of orexin (hypocretin) on 

the food intake in rats. Neuroscience Letters. 293:119-122. 

 

266. Pañeda C, Winsky-Sommerer R, Boutrel B, de Lecea L (2005): The corticotropin-releasing 

factor-hypocretin connection: implications in stress response and addiction. Drug News & 

Perspectives. 18:250-255. 

 

267. Sakamoto F, Yamada S, Ueta Y (2004): Centrally administered orexin-A activates corticotropin-

releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central 

amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF 

neurons. Regulatory Peptides. 118:183-191. 

 

268. Kuwaki T (2011): Orexin links emotional stress to autonomic functions. Autonomic 

Neuroscience. 161:20-27. 



   

59 
 

 

269. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M (2005): Persistent pain and 

stress activate pain-inhibitory orexin pathways. NeuroReport. 16. 

 

270. Furlong TM, Vianna DML, Liu L, Carrive P (2009): Hypocretin /orexin contributes to the 

expression of some but not all forms of stress and arousal. European Journal of Neuroscience. 

30:1603-1614. 

 

271. Mahler SV, Smith RJ, Aston-Jones G (2013): Interactions between VTA orexin and glutamate in 

cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology. 226:687-698. 

 

272. James MH, Fragale JE, Aurora RN, Cooperman NA, Langleben DD, Aston-Jones G (2020): 

Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: 

why sleep on this any longer? Neuropsychopharmacology: Official Publication of the American 

College of Neuropsychopharmacology. 45:717-719. 

 

273. James MH, Aston-Jones G (2020): Introduction to the Special Issue: “Making orexin-based 

therapies for addiction a reality: What are the steps from here?”. Brain Research. 1731:146665. 

 

274. Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G (2020): Persistent effects of the 

orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain 

Research. 1731:146461. 

 

275. Mohammadkhani A, Fragale JE, Pantazis CB, Bowrey HE, James MH, Aston-Jones G (2019): 

Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. 

Journal of Neuroscience. 39:9831. 

 

276. James MH, Bowrey HE, Stopper CM, Aston‐Jones G (2019): Demand elasticity predicts 

addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin‐1 receptor antagonist 

in rats. European Journal of Neuroscience. 50:2602-2612. 

 

277. Kallupi M, Cannella N, Economidou D, Ubaldi M, Ruggeri B, Weiss F, et al. (2010): 

Neuropeptide S facilitates cue-induced relapse to cocaine seeking through activation of the 

hypothalamic hypocretin system. Proceedings of the National Academy of Sciences. 107:19567-

19572. 

 

278. Niimi M (2006): Centrally administered neuropeptide S activates orexin-containing neurons in 

the hypothalamus and stimulates feeding in rats. Endocrine. 30:75-79. 

 

279. Tung L-W, Lu G-L, Lee Y-H, Yu L, Lee H-J, Leishman E, et al. (2016): Orexins contribute to 

restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic 

neurons. Nature Communications. 7:1-14. 

 

280. Cannella N, Economidou D, Kallupi M, Stopponi S, Heilig M, Massi M, et al. (2009): Persistent 

increase of alcohol-seeking evoked by neuropeptide S: an effect mediated by the hypothalamic 

hypocretin system. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 34:2125-2134. 



   

60 
 

 

281. Cannella N, Kallupi M, Li HW, Stopponi S, Cifani C, Ciccocioppo R, et al. (2016): 

Neuropeptide S differently modulates alcohol-related behaviors in alcohol-preferring and non-

preferring rats. Psychopharmacology. 233:2915-2924. 

 

282. Jiménez A, Caba M, Escobar C (2013): Food-entrained patterns in orexin cells reveal subregion 

differential activation. Brain Research. 1513:41-50. 

 

283. Freeman LR, Aston-Jones G (2020): Activation of medial hypothalamic orexin neurons during a 

Go/No-Go task. Brain Research. 1731:145928. 

 

284. Ho C-Y, Berridge KC (2013): An Orexin Hotspot in Ventral Pallidum Amplifies Hedonic 

‘Liking’ for Sweetness. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 38:1655-1664. 

 

285. Tannenbaum PL, Stevens J, Binns J, Savitz AT, Garson SL, Fox SV, et al. (2014): Orexin 

receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally 

salient acoustic stimuli in dogs. Frontiers in Behavioral Neuroscience. 8:182. 

 

286. Wiskerke J, James MH, Aston-Jones G (2020): The orexin-1 receptor antagonist SB-334867 

reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Research. 1731:146222. 

 

287. Tsujino N, Sakurai T (2013): Role of orexin in modulating arousal, feeding, and motivation. 

Frontiers in Behavioral Neuroscience. 7:28. 

 

288. Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G (2014): Motivational activation: 

a unifying hypothesis of orexin/hypocretin function. Nature Neuroscience. 17:1298-1303. 

 

289. Murnane KS (2019): Serotonin 2A receptors are a stress response system: implications for post-

traumatic stress disorder. Behavioural Pharmacology. 30:151-162. 

 

290. Song C, Moyer JR, Jr. (2018): Layer- and subregion-specific differences in the 

neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol. 

119:177-191. 

 

291. Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010): Cell-type specific 

properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the 

cortical area. Cerebral Cortex. 20:826-836. 

 

292. Sotres-Bayon F, Quirk GJ (2010): Prefrontal control of fear: more than just extinction. Current 

Opinion in Neurobiology. 20:231-235. 

 

293. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM (2016): Bidirectional 

modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal 

cortex. Neuroscience. 321:197-209. 

 



   

61 
 

294. Marek R, Xu L, Sullivan RKP, Sah P (2018): Excitatory connections between the prelimbic and 

infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nature 

Neuroscience. 21:654-658. 

 

295. Wellman CL, Moench KM (2019): Preclinical studies of stress, extinction, and prefrontal cortex: 

intriguing leads and pressing questions. Psychopharmacology. 236:59-72. 

 

296. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006): Microstimulation reveals 

opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn 

Mem. 13:728-733. 

 

297. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011): Dissociable roles of prelimbic and 

infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction 

of conditioned fear. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 36:529-538. 

 

298. Arruda-Carvalho M, Clem RL (2015): Prefrontal-amygdala fear networks come into focus. 

Frontiers in Systems Neuroscience. 9. 

 

299. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016): Antagonistic negative and positive 

neurons of the basolateral amygdala. Nature Neuroscience. 19:1636. 

 

300. Vertes RP (2004): Differential projections of the infralimbic and prelimbic cortex in the rat. 

Synapse. 51:32-58. 

 

301. Krabbe S, Gründemann J, Lüthi A (2018): Amygdala Inhibitory Circuits Regulate Associative 

Fear Conditioning. Biological Psychiatry. 83:800-809. 

 

302. Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S (2017): Basolateral to Central 

Amygdala Neural Circuits for Appetitive Behaviors. Neuron. 93:1464-1479.e1465. 

 

303. Lucas EK, Jegarl AM, Morishita H, Clem RL (2016): Multimodal and Site-Specific Plasticity of 

Amygdala Parvalbumin Interneurons after Fear Learning. Neuron. 91:629-643. 

 

304. Do Monte FH, Quirk GJ, Li B, Penzo MA (2016): Retrieving fear memories, as time goes by. 

Mol Psychiatry. 21:1027-1036. 

 

305. Gore F, Schwartz Edmund C, Brangers Baylor C, Aladi S, Stujenske Joseph M, Likhtik E, et al. 

(2015): Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate 

and Learned Responses. Cell. 162:134-145. 

 

306. Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008): Switching on and off fear by 

distinct neuronal circuits. Nature. 454:600-606. 

 

307. Senn V, Wolff Steffen BE, Herry C, Grenier F, Ehrlich I, Gründemann J, et al. (2014): Long-

Range Connectivity Defines Behavioral Specificity of Amygdala Neurons. Neuron. 81:428-437. 

 



   

62 
 

308. Trouche S, Sasaki Jennifer M, Tu T, Reijmers Leon G (2013): Fear Extinction Causes Target-

Specific Remodeling of Perisomatic Inhibitory Synapses. Neuron. 80:1054-1065. 

 

309. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk Gregory J (2012): Gating of Fear 

in Prelimbic Cortex by Hippocampal and Amygdala Inputs. Neuron. 76:804-812. 

 

310. Vogel E, Krabbe S, Gründemann J, Wamsteeker Cusulin JI, Lüthi A (2016): Projection-Specific 

Dynamic Regulation of Inhibition in Amygdala Micro-Circuits. Neuron. 91:644-651. 

 

311. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, et al. (2017): Combined Social 

and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell. 171:1663-

1677.e1616. 

 

312. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005): Prefrontal cortex in the rat: 

Projections to subcortical autonomic, motor, and limbic centers. Journal of Comparative Neurology. 

492:145-177. 

 

313. Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL (2016): Specific Targeting of the Basolateral 

Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eneuro. 

3:ENEURO.0002-0016.2016. 

 

314. Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018): Fear extinction requires infralimbic 

cortex projections to the basolateral amygdala. Translational Psychiatry. 8:60. 

 

315. Park K, Chung C (2020): Differential Alterations in Cortico-Amygdala Circuitry in Mice with 

Impaired Fear Extinction. Molecular Neurobiology. 57:710-721. 

 

316. Ji G, Neugebauer V (2012): Modulation of medial prefrontal cortical activity using in vivo 

recordings and optogenetics. Molecular Brain. 5:36. 

 

317. Saffari R, Teng Z, Zhang M, Kravchenko M, Hohoff C, Ambrée O, et al. (2016): NPY+-, but not 

PV+-GABAergic neurons mediated long-range inhibition from infra- to prelimbic cortex. 

Translational Psychiatry. 6:e736-e736. 

 

318. Trezza V, Damsteegt R, Manduca A, Petrosino S, Van Kerkhof LWM, Pasterkamp RJ, et al. 

(2012): Endocannabinoids in Amygdala and Nucleus Accumbens Mediate Social Play Reward in 

Adolescent Rats. Journal of Neuroscience. 32:14899-14908. 

 

319. Nikolova YS, Misquitta KA, Rocco BR, Prevot TD, Knodt AR, Ellegood J, et al. (2018): 

Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress 

across species. Translational Psychiatry. 8:26. 

 

320. Swartz Johnna R, Knodt Annchen R, Radtke Spenser R, Hariri Ahmad R (2015): A Neural 

Biomarker of Psychological Vulnerability to Future Life Stress. Neuron. 85:505-511. 

 

321. Duman CH, Duman RS (2015): Spine synapse remodeling in the pathophysiology and treatment 

of depression. Neuroscience Letters. 601:20-29. 



   

63 
 

 

322. Lee H, Heller AS, van Reekum CM, Nelson B, Davidson RJ (2012): Amygdala–prefrontal 

coupling underlies individual differences in emotion regulation. NeuroImage. 62:1575-1581. 

 

323. Hoover WB, Vertes RP (2007): Anatomical analysis of afferent projections to the medial 

prefrontal cortex in the rat. Brain Structure and Function. 212:149-179. 

 

324. Huang H, Ghosh P, Pol ANvd (2006): Prefrontal Cortex–Projecting Glutamatergic Thalamic 

Paraventricular Nucleus-Excited by Hypocretin: A Feedforward Circuit That May Enhance Cognitive 

Arousal. Journal of Neurophysiology. 95:1656-1668. 

 

325. Pleil KE, Lowery-Gionta EG, Crowley NA, Li C, Marcinkiewcz CA, Rose JH, et al. (2015): 

Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended 

amygdala. Neuropharmacology. 99:735-749. 

 

326. Lack AK, Diaz MR, Chappell A, DuBois DW, McCool BA (2007): Chronic ethanol and 

withdrawal differentially modulate pre-and postsynaptic function at glutamatergic synapses in rat 

basolateral amygdala. Journal of Neurophysiology. 98:3185-3196. 

 

327. Lu YL, Richardson HN (2014): Alcohol, stress hormones, and the prefrontal cortex: A proposed 

pathway to the dark side of addiction. Neuroscience. 277:139-151. 

 

328. Karimi S, Hamidi G, Fatahi Z, Haghparast A (2019): Orexin 1 receptors in the anterior cingulate 

and orbitofrontal cortex regulate cost and benefit decision-making. Progress in Neuro-

Psychopharmacology and Biological Psychiatry. 89:227-235. 

 

329. Starcke K, Brand M (2012): Decision making under stress: a selective review. Neuroscience & 

Biobehavioral Reviews. 36:1228-1248. 

 

330. Cole S, Keefer SE, Anderson LC, Petrovich GD (2020): Medial Prefrontal Cortex Neural 

Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are 

Necessary in Cue-Potentiated Feeding. Journal of Neuroscience. 40:1744-1755. 

 

331. Tryon MS, Carter CS, DeCant R, Laugero KD (2013): Chronic stress exposure may affect the 

brain's response to high calorie food cues and predispose to obesogenic eating habits. Physiology & 

Behavior. 120:233-242. 

 

332. Jastreboff AM, Sinha R, Lacadie C, Small DM, Sherwin RS, Potenza MN (2013): Neural 

correlates of stress- and food cue-induced food craving in obesity: association with insulin levels. 

Diabetes Care. 36:394-402. 

 

333. Cole S, Mayer HS, Petrovich GD (2015): Orexin/hypocretin-1 receptor antagonism selectively 

reduces cue-induced feeding in sated rats and recruits medial prefrontal cortex and thalamus. 

Scientific Reports. 5:16143. 

 



   

64 
 

334. Molosh A, Dustrude E, Lukkes J, Fitz S, Caliman I, Abreu A, et al. (2018): Panic results in 

unique molecular and network changes in the amygdala that facilitate fear responses. Molecular 

Psychiatry.1. 

 

335. Flores Á, Herry C, Maldonado R, Berrendero F (2017): Facilitation of contextual fear extinction 

by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell 

subpopulations. International Journal of Neuropsychopharmacology. 20:654-659. 

 

336. Ardeshiri MR, Hosseinmardi N, Akbari E (2019): The basolateral amygdala orexin 1 and 2 

receptors' involvement in modulating spatial reference memory. Brain Res. 1704:16-25. 

 

337. Ardeshiri MR, Hosseinmardi N, Akbari E (2018): Orexin 1 and orexin 2 receptor antagonism in 

the basolateral amygdala modulate long-term potentiation of the population spike in the perforant 

path-dentate gyrus-evoked field potential in rats. Neurobiology of Learning and Memory. 149:98-

106. 

 

338. Sun N, Cassell MD (1993): Intrinsic GABAergic neurons in the rat central extended amygdala. 

Journal of Comparative Neurology. 330:381-404. 

 

339. Duvarci S, Pare D (2014): Amygdala microcircuits controlling learned fear. Neuron. 82:966-980. 

 

340. Day HE, Curran EJ, Watson Jr SJ, Akil H (1999): Distinct neurochemical populations in the rat 

central nucleus of the amygdala and bed nucleus of the stria terminalis: Evidence for their selective 

activation by interleukin‐1β. Journal of Comparative Neurology. 413:113-128. 

 

341. Veinante P, Stoeckel M-E, Freund-Mercier M-J (1997): GABA- and peptide-immunoreactivities 

co-localize in the rat central extended amygdala. NeuroReport. 8:2985-2989. 

 

342. Turunen PM, Jantti MH, Kukkonen JP (2012): OX1 orexin/hypocretin receptor signaling through 

arachidonic acid and endocannabinoid release. Molecular Pharmacology. 82:156-167. 

 

343. Berrendero F, Flores Á, Robledo P (2018): When orexins meet cannabinoids: Bidirectional 

functional interactions. Biochemical Pharmacology. 

 

344. Smith JP, Achua JK, Summers TR, Ronan PJ, Summers CH (2014): Neuropeptide S and BDNF 

gene expression in the amygdala are influenced by social decision-making under stress. Frontiers in 

Behavioral Neuroscience. 8. 

 

345. Robertson JM, Prince MA, Achua JK, Carpenter RE, Arendt DH, Smith JP, et al. (2015): Nuance 

and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and 

conceptualization of the continuum of anxiety. Physiol Behav. 146:86-97. 

 

346. Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, et al. (2016): Intensity 

of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology. 63:351-

361. 

 



   

65 
 

347. Yaeger J, Staton C, Krupp K, Summers T, Summers C (2018): Anxious phenotypes: prior 

experience and orexin 2 (Orx2) receptor activation lead to social stress resilience.  Society for 

Neuroscience Abstracts. 

 

348. Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F (2010): Hypocretins 

regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking 

behavior. Journal of Neuroscience. 30:2300-2310. 

 

349. Gozzi A, Lepore S, Vicentini E, Merlo-Pich E, Bifone A (2013): Differential effect of orexin-1 

and CRF-1 antagonism on stress circuits: a fMRI study in the rat with the pharmacological stressor 

Yohimbine. Neuropsychopharmacology: Official Publication of the American College of 

Neuropsychopharmacology. 38:2120. 

 

350. Abounoori M, Maddah MM, Akbari E, Houshmand G, Ardeshiri MR (2020): The Effect of 

Orexin Receptor Antagonism on Quinpirole-Induced Compulsive-Like Checking Behavior in Rats. 

Neurotoxicity Research.1-9. 

 

351. Pang TY, Yaeger JDW, Summers CH, Mitra R (2020): Cardinal role of the environment in stress 

induced changes across life stages and generations. Neuroscience and Biobehavioral Reviews. 

 

352. Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Paré D (2008): Amygdala intercalated 

neurons are required for expression of fear extinction. Nature. 454:642-645. 

 

353. Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005): Infralimbic cortex 

activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience. 

132:943-953. 

 

354. Preskorn SH (2018): CNS Drug Development, Lessons Learned, Part 5: How Preclinical and 

Human Safety Studies Inform the Approval and Subsequent Use of a New Drug—Suvorexant as an 

Example. Journal of Psychiatric Practice®. 24. 

 

355. Khoo SY-S, Brown RM (2014): Orexin/Hypocretin Based Pharmacotherapies for the Treatment 

of Addiction: DORA or SORA? CNS Drugs. 28:713-730. 

 

356. Li A, Hindmarch CC, Nattie EE, Paton JF (2013): Antagonism of orexin receptors significantly 

lowers blood pressure in spontaneously hypertensive rats. The Journal of Physiology. 591:4237-

4248. 

 

357. Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, et al. (2009): Blockade of 

orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. 

Journal of Pharmacology and Experimental Therapeutics. 330:142-151. 

 

358. Betschart C, Hintermann S, Behnke D, Cotesta S, Fendt M, Gee CE, et al. (2013): Identification 

of a Novel Series of Orexin Receptor Antagonists with a Distinct Effect on Sleep Architecture for the 

Treatment of Insomnia. Journal of Medicinal Chemistry. 56:7590-7607. 

 



   

66 
 

359. Bonaventure P, Shelton J, Yun S, Nepomuceno D, Sutton S, Aluisio L, et al. (2015): 

Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical 

Candidate for the Treatment of Insomnia. Journal of Pharmacology and Experimental 

Therapeutics.jpet.115.225466. 

 
 

 

 

 
  



   

67 
 

Table 1. Listing of clinical trials and studies using receptor antagonists for the Orx1R or Orx2R (SORAs) 

or both (DORAs).  For a table of preclinical results please refer to Summers et al., 2020. 
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Figure 1.  Dimerization of Orx receptors changes signaling dynamics.  Activation of Orx1R (orange; top 

left) may result in Gq (blue), Gs (green), Gi (red), or β-arrestin (pink) signaling cascades.  When 

stimulated, dimers of Orx1R initiate intracellular pathways that are unique from the monomers: (A) 

homodimers may recruit more dimerization [108]; (B) Orx1R+Orx2R has unknown properties [107]; (C) 

Orx1R+Cb1 allows for spontaneous receptor recycling [110, 111]; (D) Orx1R+QRFP-R has unknown 

signaling properties but may be neuroprotective through the activation of ERK pathways [112]; (E) 

Orx1R+CRF1 favors Gi and the recruitment of β-arrestin [113]; (F) Orx1R+CRF2 signals through Gi 

pathways [114]; (G) Orx1R+KOR uses the Gs pathway [115]; (H) Orx1R+CCK1 enhances Gq and Gi 

signaling, but also recruits signaling from G12/13 and β-arrestin pathways [116]; (I) Orx1R+GHSR1a 

utilizes Gs and β-arrestin signaling [117]; and (J) GHSR1b favors Gq and β-arrestin intracellular pathways 

[118].  As a monomer, Orx2R (yellow; bottom left) can signal via Gq, Gs, and Gi pathways.  Dimerization 

results in differential signaling patterns: (1) homodimers have unknown signaling qualities [107]; (2)  

Orx2R variant dimers (Orx2α+Orx2β) displays exaggerated Gq and normal Gi signaling [109]; (3) 

Orx2R+Cb1 has unknown signaling properties [107]; (4) Orx2R+QRFP-R may be neuroprotective [112], 

but has not been heavily investigated; (5) Orx2R+5-HT1A returns signaling to basal conditions [119].  

Note, referenced studies rely on in vitro techniques to explore signaling cascades, and results reported 

here are only pathways observed when Orx peptides (OrxA or OrxB) are present.  Other pathways may be 

evident when the partner receptor’s ligand is present. 
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Figure 2.  Stress responses are initiated through counterbalanced parallel neurocircuits.  (A)  Pro-stress 

behaviors are initiated through activation of reciprocal PrL and aBLA (Rspo2+ cells) connections that 

lead to inhibition of pBLA projection neurons and activate mCeA outputs to promote “Fear On” 
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signaling.  (B) Anti-stress responses are promoted through reciprocally innervated IL and pBLA 

(Ppp1r1b+) neurons, which suppress projection neurons in the aBLA and indirectly in the mCeA through 

ITC GABAergic cells.  Importantly, this represents a simplistic model of a highly complicated system; 

and does not include many components that are also necessary for modulation of stress reactivity.   
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Figure 3.  Pro-stress behaviors are alleviated, and anti-stress responses are promoted through Orx1R 

inhibition (orange arrows) or Orx2R stimulation (yellow arrows).  In the SAM, mice display behaviors 

consistent with a gradient of stress-induced responses [346] (dashed line), where fear-associated 

behaviors (far left, red dashed line) are consistent with vulnerability, and active avoidance through escape 

(far right, green dashed line) relating to stress resilience.  Mice exposed to the SAM show diminished 

pro-stress behaviors with treatments, including (A) fear conditioned freezing, (B) conflict freezing, and 

(C) startle response.  Conversely, with specific Orx receptor-targeted treatments, anti-stress responses are 

increased, including (D) motivational behaviors (Attention Toward Escape) and (E) resiliency (Escape 

behavior).  All values are approximations combined from icv [179] and intra-BLA [83, 351] studies and 

are represented as percent from control (vehicle-treated mice exposed to the social stress paradigm).   
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Figure 4.  Pro- and anti-stress circuits are bidirectionally mediated through Orx1R and Orx2R activity.  

(A) In the PrL, Orx1R stimulation activates (increased Ca2+) aBLA-projecting neurons, and biasing 

counterbalanced microcircuits to favor pro-stress behavioral responses.  (B) The IL expresses Orx2R on 

presynaptic thalamocortical terminals that, when activated, promote increased Glu release onto pBLA-

projecting neurons.  These pBLA-connecting IL neurons also express Orx2R, which, upon stimulation, 

increases signaling to the pBLA and favoring anti-stress microcircuit activation.  (C) The aBLA houses 
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mCeA-innervating neurons that express Orx1R.  When activated, Orx1R promotes excitation of projection 

neurons, but also stimulates the production of 2-AG, which inhibits GABA release from interneurons 

(CCK+) and leads to disinhibition (and hyper-excitability) of aBLA projection neurons, biasing pro-stress 

responses.  Note that Orx2R may be located on interneurons within the aBLA to help suppress pro-stress 

signaling.  (D) Presynaptic terminals express Orx1R in the mCeA.  When activated, these receptors 

increase glutamate release onto mCeA neurons and promote pro-stress responsivity.  (E) The pBLA 

contains Orx2R on pyramidal projection neurons that signal in support of anti-stress pathways.  

Interneurons in the pBLA may also express Orx1R, which would suppress anti-stress signaling if 

stimulated.  Noteworthy, these are predicted interactions of Orx receptors in pro- and anti-stress 

microcircuits.  The precise locations and functions of these receptors within these areas of stress 

neurocircuitry remains largely unknown.  
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Chapter 2:  Orexin 1 receptor antagonism in the basolateral amygdala shifts the balance 

from pro- to anti-stress signaling and behavior 

 

 

ABSTRACT 

BACKGROUND: Stress produces differential behavioral responses through select molecular 

modifications to specific neurocircuitry elements.  The orexin system targets key components of 

this neurocircuitry in the basolateral amygdala (BLA).   

METHODS: We assessed the contribution of BLA Orexin 1 receptors (Orx1R) in the 

expression of stress-induced phenotypes. Using the Stress Alternatives Model (SAM), a social 

stress paradigm that produces two behavioral phenotypes, we characterized the role of BLA 

Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-

Orx1R-shRNA) strategies.   

RESULTS: In the BLA, we observed that Orx1R (HCRTR1) mRNA is predominantly expressed 

in CamKIIα+ glutamatergic neurons and rarely in GABAergic cells.  While there is a slight 

overlap in Orx1R and Orexin 2 receptor (Orx2R; HCRTR2) mRNA expression in the BLA, we 

find that these receptors are most often expressed in separate cells.  Antagonism of intra-BLA 

Orx1R after phenotype formation shifted behavioral expression from stress sensitive (Stay) to 

resilient (Escape) responses, an effect that was mimicked by genetic knockdown.  Acute 

inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay 

animals.  This phenotype-specific behavioral change was accompanied by biased molecular 

transcription favoring HCRTR2 over HCRTR1, and MAPK3 over PLCB1 cell signaling cascades 

and enhanced BDNF mRNA.   

CONCLUSIONS: The functional reorganization of intra-BLA gene expression after Orx1R 

antagonism promotes elevated HCRTR2, to greater MAPK3, yielding increased BDNF 
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expression.  Together, these results provide evidence for a receptor-driven mechanism that 

balances pro- and anti-stress responses within the BLA.  

 

INTRODUCTION 

Stress-induced alterations in neurocircuitry result in divergent behavioral responses.  Enhanced 

stress reactivity (pro-stress) in rodent models is similar to human affective dysfunction in mood 

disorders like depression, fear-/anxiety-related disorders, or post-traumatic stress disorder 

(PTSD) [1].  Current pharmacotherapies for affective disorders have limited success, and a 

mechanistic understanding remains elusive. 

Balance within key stress circuits may be disrupted during periods of intense or prolonged 

stress to shift signaling dynamics in pro- or anti-stress pathways [2-4].  Stressful stimuli are 

interpreted, in part, through converging signals in the basolateral amygdala (BLA), where 

glutamatergic projection neurons are influenced by distinctive GABAergic interneurons, to 

direct behavioral responses [5].  Additionally, activity in the BLA is modified by hypothalamic 

orexinergic neurons, which are critical for panic [6, 7] and motivation [8, 9]. 

Orexin A (OrxA) and orexin B (OrxB), neuromodulators derived from a single pre-

propeptide, activate two G-coupled protein receptors: orexin 1 receptors (Orx1R), having greater 

affinity for OrxA, and orexin 2 receptors (Orx2R), which binds equally well to OrxA and OrxB 

[10].  These receptors stimulate heterotrimeric Gq proteins which increase intracellular Ca2+ [11] 

to activate phospholipase C (PLC) pathways [12].  The PLCβ1 isozyme variant is transcribed in 

the amygdala [13], and its dysfunction is linked to psychopathologies like depression [14], 

bipolar disorder [15], addiction [16], and schizophrenia [17, 18]. 
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Stimulation of Orx1R can also activate extracellular signal-regulated protein kinase (ERK).  

In the amygdala, recruitment of ERKs is important for consolidation, reconsolidation, and 

extinction of fear memories [19, 20].  While Orx1R in the BLA are important in regulating fear 

[21, 22], depression [23, 24], and anxiety [25], it is unclear how shifts in molecular signaling 

cascades mediate such responses and initiate stress-induced phenotype development. 

Utilizing the Stress Alternatives Model (SAM), a behavioral paradigm that separates 

individuals into social stress resilient (Escape) and vulnerable (Stay) populations [26], we 

explored how Orx1R activity in the BLA is involved in the formation of stress-related 

phenotypes.  As a social interaction and avoidance paradigm in which smaller subjects encounter 

intense attacks from larger novel aggressors over a four-day period, the SAM produces two 

separate subsets of animals, exhibiting social avoidance or enhanced fear conditioned responses 

[27, 28].  Unlike a traditional social defeat outcome, the SAM provides mice an opportunity to 

avoid social aggression by exiting the arena through one of two escape tunnels only large 

enough for the smaller mouse.  By the end of the second day of social interaction, test subjects 

stably commit to a phenotype: Escape or Stay.  These stable phenotypes may be altered through 

pharmacological manipulations administered on the third day of the SAM [28-30].  Thus, the 

SAM is a useful tool for studying the development of stress-induced phenotypes, while 

providing an opportunity to explore physiological and clinically relevant molecular mechanisms. 

We investigated if inhibition of intra-BLA Orx1R, alters the formation of social stress-

induced behavioral phenotypes. We predict that pharmacological inhibition or genetic 

knockdown will shift behavioral patterns in vulnerable (Stay) populations toward resilience 

(Escape).  Further, we explored if Orx1R inhibition affects conditioned fear responses and alters 

the expression of genes responsible for balancing signaling in pro- and anti-stress 
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neurocircuitries.  Together, these results allow us to propose a neurocircuit model that defines 

the role of intra-BLA Orx1R signaling in the balance of pro- and anti-stress states. 

METHODS & MATERIALS (see also COMPLETE METHODS & MATERIALS) 

Social Stress and Decision-Making Paradigm 

Aggressive social interactions between larger novel CD1 and smaller male C57BL/6NHsd mice 

dyads in the SAM apparatus (Fig. 1) involve four trials, lasting up to five minutes each, allowing 

test animals the opportunity to shorten stressful encounters by making use of size-restricted 

tunnels at the apical end of the oval open field interaction arena. A tone given during isolation in 

the SAM apparatus prior to social interaction permits comparisons between cued and contextual 

fear conditioning. The escape routes provide a decision-making opportunity, producing two 

stable phenotypes: active avoidance (Escape) and enhanced fear conditioning (Stay), which may 

be modified by drug treatment on Day 3. The treatment regimen allows for statistical 

comparisons between groups, and within subjects, by comparing responses to SAM interactions 

before and after treatment. All procedures were performed in accordance with the Guide for the 

Care and Use of Laboratory Animals (NIH Publications No. 80-23) and approved by the 

University of South Dakota Institutional Animal Care and Use Committee. 

Experimental Overview (see also Supplemental Information) 

The primary treatment for these experiments is inhibition of BLA Orx1R, via the antagonist SB-

674042 (0.3 nmol/0.3 μL delivered bilaterally intra-BLA, 1h prior to interaction on Day 3) or 

short-hairpin knockdown (bilateral intra-BLA transduction beginning 30 days prior to SAM 

interaction). Considering the difference in timing of delivery, these treatments were done and 

analyzed separately, with unique hypotheses. All behavioral measures were performed during 

the dark cycle, and included Escape (use of the apical tunnels), Stay (remaining in the SAM 
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arena with the novel aggressor), time spent attentive to the escape hole, latency to escape (for 

Escape mice), fear conditioned freezing (measured in response to the tone and context, prior to 

the social interaction unconditioned stimulus [US], and as a conditioned response [CR on Day 5] 

in the absence of the US), and food intake. Thus, treatment groups included home cage controls, 

intra-BLA vehicle injection, and intra-BLA SB-674042 injection of Escape and Stay mice.  In 

addition, local knockdown treatment groups included home cage controls, intra-BLA AAV-

Orx1R-shRNA injection, and intra-BLA AAV-scramble-shRNA injection.  Brains and blood 

were collected for visual representations of gene expression (using RNAscope) of HCRTR1, 

HCRTR2, calbindin (CALB1), Ca++/Calmodulin Kinase type 2 alpha (CAMKIIα), Glutamate 

Decarboxylase (GAD1), and parvalbumin (PVALB) in the BLA, as well as to measure plasma 

concentrations of the stress hormone corticosterone (by enzyme linked immunosorbent assay).  

Gene expression (using qRT-PCR) of HCRTR1, HCRTR2), PLCB1, MAPK1, MAPK3, BDNF, 

and GAPDH (housekeeping gene) were measured in BLA tissue.  All experimental designs and 

statistical analyses were based on a priori hypotheses, using two-way repeated measures 

ANOVA, two-way ANOVA, one-way ANOVA, regression analyses, and t-test, followed (where 

appropriate) by post hoc analyses. 

 

RESULTS (see also COMPLETE RESULTS) 

Orx1R are expressed in BLA glutamatergic neurons  

The glutamatergic marker, CamKIIα, was identified in the vast majority of BLA neurons (~80%; 

Fig. S2) as well as those expressing HCRTR1 [31, 32], though the signal was also found in some 

calbindin-expressing GABAergic neurons (Fig. 2).  Few (<20%) BLA HCRTR1-possessing cells 

express GAD1 (GABAergic marker) and co-express parvalbumin (PV, ~10%; Figs. 2I-J).  While 
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Orx1R are localized predominantly on glutamatergic neurons in the BLA (Fig. 2P), our results 

suggest HCRTR1 is expressed in 10-15% of BLA glutamatergic neurons and ~5% of GABA 

cells (Fig. 2K). 

Intra-BLA Orx1R inhibition and knockdown increase motivation for active avoidance 

(Escape) 

In the SAM, typically animals evenly self-select one of two stable [27-29, 33] behavioral 

phenotypes, Escape or Stay (Figs. 1A) [26, 27, 29, 33, 34],  44.7% Escape and 55.3% Stay (Figs. 

S1B, C).   

We wished to determine if inhibition of Orx1R (SB-674042) in BLA [2] stimulated 

motivation for active avoidance. Time spent investigating the escape route is both a predictor of 

active avoidance and an indicator of motivation to escape [28].  Time spent attentive to the hole 

was significantly greater in vehicle-treated Escape mice (Fig. 3A), but intra-BLA infusion of the 

Orx1R antagonist (Escape: Figs. 3B, C; Stay: Figs. 3B, D) or AAV-U6-Orx1R-shRNA (Fig. 3E) 

increases attention to the escape route.  Further, receptor activation with OrxA reduced the time 

Escape mice spent investigating the escape route (Fig. S3).  Together these results characterize 

an important function of BLA Orx1R in modulating adaptive motivation in a social stress 

environment (Fig. 3F), where inhibition or knockdown promote increased motivation to Escape. 

Inhibition and knockdown of BLA Orx1R promote active avoidance (Escape) 

As motivation to escape was enhanced, we wished to determine if inhibition of Orx1R in BLA 

also resulted in more proactive anxiolytic behavior (Escape).  Upon intra-BLA injections of an 

Orx1R antagonist on SAM Day 3, a substantial number of Stay mice exhibited Escape behavior 

(Fig. 4A), with a 30% shift that day, and a significant increase the day after (Day 4 = 70% 

increase).   Interestingly, intra-BLA activation of both Orx receptors with OrxA or biased 
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activation of Orx1R with duel delivery of OrxA and an Orx2R antagonist blocked Escape 

behavior in a small proportion of mice on Days 3 and 4 (Fig. S4), and though not statistically 

significant, does support the pro-stress role of Orx1R. 

As knockdown reduced Orx1R expression prior to stressful interactions experiments, we did 

not expect a dramatic change in behavior over the course of SAM trials, but while scramble 

control mice remained stable, those treated with AAV-U6-Orx1R-shRNA selected to Escape 

incrementally (though not significantly) more on the last two days of SAM exposure (Fig. 4B). 

By the end of Day 4, 72.7% of AAV-U6-Orx1R-shRNA-treated mice displayed the Escape 

phenotype compared to 54.5% of those that received the scramble control.   

Escape mice spent significantly less time in the SAM arena with the CD1 mouse on Days 2 

through 4 [26, 27, 29, 33, 35], thus escape latency was reduced (Fig. 4C).  Stay mice remain 

submissively for the entire 5 min period, unless treated with the Orx1R antagonist, significantly 

reducing the time spent with the aggressive CD1 mouse on Day 4 (Fig. 4D).  Neither Orx1R 

inhibition nor knockdown influenced escape latency in Escape animals (Figs. 4D, E).  These 

results, in combination, suggest that intra-BLA Orx1R promote coping strategies associated with 

responses to increased stress, and acute inhibition of these receptors allows for greater expression 

of behavior derived from reduced output of pro-stress neurocircuitry (Escape; Fig. 4F). 

Importantly neither of the Orx1R manipulations, antagonist or knockdown treatments, 

influenced arousal/locomotion (Figs. S5), but did result in small but significant decreases in food 

intake and body weight (Figs. S6).   

BLA Orx1R inhibition reduces cued and contextual fear conditioning 

As motivation for and actual active stress-avoidance were promoted by intra-BLA Orx1R 

inhibition, we probed whether SAM social stress exposure (US+) could be associated with fear 
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conditioning (tone = CS; freezing behavior =CR; absence of social aggressor = US-; Fig. 1A).  

Cued fear responses significantly enhanced freezing in both Escape and Stay phenotypes (Figs. 

5A, B), and Stay mice displayed heightened freezing behavior to context (CS-, opaque cylinder 

divider) as well (Fig. 5B).  Although inhibition of intra-BLA Orx1R did not affect the fear 

freezing profile in Escape mice (Figs. 5A, D), antagonist-treated Stay mice exhibited 

significantly reduced contextual (CS-) and cued (CS+) fear responses (Figs. 5A, H).  Like mice of 

the Escape phenotype, knockdown of BLA Orx1R (AAV-U6-Orx1R-shRNA) did not affect 

conditioned freezing behavior (Fig. S7).  Importantly, activation of intra-BLA Orx receptors with 

OrxA did not change the fear freezing profile in Escape or Stay mice compared to Vehicle control 

(Figs. 5A, E, I).  However, biased stimulation of Orx1R in the BLA with a combination of OrxA 

and an Orx2R antagonist eliminated the conditioned response in Escape (Figs. 5A, F), but not 

Stay mice (Figs. 5A, J).  

Corticosterone levels are reduced with intra-BLA Orx1R antagonism 

As intra-BLA Orx1R inhibition increased motivation for, and promoted, stress-avoidance, as well 

as reducing conditioned fear, we hypothesized that this treatment would also reduce plasma 

concentrations of the stress hormone, corticosterone (Fig. 5C). Social stress in SAM interactions 

increases corticosterone concentrations in both Escape and Stay animals [27, 28, 33], although 

Stay mice have higher levels of corticosterone compared to Escape.  Inhibition of BLA Orx1R 

decreased Stay corticosterone concentrations compared to vehicle-treated Stay animals; and did 

not differ significantly from non-stressed mice (Fig. 5C).  Treatments with OrxA or the 

combination of OrxA and an Orx2R antagonist did not change corticosterone levels relative to 

vehicle-treated controls, however, the differences between Escape and Stay were eliminated and 
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levels were elevated compared to Orx1R antagonist-treated mice (Fig. 5C).  Inhibition of BLA 

Orx1R not only reduces social fear responses, but also reverses social stress responsiveness. 

Antagonism of intra-BLA Orx1R recruits alternative signaling  

With Orx1R antagonism in the BLA, we predicted orexin receptor gene (HCRTR1 & HCRTR2) 

expression may be influenced by phenotype and treatment (Figs. 6).  Although HCRTR1 expression was 

unaltered following vehicle treatment, Orx1R antagonism reduced intra-BLA HCRTR1 in Escape mice 

compared to non-stressed cage controls (Fig. 6A), and simultaneously elevated HCRTR2 expression in 

Stay mice compared to Escape and vehicle-treated Stay mice (Fig. 6B).  In vehicle controls HCRTR2 

expression was higher in Escape mice compared to both Stay and Orx1R antagonist-treated Escape mice 

(Fig. 6B).  Changes in both HCRTR1 and HCRTR2 expression due to Orx1R inhibition appear to occur in 

a phenotype-dependent way in the BLA. 

Transcription of BLA PLCβ1 (PLCB1) mRNA [13] is likely important for Orx1R signaling [36] in the 

BLA, so we predicted Orx1R antagonist might limit PLCB1 expression levels (Fig. 6C).  Interestingly, 

Escape mice in both vehicle and Orx1R antagonist groups expressed lower amounts of PLCB1 compared 

to Stay animals (Fig. 6C).  Escape mice in both vehicle- and Orx1R antagonist-treated groups had lower 

PLCB1 mRNA compared to cage control animals (Fig. 6C).  These data suggest adaptive physiological 

shifts in intra-BLA PLCB1 expression may play a role in, or result from, phenotype development, 

without identifying how Orx1R antagonism is involved. 

Alternative molecular pathways recruited during Gq activation are driven by ERK genes (MAPK1 & 

MAPK3).  Although ERK2 (MAPK1) mRNA was unaffected (Fig. S8), Orx1R antagonism in Stay mice 

resulted in a significant increase in MAPK3 expression compared to similarly treated Escape, vehicle-

treated Stay, and non-stressed cage control mice (Fig. 6D).  These results suggest potential links amongst 

Orx1R inhibition, phenotype plasticity, and PLCβ1 and ERK1 signaling recruitment in behaviorally 

distinctive groups, which also differ in stress sensitivity.  
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The transcription of brain-derived neurotrophic factor (BDNF) is tied to neuroplasticity [37, 38] and 

behavioral changes like extinction of fear memories [39], so we predicted an increase in BDNF might be 

associated with intra-BLA Orx1R inhibition (Fig. 6E).  As hypothesized, intra-BLA Orx1R antagonism 

resulted in elevated BDNF in Stay compared to Escape mice and vehicle-treated Stay mice (Fig. 6E).  As 

Stay mice treated with an Orx1R antagonist experienced shifts from stress-vulnerable to resilient 

behavioral responses, the alterations in gene expression reported here (Fig. 6F) may be implicit in this 

behavioral plasticity. 

Molecular restructuring following intra-BLA Orx1R inhibition is related to fear 

responsiveness 

As altered transcription coincided with behavioral change produced by intra-BLA Orx1R antagonist 

treatment, we hypothesized that correlations would exist between them.  Expression levels of HCRTR2 in 

both vehicle- and Orx1R antagonist-treated mice are negatively correlated with cued freezing (Figs. 7A, 

B).  Relative expression levels of PLCB1 were positively correlated with cued freezing behavior in 

vehicle-treated mice (Fig. 7C); however, this relationship is not observed after intra-BLA Orx1R 

inhibition (Fig. 7D).  Contextual freezing behavior was associated with MAPK3 expression in only 

vehicle-treated mice (Figs. S9I).  By contrast, intra-BLA antagonism of Orx1R cued freezing behavior 

was negatively correlated to MAPK3 expression (Fig. 7F), but not in vehicle-treated mice (Fig. 7E).  The 

lack of gene expression correlations with cued fear freezing when phenotypes were assessed 

independently (Figs. S10), indicates that behavioral and transcriptional relationships exist within 

collective operational adaptations that link behavioral change to molecular modification.  Together, these 

results suggest a functional connection between Orx1R antagonist-induced shifts in gene expression and 

fear-related behaviors.  

Cells expressing Orx1R in the BLA do not co-express Orx2R 

Given that Orx1R antagonism within the BLA alters expression of Orx2R (HCRTR2) mRNA, and 

is related to cued fear responses, we decided to investigate whether both orexin receptor subtypes 
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are expressed within the same amygdalar neurons (Fig. 2).  In BLA cells, mRNA for HCRTR1 

and HCRTR2 largely do not overlap, as ~80% of HCRTR1+ cells do not co-express HCRTR2 

(Figs. 2L-O).  Importantly, even when BLA Orx1R are inhibited, native OrxA and OrxB will bind 

Orx2R.  Previous research from our lab suggests Orx2R may be predominantly localized to 

specific GABAergic neurons within the BLA [28]. 

Fear response after Orx2R inhibition is phenotypically different from Orx1R antagonism 

As blocking Orx1R in the BLA produced major effects on conditioned fear freezing in Stay mice 

(Fig. 5H), and increased HCRTR2 gene expression (Figs. 6B, 7B), we predicted antagonism of 

Orx2R (MK-1064) might affect fear behavior in Escape mice.  Acute inhibition of Orx2R in the 

BLA eliminated the cued (CS+) freezing response in Escape mice observed in vehicle control 

animals and significantly reduced freezing during the post-tone (CS+) period (Figs. 5A, G).  Stay 

mice treated with an Orx2R antagonist displayed no statistical differences in the levels of 

contextual (CS-) and cued (CS+) freezing compared to animals in the vehicle control group (Figs. 

5A, K).  These results suggest Orx receptor activity in the BLA influences social stress-induced 

fear behavior in receptor type and phenotype dependent fashions. 

Transcriptional changes after Orx2R antagonism contrast those observed after Orx1R 

inhibition 

Since blocking Orx1R produced changes in mRNA expression relevant to BLA cell signaling 

dynamics, we predicted Orx2R antagonism to induce opposing changes to these transcriptional 

relationships (Fig. 6).  While Orx1R inhibition resulted in a reduction in HCRTR1 gene 

expression in Escape mice, Orx2R antagonism presented a similar decrease, but only in Stay 

animals (Fig. 6A).  Expression of HCRTR2 in the BLA was reduced in both Escape and Stay 

phenotypes after blocking Orx2R, contrasting with Orx1R antagonism, which enhanced HCRTR2 
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mRNA levels in Stay mice (Fig. 6B).  Further, intra-BLA Orx2R inhibition muted the reduction 

in PLCB1 observed in Escape mice under Vehicle treatment conditions (Fig. 6C) while having 

no effect on MAPK3 gene expression (Fig. 6D).  Finally, Orx2R antagonist treatment enhanced 

BDNF expression in Escape mice, while diminishing transcription in Stay animals, an effect that 

is phenotypically opposite to that observed after Orx1R inhibition (Fig. 6E).  Importantly, no 

relationships between gene expression and conditioned fear freezing were observed for any of 

the tested cell signaling markers after Orx2R antagonism except for BDNF, in which a significant 

negative correlation was revealed (Fig. S12E).  

Gene expression uncovers a potential molecular mechanism behind intra-BLA Orx1R 

antagonism 

To help generate a theoretical mechanism to explain the physiological basis surrounding the observed 

behavioral (and phenotypic) shifts resulting from intra-BLA inhibition of Orx1R, we explored 

transcriptional relationships in systems that exhibited similar regression patterns (Fig. 8).  With 

antagonism of Orx1R, there is a steeply positive relationship between HCRTR2 and MAPK3 expression 

(Fig. 8A).  Importantly, this association does not exist after vehicle or Orx2R antagonist treatment (Fig. 

S11A).  While there are no observed relationships between BDNF and HCRTR2 expression levels (Figs. 

8B, S13), BDNF expression is positively correlated to MAPK3 expression in animals treated with an 

Orx1R antagonist (Fig. 8C).  Notably, no relationships exist between HCRTR1 expression and the other 

genes of interest (Figs. S13D-I).  These data allowed us to predict a working model to explain how BLA 

Orx1R may function to establish behavioral patterns consistent with stress-induced phenotype 

development (Fig. 9). 

 

DISCUSSION  

Antagonism of Orx1R in the BLA can reverse or diminish expression of stress-related behavior.  Our 

results suggest BLA Orx1R play a central role in stress responsiveness [40, 41] and related behavioral, 
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physiological, and molecular outcomes that are important components of affective disorders [42, 43], 

such as anxiety [7], depression, and PTSD.  Acute inhibition of intra-BLA Orx1R promotes Escape over 

Stay responses and limits freezing during fear conditioning in a phenotype-dependent way. Further, 

inhibition of Orx1R alters gene expression associated with critical signaling cascades. Following intra-

BLA Orx1R antagonism, transcription for receptors and intracellular signaling becomes biased toward 

Orx2R (HCRTR2) over Orx1R (HCRTR1), and ERK1 (MAPK3) over PLCβ1 (PLCB1) pathways.  The 

relationship of these behavioral and molecular changes to enhanced expression of HCRTR2 mRNA, 

largely in BLA neurons that do not contain Orx1R (Figs. 2L-O), suggests receptor-mediated mechanisms 

that balance pro- and anti-stress responses in BLA microcircuits.   

Aggressive social interactions in the SAM produced two behavioral phenotypes that represent risk 

assessment and decision-making: Escape and Stay.  These phenotypes, like those exposed to social defeat 

paradigms [44, 45], exhibit resilience (tightly linked to Escape) and susceptibility (highly correlated with 

Stay) in the Social Interaction/Preference (SIP) test [28].  However, unlike traditional social defeat, 

SAM-separated phenotypes are expressed early in the behavioral paradigm, providing insight into the 

development and progression of stress-induced behavior and pathophysiology.  Anxiolytic drugs (such as 

CRF1 receptor antagonist antalarmin and the Orx2R agonist [Ala11, d-Leu15]–OrxB) promote escape, while 

anxiogenic drugs (such as the α2 antagonist yohimbine and the Orx2R antagonist MK-1064) delay and/or 

block escape behavior [28, 29].  Surprisingly, neither the Orx1R antagonist (Fig. 4D) nor knockdown 

(Fig. 4E) influenced escape latency, although it is reduced by anxiolytic factors such as exercise, 

Neuropeptide S, antalarmin, and increased by anxiogenic factors like yohimbine [29]. We posit that 

enhanced escape on Day 4, following BLA Orx1R inhibition (on Day 3, drug treatment), is a reflection of 

the shift toward anti-stress signaling indicated by downregulation in pro-stress signaling (HCRTR1), and 

upregulation of anti-stress systems (HCRTR2, MAPK3, BDNF). These stress-induced effects are paired 

with important learning and motivational components during SAM interactions [27, 29, 33, 35], and in 

human affective disorders [46].   
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In addition to species-specific anxious behavior and learning, social stress promotes behavioral 

inhibition, depressed behavioral drive and motivation in some individuals [47], plus a lower rate of 

adaptive behavior [48].  Behavioral depression reveals two distinctive phenotypes related to stress 

responsiveness in humans and other animals [45, 49, 50].  In SAM social interaction trials, Stay animals 

exhibit significantly less interest in exploring/investigating the escape route (Fig. 3A) and indecisiveness 

relative to escape [35].  Measuring motivation in the SAM is derived from a simple decision-making 

process, Escape or Stay [26, 27].  Antagonism and knockdown of Orx1R increases interest in the escape 

route for both Stay and Escape mice (Figs. 3C, D).  Thus, BLA Orx1R regulate stress-induced 

motivational behaviors; greatest in Escape mice, but marking a dramatic behavioral reversal in Stay mice 

that typically avoid the escape route (Figs. 3B-C).  The complementary results of intra-BLA knockdown 

of Orx1R (Fig. 3E) supports the notion that during periods of stress, intra-BLA Orx1R activity may 

provoke behavioral depression.  Attention to the escape route happens prior to escape, and is thus the first 

evidence of phenotypic differentiation in the SAM [28, 35].  Latency to escape, and escape behavior also 

are influenced by motivation, although as previously demonstrated, these behaviors are strongly affected 

by stress and fearfulness associated with familiarity of the SAM or social interaction [27-29, 33, 35].  

Our results, like those of others, suggest Orx activity plays a fundamental role in motivation [8, 51], and 

in this case, specifically in the BLA for behaviors associated with stress-related motivation and decision-

making. 

Understanding the development of decision-making and motivation in the SAM is enhanced by 

pairing aversive aggression (US) with a non-threatening stimulus (tone CS) prior to interaction, 

promoting potent cued and contextual conditioned responses (CR) similar to standard fear conditioning 

approaches that utilize foot shock as a US [52].  While the CRs elicited are similar, e.g. freezing [53], the 

ethological and ecological relevance of the US to the subject are not.  By associating naturally aversive 

US with a benign stimulus [54], the SAM allows views into development of fear learning as it relates to 

the etiology of stress-provoked neurocircuitry changes, and demonstrates a connection between stress-

induced fear expression and phenotype (Fig. 5).  While early work suggested only Stay animals exhibited 
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cued fear learning [27, 33], it is now clear both Stay and Escape respond to auditory cues with enhanced 

freezing compared to pre-tone freezing, and Stay mice also show contextual (prior to the cue) fear 

conditioning (Fig. 5B).  Additionally, BLA Orx activity modulates associative fear learning [22], with 

Orx1R, but not Orx2R, inhibition reducing both contextual and cued conditioned fear responses in Stay 

animals (Figs. 5H, K).  Antagonizing Orx1R reduces fear/panic-induced freezing [7, 55, 56], with Orx2R 

antagonism appearing to eliminate all fear learning in Escape mice; and our results demonstrate a 

phenotype-dependent effect (Figs. 5D, H).  Stimulation of intra-BLA Orx1R and Orx2R receptors using 

OrxA in Stay mice produces no reduction in contextual or cued fear conditioning (Fig. 5I), suggesting that 

the inhibition of both types of learned fear responses result specifically from Orx1R inhibition in Stay 

mice.  To clarify the roles of Orx1R and Orx2R, we administered OrxA while concurrently inhibiting 

Orx2R (MK1064), leaving Orx1R stimulated, and again there was no statistically significant reduction in 

either type of fear conditioning response (Fig. 5J).  Interestingly, knockdown of Orx1R did not affect the 

fear freezing profile (Fig. S7).  As knockdown occurred before the introduction of social stress, activity 

levels of Orx1R after SAM exposure allowed for fear learning (higher freezing after CS), but did not 

diminish freezing as observed with acute antagonism after stress and phenotype development (Fig. 5H).   

Molecular gene expression during SAM fear conditioning and phenotype development indicated 

potential shifts in receptor-linked intracellular signaling cascades (Fig. 6).  Acute inhibition of intra-BLA 

Orx1R lowered HCRTR1 expression in Escape mice while enhancing HCRTR2 in Stay animals (Figs. 6A, 

B).  Antagonism of Orx2R in BLA did the opposite, reducing HCRTR1 only in Stay mice, and reducing 

HCRTR2 in both phenotypes (Figs. 6A, B).  Mice exhibiting escape and reduced fear freezing, expressed 

lower PLCB1 compared to the Stay phenotype; an effect unaltered by SB-674042 treatment, but reversed 

by Orx2R antagonism (Fig. 6C).  However, intra-BLA Orx1R antagonism increased MAPK3 and BDNF 

expression in Stay animals only, with Orx2R inhibition having no effect on expression of MAPK3, and 

enhancing BDNF, but only in Escape mice, while reducing BDNF in Stay mice (Figs. 6D-G).  These 

results suggest social stress disrupts gene expression, and potentially alters BLA signaling pathways 

depending on an individual’s stress state. Therefore, pharmacological interventions (like acute Orx1R 
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antagonism) may functionally amend behavior through signaling adaptations that are phenotype 

dependent. 

Fear conditioning responses appear to be related to specific transcriptional reorganization taking 

place during/after intra-BLA Orx1R inhibition (Fig. 7).   In treated animals, negative regressions exist 

between cued fear freezing behavior and HCRTR2 as well as MAPK3 [57] transcriptional changes (Figs. 

7B, F).  Without treatment (vehicle), cued freezing was positively linked to PLCB1 gene expression (Fig. 

7C), an effect not observed with Orx1R antagonism (Fig. 7D).  These associations provide evidence for 

potential mechanistic remodeling (Fig. 9) in the BLA during periods of stress that is tied to phenotype 

formation and involves Orx receptor activity.  This balancing act between Orx1R and Orx2R creates an 

influence over BLA microcircuits, which further defines downstream signaling dynamics, in a way that 

can modify stress-induced behavior [2].  Since changes in HCRTR2 expression after intra-BLA Orx1R 

inhibition are positively associated with MAPK3 but not BDNF transcription levels (Figs. 8A, B), it 

appears the adjusted bias of Orx2R over Orx1R activity favors ERK1 signaling (Fig. 9).  Amplification of 

ERK1, in turn, may lead to enhanced BDNF expression (Fig. 8C) and plastic changes within BLA 

microcircuits (Fig. 9) [57, 58].  Importantly, these findings highlight a role of intra-BLA Orx1R in 

establishing pro-stress behavioral states; but exposes a receptor-driven balance that takes part in the fluid, 

not static, appearance of phenotype-specific behavior. 

Conclusions  

Modulation of BLA stress-regulatory pathways via Orx1 receptors found predominantly on 

glutamatergic pyramidal neurons modifies gene expression and behavior.  Modulation of pro-stress BLA 

microcircuits via Orx1R inhibition reduces stress-induced behavior.  In the process, Orx1R BLA 

inhibition modifies gene expression of HCRTR2 which impedes pro-stress responses.  Concurrently, 

transcription levels for downstream molecular signaling systems associated with Orx receptor signaling 

are also tilted toward increased ERK1 (MAPK3), rather than PLCβ1 (PLCB1) signaling pathways, 

potentially altering behavior.  
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Figure 1.  The Stress Alternatives Model (SAM) is used to assess the development of stress-induced 

phenotypes.  (A)  The SAM is a 4-day behavioral paradigm in which (I) a test mouse is placed into an 

opaque cylinder, (II) presented a tone, (III) exposed to social aggression, and commits to a phenotype: 

(IV) Escape or (V) Stay.  (B)  The behavioral timelines for (I) pharmacology and (II) genetic knockdown 

experiments (mice are the same age at testing) include surgeries targeting the BLA, SAM exposure (Days 

1-4), and the testing of contextual and cued fear responses (Day 5). 
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Figure 2.  In the untreated BLA, Orx1R are expressed predominantly in glutamatergic neurons and are 

rarely co-expressed with Orx2R.  (A) Imaged sections containing BLA cells (LA = lateral amygdala) 

stained with probes targeting mRNA of (B) HCRTR1 (red), (C) CamKIIα (green), and (D) Calb 

(Magenta) revealed when (E) merged (with DAPI) that (F) Orx1R+ cells mostly co-express the 

glutamatergic cell marker, CamKIIα (N = 4, F2,9 = 54.4, p < 0.001; CamKIIα+ vs Calb+: t6 = 10.4, p < 

0.001; CamKIIα+ vs Other: t6 = 5.2, p < 0.001; Calb+ vs Other: t6 = 5.2, p < 0.001; bars are statistically 

different from one another as illustrated with unique letters, e.g. A is significantly different from B and 

C; p < 0.001).  (G) Expression of HCRTR1 (red) GAD67 (GAD1) mRNA (yellow) infrequently overlap 

with (H) most HCRTR1+ cells being absent of the GABAergic marker (N = 5, t8 = 29.5, *p < 0.001).  (I) 

While a subset of BLA GABAergic neurons produce the calcium-binding protein parvalbumin (Pvalb+), 
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(J) HCRTR1+ (red) cells are mostly absent of Pvalb expression (light blue) with less than 10% being both 

HCRTR1+ and Pvalb+ (N = 4, t6 = 23.1, *p < 0.001).  (K) Further, more BLA glutamatergic (CamKIIα+) 

neurons (compared to GABAergic → GAD1+) also express HCRTR1 (N = 9, t7 = 3.2, *p ≤ 0.015).  (L) 

Images of BLA cells with fluorescent markers labeling (M) HCRTR1 mRNA (red) and HCRTR2 mRNA 

(green) demonstrate (N) most BLA cells express neither HCRTR1 nor HCRTR2 (N = 4, F2,9 = 42.1, p < 

0.001; HCRTR1+ vs Other, t6 = 7.5, p < 0.001; HCRTR2+ vs Other, t6 = 8.4, p < 0.001; bars are 

statistically different from one another as illustrated with unique letters, e.g. A is significantly different 

from B).  (O) Most HCRTR1+ cells in the BLA do not express HCRTR2 (N = 4, t6 = 10.1, *p < 0.001), as 

depicted in (P) showing Orx1R on glutamatergic neurons. 
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Figure 3.  Motivation toward Escape behavior is impacted through inhibition of intra-BLA Orx1R.  (A)  

Escape mice, as compared to those expressing the Stay phenotype, spend a greater % of time 

investigating the SAM escape routes (N = 19, Phenotype Effect: F1,51 = 16.4, p < 0.001; Escape vs Stay: 

Day 1, t17 = 2.6, *p ≤ 0.018; Day 2, t17 = 2.5, *p ≤ 0.017; Day 4, t17 = 4.2, *p < 0.001).  (B)  While Escape 

mice, in general, explore the escape routes more often, (C) inhibition of intra-BLA Orx1R promotes even 

more attention toward the escape tunnels (N = 34, Treatment Effect: F1,30 = 7.7, p ≤ 0.019; Day 3 Vehicle 

Escape vs Orx1R Ant. Escape, t10 = 2.5, +p ≤ 0.018).  (D)  Antagonism of intra-BLA Orx1R only slightly 

stimulates escape route exploration in Stay mice (Day 4 Vehicle x Orx1R Ant., t20 = 2.1, +p ≤ 0.05).  (E) 

Knockdown of intra-BLA Orx1R temporarily and minimally increases attention toward escape on Day 3 

of the SAM (N = 22, Day 3 Scramble vs AAV-Orx1R-shRNA, t20 = 2.4, +p ≤ 0.024).  (F) Illustration 
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demonstrating inhibition of intra-BLA Orx1R on predominantly on glutamatergic neurons promotes 

attention toward the escape route in the SAM arena.  In Pharmacological Experiments, drug treatment is 

administered on Day 3 as designated by the bold square.   
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Figure 4.  Intra-BLA Orx1R mediates stress-related behavioral phenotype development.  (A)  Infusion of 

an Orx1R antagonist (SB-674042) into the BLA promotes Escape behavior in Stay mice (N = 22, Day 4, 

χ2: F1 = 9.3, *p < 0.001).  (B)  Knockdown of Orx1R (AAV-Orx1R-shRNA) upsets normal Day 2 

phenotype commitment behavior (as observed with AAV-Scramble-shRNA controls), inducing more 

Escape behavior on Days 3 and 4 (N = 22).  (C)  Escape animals learn to efficiently utilize the escape 

route to avoid social aggression over the course of 4 days while Stay mice submit to the aggressor (N = 

19, Phenotype Effect: F1,45 = 175.3, p < 0.001; Time Effect: F3,45 = 26.1, p < 0.001; Interaction Effect: 

F3,45 = 26.1, p < 0.001; Escape vs Stay: Day 2, t17 = 5.8, *p < 0.001; Day 3, t17 = 10.6, *p < 0.001; Day 4, 

t17 = 11.9, *p < 0.001; Within Escape phenotype comparison, F3,18 = 17.8, p < 0.001, Day 1 vs Day 3, t6 = 

5.7, p < 0.001; Day 1 vs Day 4, t6 = 6.5, p < 0.001; Day 2 vs Day 3, t6 = 2.9, p ≤ 0.009; Day 2 vs Day 4, t6 

= 3.7, p ≤ 0.002; p < 0.05 for Days marked with unique lettering, e.g. A is different from B and C).  (D)  

Antagonizing intra-BLA Orx1R promotes aggressor avoidance in Stay mice (N = 34, Time Effect: F3,54 = 

2.9, p ≤ 0.043; Interaction Effect: F3,54 = 2.9, p ≤ 0.043; Day 4 Vehicle Stay vs Orx1R Ant. Stay, t20 = 3.4, 

+p < 0.001), but has no effect on those animals exhibiting the Escape phenotype.  (E)  Knockdown of 

intra-BLA Orx1R does not impact the overall latency of aggressor avoidance (N = 22).  Overall, (F) 

inhibition of Orx1R in the BLA appears to prompt Escape behavior.  In Pharmacological Experiments, 

drug treatment is administered on Day 3 as designated by the bold square.  
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Figure 5.  (A) Antagonism of intra-BLA Orx1R reduces conditioned fear responses in Stay animals while 

Orx2R inhibition diminishes fear freezing in Escape mice (N = 71).  (B)  Although both Escape and Stay 

phenotypes learn to associate a cue (tone, CS+) with social aggression (Phenotype Effect: F1,17 = 7.6, p ≤ 

0.013; CS Effect: F1,17 = 47.7, p < 0.001; Escape CS- vs CS+, t6 = 3.9, #p ≤ 0.008; Stay CS- vs CS+, t11 = 

5.7, #p < 0.001), Stay mice exhibit heightened freezing behavior to both context (CS-; t17 = 2.8, *p ≤ 

0.011) and tone (CS+; t17 = 2.3, *p ≤ 0.033).  Baseline measurements of freezing are represented by a 

dotted line.  Treatments of (D) Orx1R Ant. (CS Effect: F1,10 = 24.7, p < 0.001; Orx1R Ant. Escape CS- vs 

CS+, t4 = 3.4, #p ≤ 0.026) or (E) OrxA (CS Effect: F1,9 = 26.8, p < 0.001; OrxA Escape CS- vs CS+, t3 = 3.5, 

#p ≤ 0.039) do not alter conditioned fear behavior in Escape mice.  However, (F) Escape animals treated 

with a drug cocktail (OrxA + MK-1064) designed to stimulate Orx1R (Orx1R Stim.; CS- vs CS+, t5 = 1.8, p 

≥ 0.140) or (G) an Orx2R antagonist (CS Effect: F1,11 = 11.6, #p ≤ 0.006; Interaction Effect: F1,11 = 7.5, p 

≤ 0.019; CS- vs CS+, t5 = 0.7, p ≥ 0.533; Vehicle vs Orx2R Ant., t11 = 2.7, +p ≤ 0.019) do not display 
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conditioned fear responses.  (H)  In Stay animals, antagonism of Orx1R (Treatment Effect: F1,20 = 8.8, p ≤ 

0.008) reduces contextual (CS-; Vehicle Stay vs Orx1R Ant. Stay, t20 = 2.6, +p ≤ 0.017) and cued (CS+; 

Vehicle Stay vs Orx1R Ant. Stay, t20 = 2.7, +p < 0.001) fear freezing but does not prevent the ability to 

associate the tone with social stress (CS Effect: F1,20 = 29.6, p < 0.001; Orx1R Ant. Stay CS- vs CS+, t9 = 

3.8, #p < 0.001).  Stay mice treated with (I) OrxA (CS- vs CS+, t4 = 4.2, #p ≤ 0.014), (J) Orx1R Stim. (CS- 

vs CS+, t8 = 4.0, #p ≤ 0.004), or (K) Orx2R Ant. (CS Effect: F1,15 = 22.6, #p < 0.001) do not differ from 

vehicle controls in terms of fear freezing profile.  (C)  Mice exposed to social stress produce elevated 

levels of stress hormone (N = 39, F2,12 = 24.3, p < 0.001; Cage Control vs Vehicle Escape, t5 = 3.1, ^p ≤ 

0.028; Cage Control vs Vehicle Stay, t9 = 9.9, ^p < 0.001); however, Stay animals have the highest 

concentration (Vehicle Escape vs Stay, t10 = 2.6, _p ≤ 0.025).  Inhibition of intra-BLA Orx1R reduces 

corticosterone levels in Stay mice (Vehicle Stay vs Orx1R Ant. Stay, t10 = 5.1, +p < 0.001; Orx1R Ant. 

Stay vs OrxA Stay, t6 = 3.3, !p ≤ 0.002). 
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Figure 6.  Transcriptional changes in the BLA after Orx1R or Orx2R antagonism shifts signaling profile.  

(A)  Antagonism of Orx1R in the BLA reduces HCRTR1 expression (N = 45, Treatment Effect: F2,27 = 3.5, 

p ≤ 0.043), but only significantly so in animals expressing the Escape phenotype (Cage Control vs Orx1R 

Ant. Escape, t11 = 2.2, ^p ≤ 0.050); whereas infusion of an Orx2R antagonist in the BLA reduces HCRTR1 

expression in Stay mice compared to vehicle animals of the same phenotype (t10 = 2.2, +p ≤ 0.044).  (B) 

While Escape mice (Treatment Effect: F2,27 = 9.8, p < 0.001; Interaction Effect: F2,27 = 8.6, p < 0.001) 

treated with vehicle express higher HCRTR2 levels compared to Stay mice (t9 = 3.0; *p ≤ 0.016) and 

Orx1R- or Orx2R-antagonist-treated Escape animals (Vehicle vs Orx1R Ant., t7 = 2.6, +p ≤ 0.035; Vehicle 

vs Orx2R Ant.: t7 = 4.5, +p < 0.001; Orx1R Ant. vs Orx2R Ant.: t8 = 3.5, !p < 0.001), Orx1R antagonism 

results in elevated levels (Escape vs Stay, t10 = 2.2, *p ≤ 0.05; Vehicle vs Orx1R Ant., t12 = 2.4, +p ≤ 0.034) 

while Orx2R inhibition leads to a reduction (Vehicle vs Orx2R Ant.: t10 = 3.5, +p ≤ 0.002; Orx1R Ant. vs 

Orx2R Ant.: t10 = 4.7, !p < 0.001) of HCRTR2 in Stay mice.  (C)  A reduction of PLCB1 (Phenotype 

Effect: F1,27 = 19.1, p < 0.001; Interaction Effect: F2,27 = 4.3, p ≤ 0.023) that is found in Escape mice under 

control conditions (Cage control vs Vehicle Escape, t10 = 5.1, ^p < 0.001; Escape vs Stay, t9 = 5.0, *p < 

0.001) and Orx1R antagonism (Escape vs Stay, t10 = 3.1, *p ≤ 0.012; Cage Control vs Orx1R Ant., t11 = 3.3, 

^p ≤ 0.007) is eliminated with intra-BLA Orx2R antagonism (Vehicle vs Orx2R Ant.: t7 = 2.8, +p ≤ 0.017).  

(D) While Stay mice treated with an Orx1R antagonist express higher levels of MAPK3 (Phenotype Effect: 

F1,27 = 11.3, p ≤ 0.002; Treatment Effect: F2,27 = 4.3, p ≤ 0.023; Interaction Effect: F2,27 = 5.1, p ≤ 0.013) in 



   

104 
 

the BLA compared to Vehicle controls (t12 = 3.1, +p < 0.001), administration of an Orx2R antagonist does 

not induce the same transcriptional response (Orx1R Ant. vs Orx2R Ant.: t10 = 2.7, !p ≤ 0.022).  (E) 

Expression of BDNF in the BLA after treatment (Interaction Effect: F2,27 = 10.6, p < 0.001) with an Orx2R 

antagonist is enhanced in Escape mice (Orx2R Ant. Escape vs Stay: t8 = 2.9, *p ≤ 0.019; Vehicle vs Orx2R 

Ant.: t7 = 2.7, +p ≤ 0.013; Orx1R Ant. vs Orx2R Ant.: t8 = 2.5, !p ≤ 0.017) and reduced in Stay animals 

(Vehicle vs Orx2R Ant.: t10 = 2.2, +p ≤ 0.05; Orx1R Ant. vs Orx2R Ant.: t10 = 3.9, !p < 0.001); a 

phenotypically opposite effect is observed after Orx1R antagonism (Escape vs Stay, t10 = 2.8, *p ≤ 0.018; 

Orx1R Ant. Stay vs Vehicle Stay, t12 = 2.2, +p ≤ 0.049).  Transcriptional changes after (F) intra-BLA 

Orx1R antagonism and (G) Orx2R inhibition are differentially regulated in a phenotype-dependent fashion.  
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Figure 7.  Conditioned fear freezing response is related to gene expression changes resulting from intra-

BLA Orx1R antagonism.  In both (A) vehicle- (N = 11, F1,9 = 16.1, R2 = 0.6419, p ≤ 0.003) and (B) Orx1R 

antagonist-treated animals (N = 12, F1,10 = 7.2, R2 = 0.4197, p ≤ 0.023) a negative correlation exists 

between HCRTR2 expression and cued fear freezing.  (C) With vehicle treatment, relative PLCB1 

expression is positively associated with cued fear freezing (F1,9 = 6.4, R2 = 0.417, p ≤ 0.0319).  (D)  This 

relationship is not observed in mice that were administered an Orx1R antagonist (F1,10 = 0.7, R2 = 0.0625, 

p ≥ 0.4333).  (E) While there is not a significant association between MAPK3 expression and cued fear 

freezing after vehicle treatment (F1,9 = 3.8, R2 = 0.2973, p ≥ 0.0828), (F) a significant negative 

correlation is observed after Orx1R antagonism (F1,10 = 6.3, R2 = 0.3877, p ≤ 0.0306). 
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Figure 8.  The BLA transcriptional changes that result from Orx1R antagonism form relationships that hint 

at molecular timelines and signaling dynamics.  (A)  While relative gene expression of MAPK3 is positively 

correlated to the transcriptional changes of HCRTR2 (N = 12, F1,10 = 8.3, R2 = 0.4532 p ≤ 0.0164), (B) there 

is no association between BDNF and HCRTR2 (F1,10 = 0.3, R2 = 0.0313, p ≥ 0.5822).  However, (C) a 

positive relationship emerges when comparing BDNF expression to that of MAPK3 (F1,10 = 8.2, R2 = 

0.4517, p ≤ 0.0167). 
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Figure 9.  Predicted circuit demonstrates the influence of intra-BLA Orx1R antagonism, during 

endogenous stimulation through OrxA and OrxB release, on microcircuit dynamics in a phenotype-

dependent fashion.  (A) Escape mice treated with an Orx1R Antagonist (SB-674042) undergo molecular 

shifts, including reduced HCRTR1 and PLCB1 transcription, leading to diminished orexin activity on 

glutamatergic neurons in the BLA. Escape mice also have decreased HCRTR2 expression, potentially via 

(un-diagrammed) negative circuit feedback, even while Orx2R are stimulated.  (B) While OrxB and OrxA 

maintain stimulation of some GABAergic neurons through Orx2R, antagonism of some pyramidal 

neurons via intra-BLA Orx1R inhibition differentially modifies molecular mechanisms in Stay mice 

through enhancement of Orx2R (HCRTR2), ERK1 (MAPK3), and BDNF transcription and increased 

orexin activity in Orx2R-containing neurons (likely GABAergic cells). 
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COMPLETE METHODS & MATERIALS  

Animals   

Male C57BL/6NHsd mice (6-8 weeks old for pharmacology studies and 4-6 weeks old for 

shRNA studies) weighing ~22-26 g (Envigo, Indianapolis, IN; N = 108 [pharmacology 

experiment] & N = 32 [knockdown experiment]) were housed in groups (4-5 mice per cage) for 

a 5-day acclimatization period.  For pharmacological studies (N = 92), bilateral stereotaxic 

surgeries were performed to implant guide cannula (26 ga cut to 4.0 mm) directed at the 

basolateral amygdala (intra-BLA).  In orexin 1 receptor knockdown studies (N = 27), the 

insertion of an adeno-associated virus (AAV-U6-Orx1R-shRNA or AAV-scramble-shRNA) was 

performed stereotaxically by direct injection/perfusion.  Following surgery, all animals were 

caged individually for the remainder of the experiments, including cage controls (N = 16 for 

pharmacology experiment; N = 5 for knockdown study).  A separate cohort of retired male 

breeder Hsd:ICR (CD1) mice weighing ~50 g (Envigo) were housed in a similar fashion.  These 

animals were used to provide aggression during social interaction in the Stress Alternatives 

Model (SAM), as they act aggressively towards C57BL/6N mice [59].  All mice were 

maintained on a 12:12 light-dark cycle (lights off at 6 pm) in rooms held at 22°C (35% Relative 

Humidity) and given ad libitum food and water.  All behavioral experiments were performed 

during the animals’ active phase (scotophase).  Mice (C57BL/6N) were handled daily 48 hours 

after stereotaxic surgery for 7 days (pharmacological studies) or for the last 7 days of a 30-day 

viral incubation period (shRNA studies), followed by social engagement/aggression and 

behavioral testing for 5 days.  Surgeries and behavioral experiments were all performed in a 

manner that minimized suffering and the number of animals used was in accordance with the 

National Institutes of Health’s Guide for the Care and Use of Laboratory Animals (NIH 
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Publications No. 80-23) and approved by the Institutional Animal Care and Use Committee of 

the University of South Dakota. 

Stereotaxic Surgery  

During stereotaxic surgery, mice were anesthetized using isoflurane (2% at 1.0 L/min flow rate) 

to allow for bilateral intra-BLA guide cannula (PlasticsOne, Roanoke, VA; 26 ga cut to 4.0 mm) 

implantation or AAV-U6-Orx1R-shRNA administration, then given a recovery period (7 days 

for pharmacological experiments; 30 days for AAV-U6-Orx1R-shRNA experiments which 

included time for virus incubation) before behavioral testing.  Bilateral intra-BLA cannula 

placement and AAV-shRNA infusion were performed using the following stereotaxic 

coordinates: -1.35 mm AP, ± 3.30 ML, and -4.90 mm DV.  During surgery, mice were kept on a 

warming pad to maintain core body temperature.  After surgery, all animals were placed into 

home cages resting on a warming pad for post-surgery recovery and monitoring.  Mice were 

injected subcutaneously with the analgesic ketorolac (5 mg/kg) immediately following surgery 

and 24 hours after receiving the first injection for a total of 48 hours post-surgery pain relief.  

Following behavioral experiments, brain tissue was dissected, fixed or frozen and later sectioned 

to distinguish correct injection placement directed at the BLA (Fig. S1A).  Only animals in 

which the BLA was successfully targeted bilaterally (Fig. S1A; 71 mice out of 92 attempts for 

pharmacology experiment & 22 mice out of 27 attempts for shRNA study) were used for data 

analysis. 

Drugs & Drug Infusions 

An Orx1R antagonist (SB-674042, IC50 = 3.76 nM for Orx1R and 531 nM for Orx2R [60]; 

MedChemExpress, Monmouth Junction, NJ), Orexin A (OrxA; Tocris, Minneapolis, MN), OrxA 

plus an Orx2R antagonist for biased activation of Orx1R, an Orx2R antagonist (MK-1064, IC50 = 
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18 nM for Orx2R and 292 nM for Orx1R (61); MedChemExpress) , or vehicle (artificial 

cerebrospinal fluid [aCSF] + DMSO) were bilaterally administered into the BLA (300 nL/side) 

on Day 3 (Fig. 1A), an hour before social interaction in the SAM.  Dilutions for both treatments 

were prepared using a 3:1 ratio of aCSF to dimethylsulfoxide (DMSO).  The dose of intra-BLA 

Orx1R antagonist (SB-674042; 0.3 nmol/0.3 μL) was adjusted from intracerebroventricular (icv) 

Orx receptor-targeting drugs with similar affinities, and preliminary results [28, 62].  The dose 

for the Orx2R antagonist (MK-1064; 0.1 nmol/0.3 μL) was 3x lower than previously used 

concentrations that produced anxiogenic effects when administered to the whole brain (icv) [28].  

Similarly, the intra-BLA doses chosen for OrxA (0.1 nmol/0.3 μL) and the Orx1R activating 

cocktail (OrxA+MK-1064; 0.1 nmol/0.3 μL) were selected and adjusted based on icv 

administrations that produced anxious behaviors in mice [62].  After mixing, aCSF (8.59 g 

NaCl, 0.201 g KCl, 0.279 g, CaCl2, 0.16 g MgCl2, 0.124 g NaH2PO4, 0.199 g Na2HPO4/L H2O) 

was brought to a physiological pH (7.33) using NaOH, and then was filtered, degassed, and 

stored at 4°C.  Drugs were administered by placing cannula (33 ga cut to 4.9 mm, extending 0.9 

mm below each guide cannula) into the surgically implanted guide cannula, and injecting at a 

rate of ~0.5 μL/min using a 1.0 µL digital syringe (Model 7101 Zero Dead Volume, Knurled 

Hub 2.75”, 22GA Needle; Hamilton Company, Reno, NV).  After injections, the injector and 

syringe were left in place for 90 seconds.  Home cage mobility was measured an hour later to 

assess locomotion changes that might be associated with drug interactions. 

Short-hairpin Knockdown of Orx1R (AAV-U6-Orx1R-shRNA) 

The genetic reduction of Orx1R in adult mice was accomplished by intra-BLA injection of short-

hairpin RNA packaged into an adeno-associated virus (serotype 2) vector.  Preparations of 

Orx1R knockdown virus (AAV-U6-Orx1R-shRNA, sense target sequence: 
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CCAAAGGTCCCCACAGACATATTC) and scrambled control virus (AAV-scramble-shRNA, 

scrambled control sequence: CGGAATTTAGAAACCCGGCTCCAC) were performed at the 

Yale School of Medicine Virus Core (New Haven, CT).  The oligonucleotides had SapI and 

XbaI overhangs to allow for ligation downstream of the mU6pro region of a modified pAAV-

MCS vector, pAAV-shRNA.  This vector was designed to co-express hairpin RNAs, under the 

control of a mouse U6 promoter and an SV40 polyadenylation site, as well as EGFP controlled 

by an independent CMV promoter and hGH polyadenylation sequence [25].  During stereotaxic 

surgery, mice were infused bilaterally using a 1.0 µL syringe (Neuros Model 7001 KH Syringe, 

point style 3, 32GA; Hamilton Company, Reno, NV) with 400 nL of virus at a rate of ~0.25 

μL/min.  After administration, the syringe was left in place for 5 min before being removed.  

Dental cement was used to seal the holes made in the skull before the incision was sutured 

together.  Knockdown was validated using in situ hybridization (RNAscope) and was analyzed 

using ImageJ [63].  We observed a 59.4% knockdown (F2,13 = 35.4, p < 0.001) of Orx1R (Fig. 

S1D-G).  Home cage mobility was performed after 30 days of recovery/viral incubation and 

animal weights were taken every week to assess virus-mediated changes in mobility and body 

weight, respectively (Fig. S5, S6D).  Food weights were taken every day to assess changes in 

appetite or food-seeking behaviors that might have resulted from intra-BLA Orx1R knockdown 

(Fig. S6A-C). 

Behavioral Design   

All behavioral measures were performed during the dark cycle when the animals are active, 

under red light (~700 nm λ).  A GoPro (Hero 3 or Hero 7) video camera was used to record all 

behavioral interactions and testing for later analysis.  Animal groups for pharmacological studies 

included home cage controls (N = 16), for comparisons of food intake, corticosterone levels, and 
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mRNA levels), vehicle-treated (N = 19), SB-674042-treated (N = 15), OrxA-treated (N = 9), 

OrxA+MK-1064-treated (N = 15), and MK-1064-treated animals (N = 13).  Animal groups for 

shRNA knockdown experiments included cage controls (N = 5), AAV-U6-Orx1R-shRNA (N = 

13), and AAV-scramble-shRNA (N = 9).  All pharmacology treatment groups were subjected to 

4 days of social aggression (Days 1-4; Fig. 1B) in the SAM with intra-BLA drug injections on 

Day 3.  Virus-mediated knockdown experiments also included 4 days of aggressive social 

interaction (Days 1-4; Fig. 1B) in the SAM.  All mice, excluding cage controls, were exposed to 

a fear conditioning (FC) paradigm after being inserted into the SAM (Fig. 1A) on the first 4 days 

of behavioral testing, using a tone (2500 Hz at 75 dB) as a conditioned stimulus (CS), but before 

exposure to an aggressive CD1 mouse, the unconditioned stimulus (US+), and at the end of test 

day (Day 5 for both pharmacology and AAV-shRNA experiments; Fig. 1B) to measure freezing 

behavior as a conditioned response (CR) in the absence of a CD1 mouse (US-).  After 

undergoing the CR testing for FC, mice were anesthetized using isoflurane (5% at 1.0 min/L for 

2 min) and rapidly decapitated.  Whole brains and trunk blood plasma were collected and stored 

at -80°C until further analysis. 

Stress Alternatives Model (SAM) 

The SAM apparatus (Fig. 1A) consists of a white rectangular box (91 cm x 22 cm x 30 cm) and 

two curved opaque dividers (r = 10.25 cm) that separate the box into three parts: an oval open 

field area (length = 71 cm, width = 22 cm, height = 30 cm) with two enclosed safety areas (10 

cm x 22 cm x 30 cm) on both sides which are accessible via escape holes only the smaller 

C57BL/6N mice can fit through (Fig. 1A).  Before social interaction in the SAM begins, an 

opaque cylinder (diameter = 15 cm, width = 20 cm) is positioned in the center of the open field, 

then the CD1 mouse is placed outside the cylinder in the open arena of the SAM.  A C57BL/6N 
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mouse is put into the cylinder and subjected to a fear conditioning paradigm (see Fear 

Conditioning (FC) Paradigm section below). 

After the cylinder is lifted, C57BL/6N mice are presented with the novel (novel on first day 

only) open field arena, containing two escape holes on both ends of the arena, and subjected to 

social aggression from a novel aggressive CD1 male, for 5 min.  By the end of day 2 of the 

SAM, C57BL/6N mice will choose one of two phenotypes that they will express for the 

remaining days in the SAM (Days 3 & 4) [26-29].  Mice either utilize the escape holes which 

lead to the enclosed (safe) areas of the apparatus where they cannot be attacked by the CD1 

mouse (Escape), or they remain in the open field arena and submit to social aggression (Stay).  

Previous studies from our laboratory show that Escape mice exhibit significantly lowered 

physiological and behavioral measurements of stress when compared to Stay mice [26-29], 

despite both groups of animals receiving high levels of social aggression from CD1 mice. 

In instances where social aggression from a CD1 mouse was life threatening to a C57BL/6N 

mouse, a clear, perforated divider (15 cm wide and 20 cm high) was placed over the CD1 mouse 

to briefly interrupt the intense aggressive bouts, which include repeated bites to the head, neck, 

or underside of the test C57BL/6N mouse.  After 5 min of SAM interaction each day, both mice 

were removed from the apparatus and placed back into their home cages.  If a C57BL/6N mouse 

escaped, they were left in the enclosed area for the remainder of the 5 min, with a clear 

perforated sheet of plastic positioned in front of the escape hole in the open field to prevent the 

test mouse from going back into the SAM arena. 

SAM Behavioral Analysis   

Behavioral analysis during the SAM was measured starting when the cylinder was lifted, until 

the 5 min of interaction ended, or when a test mouse utilized the escape routes.  Mice self-



   

114 
 

selected groups after the first two days of the SAM, being considered the Stay phenotype if the 

mouse did not escape on Days 1 or 2, or Escape if the mouse utilized the escape routes on Days 1 

or 2.  Behaviors recorded included time spent attentive to the escape holes and latency to escape. 

Time spent attentive to the hole is defined as the amount of time that a mouse’s head is 

within a 3 cm radius of either of the two escape holes and includes sniffing the holes or placing 

their head or body inside the escape route.  This measurement is an indicator of stress-sensitive 

novelty exploration [28, 64, 65].  Even though the entire SAM apparatus is initially novel on Day 

1, the escape routes are distinct in that they require a different physical path for movement, and 

the enclosed area on the other side of the escape routes remains unknown unless the mouse 

utilizes them.  This measure provides a novel indicator of anxious behavior and decision-making 

that is unique to the SAM [27, 29], and tightly linked to Social Interaction/Preference (SIP) 

susceptible (for Stay) and resilient (for Escape) outcomes [28, 30].  Other studies from our lab 

show similar results for rainbow trout, suggesting an evolutionary conservation of the circuitry 

underlying these behaviors [35].  The Escape and Stay phenotypes are thought to be the result of 

decision-making as early responses are initially variable, then become stabilized with experience, 

and can be altered with learning or administration of anxiolytic or anxiogenic drugs [27-29, 33, 

35, 66]. 

Latency to escape (or time spent with social aggressor) is determined by measuring the time 

it takes an animal to utilize an escape route once the cylinder has been lifted and social 

interaction begins.  Previous experiments have shown that once an animal escapes, their latency 

to escape declines as escape becomes familiar, indicative of spatial and social learning [27, 29, 

33]. 
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Video recordings of the behavioral tests were analyzed using ANY-maze Video Tracking 

Software (Version 6.0, Stoelting Co., Wood Dale, IL).  Between each animal trial, the arena was 

cleaned thoroughly using 70 % ethanol, disinfectant wipes, and dried using clean paper towels. 

SAM Validation 

The SAM is a tool for assessing stress-related behavior that may be appropriately described as 

anxious and depressive behaviors, and as such has been progressively subjected to accepted 

validation testing, using the specific criteria for Construct, Predictive, and Face Validities [67].  

Through incorporation of social defeat elements as well as active avoidance, the SAM construct 

combines elements of fear and anxiety [68-71], social stress and depression [72, 73], but also 

alleviation of these stress-related outcomes through Escape.  This approach is both ecologically 

and ethologically relevant [26, 74, 75] and maintains similarities to relevant human disorders 

[76, 77], suggesting a degree of Construct Validity.  Predictive validation of the SAM has been 

demonstrated through the induction of behavioral changes, including phenotype reversal, using 

known anxiolytic, antidepressive, or anxiogenic drugs (NPS, antalarmin, and yohimbine) [27, 

29, 33].  The SAM has also been used in conjunction with, and produces comparable results to, 

the Social Interaction/Preference (SIP) Test [28, 66].  This additional test (SIP) has been 

validated as translationally and predictively reliable in demonstrating the effectiveness of 

pharmacotherapies used to treat anxiety (benzodiazepines) and depression (SSRIs) [7, 78-81].  

Furthermore, elevated glucocorticoid levels establish an enhanced physiological stress response 

in animals encountering social aggression in the SAM, with the Stay phenotype expressing the 

greatest increase [26-29, 33].  With respect to Face Validity, SAM exposure results in behavioral 

outcomes, largely examples behavioral inhibition (FC freezing) and social avoidance (Escape, 

Escape Latency, and SIP test), that reflect those seen in human anxiety and depression.  In 13 



   

116 
 

published papers on the Stress Alternatives Model, covering 43 experiments and approximately 

1,032 animals sampled, the relationship between the number of Escape and Stay animals is very 

close to 50% for each phenotype. In most of these experiments, the SAM trials have been 

limited to 4 days, with fear conditioning tested on Day 5, and within these parameters, 

approximately 98% of phenotypes are stable after Day 2.  In experiments to test the stability of 

these phenotypes, based on changes in the physical or social environment (prior exposure to the 

escape route, exercise, testing in the absence of a CD1 aggressor, or social stress prior to SAM) 

as well as the use of anxiolytic or anxiogenic drugs administered on Day 3, modification of 

phenotype expression can only be affected through manipulations that alter the stressful 

experience. 

Fear Conditioning (FC) Paradigm   

Training and testing for FC took place in an opaque cylinder where C57BL/6N mice were placed 

prior to initiation of social aggression (unconditioned stimulus, US) in the open field of the SAM 

(4 days), and on test day (Day 5) in the absence of the US (US-).  Freezing was measured in 

response to a conditioned stimulus (CS) tone, which indicated that an aggressive conspecific 

(US+) would appear shortly (after the divider was pulled).  Before social interaction in the SAM 

on days 1-4, an opaque cylinder (diameter = 15 cm, width = 20 cm) was placed in center of the 

open field, and a novel CD1 mouse was placed in the arena outside of the cylinder.  A 

C57BL/6N mouse was then introduced into the opaque cylinder to undergo a FC paradigm that 

consisted sequentially of a 30 sec acclimation period, the presentation of a 5 sec tone (2500 Hz at 

75 dB, CS+), a 10 sec trace period, and the removal of the cylinder, exposing the test mouse to 

aggressive interactions from a CD1 mouse (US).  On Day 5, the CS was presented without the 

US (US-) and freezing to the context and tone alone (CR) were measured.   
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FC Behavioral Analysis   

Freezing behavior analysis was performed using ANY-maze (Ver. 6.0) software.  Measurements 

of freezing time were separated into time prior to the tone (30 sec acclimation period), which 

provides an indication of contextual conditioning (CS-), and after the tone (15 sec total: 5 sec 

tone and 10 sec trace), reflecting conditioning in response to the tone (CS+).  Freezing behavior 

is often used to determine fear conditioning (28, 82), and was defined as bouts of immobility 

excluding normal breathing behavior, for one second or longer. 

RNAscope  

Coronal slices of fresh frozen brains (N = 16; 16 µm) from AP -1.50 to -1.80 relative to bregma 

and incubated in cold (4°C) 10% formalin for 20 min before being washed (2x for 1 min) in 1x 

phosphate buffer solution (PBS).  The sections then were dehydrated using sequential washes in 

ethanol (50%, 70%, and 100%; 5 min each).  A final ethanol (100%) incubation period was 

performed overnight at -20°C.  The next day, sections were processed.  In short, proteins were 

digested using a protease treatment followed by rinses with distilled water.  Sections were then 

bathed in RNAscope (Advanced Cell Diagnostics, Newark, CA) probes (HCRTR1, Cat. No. 

466631; HCRTR2, Cat. No. 460881; CALB1, Cat No. 428431; CAMKIIα, Cat. No. 445231; 

GAD1, Cat. No. 400951; PVALB, Cat. No. 421939) and allowed to incubate for 1 h in a 

hybridization oven (ACD HybEZ II oven, Cat. No. 321711) set to 40°C.  Subsequent washes 

(RNAscope Wash Buffer Reagents [310091]: Wash Buffer 50x diluted to 1x) and incubation 

periods with amplification buffers (RNAscope Fluorescent Multiplex Detection Reagents 

[320851]: AMP1 [320852], AMP2 [320853], AMP3 [320854], AMP4 ALT A [320855], AMP4 

ALT B [320856], AMP4 ALT C [320857]) linked fluorophores and enhanced signaling of 

targeted mRNA molecules.  Tissue sections on microscope slides (Fisher Scientific, Pittsburgh, 
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PA; Superfrost Plus, Cat. No. 12-550-15) were stained with DAPI (20 sec) before adding a drop 

of mounting medium (Fisher Scientific; Prolong Gold Antifade Mountant, Cat. No. P10144) and 

a coverslip. 

Images were visualized and captured using a fluorescence microscope (Nikon NIE with a 

Photometrics CoolSNAP MYO camera or Leica DM RA2 with Leica DFC3000 G camera).  

Regions of interest were identified from images and analyzed for fluorescence using ImageJ 

software.  Colocalization of mRNA for cell markers and/or receptors were recognized as overlap 

of fluorescence signal or as distinct puncta overlaying DAPI signaling, suggesting mRNA 

expression in a single cell. 

Stress Hormone (Corticosterone) Analysis  

After behavioral testing on day 5 (immediately following FC test), trunk blood was collected and 

centrifuged for 10 min in heparinized tubes to separate blood plasma.  The plasma was then 

frozen immediately on dry ice and later transferred to a -80 °C freezer for storage until analysis 

could be completed.  Concentrations of plasma corticosterone [B] were quantified in duplicate in 

a single run using corticosterone enzyme linked immunosorbent assay kit (Enzo Life Sciences, 

Farmingdale, NY). 

qRT-PCR   

After behavioral testing on Day 5, mice brains were dissected and immediately frozen on dry ice.  

Brains were stored in a freezer set to -80°C until the tissue was processed.  Fresh frozen brains 

were sectioned (Leica Biosystems, Buffalo Grove, IL; Leica CM1850 Clinical Cryostat, Cat. No. 

047131148) to 200 μm, the BLA (AP -0.95 mm to -2.45 mm relative to Bregma) was 

microdissected on a cold plate using 25 GA punches (Stoelting Co., Wood Dale, IL; Brain Punch 
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Set, 0.25 to 1.25 mm; Cat. No. 57401) and immediately placed into 500 μL of Trizol reagent 

(Thermo Fisher Scientific, Waltham, MA; Invitrogen TRIzol Reagent, Cat. No. 15-596-018).   

Extraction of RNA took place using the Trizol method as previously described [83], but with 

some adjustments.  In brief, BLA tissue was incubated in 500 μL Trizol at room temperature for 

5 min before the phase separation step which included the addition of 100 μL of 1-bromo-3-

chloropropane and centrifugation (4°C, 7,500xg, 15 min).  The top aqueous layer was removed 

and used in the RNA precipitation step by mixing it with 250 μL of isopropanol and 1 μL glycol 

blue (Thermo Fisher Scientific, Waltham, MA; GlycoBlue Coprecipitant, Cat. No. AM9516) for 

pellet formation and identification.  The RNA pellet was formed at the bottom of the tube by 

centrifugation (4°C, 12,000xg, 20 min).  The fluid around the pellet was removed before it was 

washed with 75% ethanol and centrifuged at 16,000xg (4°C, 5 min).  Most of the ethanol was 

removed while the remaining ethanol was evaporated by placing the sample in a hot plate oven 

set to 65°C for 20-40 min.  The RNA pellet was then concentrated with 25 μL RNase-free water 

and quantified using a nanodrop (Implen Inc., Westlake Village, CA; Nanophotometer N50 

Spectrometer).  Aliquots of RNA samples diluted to 20 ng/μL were created for PCR analysis 

before the samples were stored at -80°C. 

Assays for the PCR analyses performed in this study were purchased from Thermo Fisher 

Scientific (Waltham, MA) and include HCRTR1 (4351370, Mm01185776_m1), HCRTR2 

(4351370, Mm01179312_m1), PLCB1 (4351370, Mm01329382_m1), MAPK1 (4448892, 

Mm00442479_m1), MAPK3 (4351370, Mm01278702_gH), BDNF (4351370, 

Mm04230607_s1), and GAPDH (4453320, Mm99999915_g1) as the housekeeping gene.  One-

step RT-qPCR kits (Cat. No. 4392653) were used to build a master mix for each mRNA target 

and was combined with RNA samples in individual PCR tubes (MIDSCI, Valley Park, MO; 
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Pryme Ergonomic PCR Tubes; Cat. No. B77201).  Tubes were loaded into Applied Biosystems 

QuantStudio 3 No. B77201 (Thermo Fisher Scientific, Waltham, MA; Cat. No. A28131) and, per 

vendor recommendations for Taqman Assays, were subject to 40 cycles at the following thermal 

cycling conditions: reverse transcription (48°C for 15 min), activation of DNA polymerase (95°C 

for 10 min), denaturation (95°C for 15 sec), and annealing/extension (60°C for 1 min).   

Controls lacking either enzyme or template were used to identify possible contamination 

during PCR runs.  Samples from 45 individuals (12 cage control mice, 11 vehicle-treated mice [4 

Escape, 7 Stay], 12 Orx1R Antagonist-treated mice [5 Escape, 7 Stay], and 10 Orx2R Antagonist-

treated mice [5 Escape, 5 Stay) were used for PCR analysis.  Each sample was run in duplicate, 

where the average Ct value was subtracted from the average housekeeping gene (GAPDH) Ct to 

give the ΔCt for analysis.  Relative gene expression levels were determined using the 2-ΔΔCt 

method [84] and compared to the average ΔCt of the untreated controls (cage controls).  Data are 

presented in graphical form as the average fold change. 

Statistical Analysis  

All experimental designs and statistical analyses were based on a priori hypotheses.  For 

conditions that changed over 4 days of SAM social interaction, we compared outcomes using a 

two-way repeated measures ANOVA (Orx receptor-targeting drug x behavioral phenotype x 

time in SAM interaction design), where phenotype was either Stay or Escape.  In addition, two-

way ANOVA (Orx receptor-targeting drug x Phenotype design) was utilized to determine the 

influence of manipulating activity of Orx receptors (Treatment Effects) relative to the expression 

of behavioral phenotypes (Stay vs Escape; Phenotype Effects) and Phenotype by Conditioning 

(Interaction Effects).  Regression analyses were used for correlations of gene expression and 

behavioral (fear conditioning) responses, as well as for correlations between receptor or BDNF 
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gene expression and that of intracellular molecular signaling pathways.  To compare changes 

occurring within a treatment group across SAM interaction days, a one-way repeated measures 

ANOVA (Orx receptor-targeting drug x day of SAM interaction design) was performed.  Cage 

controls were necessary for interpretation of hormonal corticosterone levels and relative gene 

expression levels, because samples from SAM treatments were compared to baseline levels 

determined by the mean values of home-cage control animals.  Therefore home-cage controls 

were added for specific one-way ANOVA comparisons. Comparison of locomotion in the home 

cage after drug treatment was also accomplished by one-way ANOVA.  Comparisons between 

two treatments (Vehicle or Orx receptor-targeting drug) within a given phenotype (Escape or 

Stay) were analyzed by Student’s t-tests.  To determine differences in percentage of escape, chi-

square and Fischer Exact statistical analyses were performed, where results from previous days 

were utilized as expected values.  

Each animal was a singular sample source, from which multiple measures and analyses were 

taken. Five assumptions of parametric statistics were applied to the data, which were 

transformed when necessary, but also compared to non-parametric analyses, and graphed in their 

raw form.  Analyses with both non-parametric and parametric statistics were performed along 

with examination for multiple comparisons using the Holm-Sidak method, and when the 

statistical analyses match, as they do for the data herein, we report the parametric results without 

α adjustment [85-90]. Significant effects between groups for one-way analyses were examined 

with Student–Newman–Keuls post hoc analyses (to minimize Type I error) and Duncan's 

Multiple Range Test (to minimize Type II error).   
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COMPLETE RESULTS 

Orx1R are expressed in BLA glutamatergic neurons  

Using RNAscope in situ hybridization, we identified neurons in the BLA which expressed 

Orx1R, CamKIIα, and calbindin mRNA (Fig. 2).  Consistent with previous reports in rodents [31, 

32], we identified the majority (~80%) of BLA cells to express the glutamatergic marker, 

CamKIIα (Fig. S2; F2,9 = 3,311.7, p < 0.001; CamKIIα+ vs Calb+: t6 = 25.2, p < 0.001; CamKIIα+ 

vs Other: t6 = 20.8, p < 0.001).  While Orx1R (HCRTR1) mRNA were observed in both 

glutamatergic (CamKIIα-expressing [CamKIIα+]) and calbindin-expressing (Calb+) GABAergic 

neurons, the vast majority of Orx1R was expressed in CamKIIα+ cells (>60%; Fig. 2; F2,9 = 

386.8, p < 0.001; CamKIIα+ vs Calb+: t6 = 12.0, p < 0.001; CamKIIα+ vs Other: t6 = 4.3, p ≤ 

0.005; Calb+ vs Other: t6 = 6.0, p < 0.001).  Further analyses revealed very few (<20%) of 

Orx1R
+ cells in the BLA to also express the gene for glutamate decarboxylase (GAD1 → 

GAD67), a GABAergic neuron marker (Figs. 2G, H; t8 = 29.5, p < 0.001).  Additionally, a small 

number (~10%) of Orx1R
+ cells also express parvalbumin mRNA (PVALB → PV+), a calcium-

binding protein found in a proportion of BLA GABA neurons [91] (Figs. 2I, J; t6 = 23.1, p < 

0.001).  Importantly, our analyses suggest HCRTR1 is expressed in 10-15% of BLA 

glutamatergic neurons, which is significantly more than expression in GAD1+ (GABAergic) 

neurons (Fig. 2K; t7 = 3.2, p ≤ 0.015).  Together, these results reveal Orx1R to be localized 

predominantly on glutamatergic neurons in the BLA (Fig. 2P). 

SAM social interactions produce Escape and Stay phenotypes 

In the SAM, animals self-select one of two behavioral phenotypes, Escape or Stay (Fig. 1A, S1B 

& C), which are typically divided evenly within a population [26, 27, 29, 33, 34].  However, in 

some cohorts of animals this may be skewed [28, 30].  For the mice subjected to the 
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pharmacological experiments, we observed 39.4% Escape and 60.6% Stay phenotypes (Fig. 

S1B).  The genetic knockdown experiments yielded Escape and Stay phenotype expression at the 

expected 50:50 ratio (Fig. S1C).   

Intra-BLA Orx1R inhibition and knockdown increase attention toward the escape route 

Previous research from our laboratory demonstrated that the amount of time test subjects spend 

investigating the escape tunnel is an indicator of motivation to escape [28]. Similarly, time spent 

attentive to the escape hole was significantly different between phenotypes in vehicle-treated 

mice (Fig. 3A; Phenotype Effect: F1.51 = 16.4, p < 0.001; Time Effect: F3,51 = 1.3, p ≥ 0.299; 

Interaction Effect: F3,51 = 1.5, p ≥ 0.235; Escape vs Stay: Day 1, t17 = 2.6, p ≤ 0.018; Day 2, t17 = 

2.5, p ≤ 0.017; Day 3, t17 = 1.6, p ≥ 0.125; Day 4, t17 = 4.2, p < 0.001).  Infusion of an Orx1R 

antagonist (SB-674042) stimulates attention to the escape hole on treatment day (Day 3) 

compared to vehicle-treated Escape mice (Figs. 3B, C; Treatment Effect: F1,30 = 7.7, p ≤ 0.019; 

Time Effect: F3,30 = 2.3, p ≥ 0.098; Interaction Effect: F3,30 = 0.9, p ≥ 0.470; Day 3 Vehicle 

Escape vs Orx1R Antagonist Escape, t10 = 2.5, p ≤ 0.018).  In Stay mice, pharmacological 

inhibition of Orx1R (SB-674042) increases the time attentive to the escape route (Figs. 3B, D; 

Day 4 Vehicle x Orx1R Antagonist, t20 = 2.1, p ≤ 0.05), however, the effect is smaller compared 

to that observed in Escape mice (Fig. 3C).  Knockdown of Orx1R (AAV-Orx1R-shRNA) 

significantly increased attention toward the escape hole on the third day of the SAM relative to 

scramble controls (AAV-Scramble-shRNA) of the same phenotype (Fig. 3E; Day 3 Scramble vs 

AAV-Orx1R-shRNA, t20 = 2.4, p ≤ 0.024).   

Further analyses demonstrate changes in the time animals investigate the escape routes after 

alternative treatments (Fig. S3; Escape: Treatment Effect, F4,23 = 7.9, p < 0.001; Day 3: 

Phenotype Effect, F1,61 = 36.1, p < 0.001, Treatment Effect, F4,61 = 7.3, p < 0.001, Interaction 
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Effect, F4,61 = 4.9, p ≤ 0.002; Day 4: Phenotype Effect, F1,61 = 46.0, p < 0.001, Treatment Effect, 

F4,61 = 5.2, p < 0.001, Interaction Effect, F4,61 = 3.2, p ≤ 0.019).  For Escape mice, OrxA 

treatment reduced attention toward escape on Day 4 relative to Vehicle-treated animals of the 

same phenotype (Figs. S3A & B; t9 = 2.6, p ≤ 0.013).  Additionally, on both Days 3 and 4, 

Escape mice treated with an Orx1R antagonist displayed higher attention toward escape 

compared to animals in the OrxA (Figs. S3A & B, Day 3: t7 = 2.8, p ≤ 0.007; Day 4: t7 = 4.3, p < 

0.001) and Orx1R stimulation (Figs. S3A & D; Day 3: t9 = 2.7, p ≤ 0.023; Day 4: t9 = 3.1, p ≤ 

0.003) treatment groups.  Infusion of an intra-BLA Orx1R antagonist also produced greater Day 

4 attention toward escape behavior in Escape mice compared to those administered an Orx2R 

antagonist (Figs. S3A & F; Day 4: t9 = 2.5, p ≤ 0.015).  In Stay mice, investigation of the Escape 

route was higher on Day 4 for animals treated with an Orx1R antagonist relative to those infused 

with OrxA (Figs. S3A & C; t13 = 2.3, p ≤ 0.036) or an Orx2R antagonist (Figs. S3A & G; t15 = 

2.3, p ≤ 0.034).  Attention toward escape on Day 3 was lower in Stay mice of the Orx1R 

stimulation (OrxA + MK-1064) treatment group compared to those treated with an Orx1R 

antagonist (Figs. S3A & E; p ≤ 0.017).  Together these results characterize an important function 

of intra-BLA Orx1R in modulating adaptive motivation in a social stress environment, where 

inhibition or knockdown of these receptors promote increased motivation for Escape behavior 

and indirectly more avoidance behavior (Fig. 3F). 

Inhibition and knockdown of BLA Orx1R promote escape 

In the pharmacological experiments, behavioral phenotypes for both Escape and Stay vehicle-

treated animals were stable as demonstrated previously [27-29, 33].  However, intra-BLA 

injections of an Orx1R antagonist (SB-674042) resulted in a substantial number of Stay mice 

exhibiting Escape behavior on Days 3 and 4 of the SAM (Fig. 4A), with a 30% shift on the day 
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of treatment (χ2: F1 = 2.0, p ≥ 0.078) and a significant increase the day after (70% increase; χ2: 

F1 = 9.3, p < 0.001).  Interestingly, intra-BLA activation of both Orx receptors with OrxA or 

biased activation of Orx1R with a combination of OrxA and an Orx2R antagonist (MK-1064) 

blocked Escape behavior in a small proportion of mice on Days 3 and 4 (Fig. S4), and though 

not statistically significant does support the pro-stress role of Orx1R.  Treatment with an Orx2R 

antagonist did not affect Escape behavior (Fig. S4). 

In knockdown experiments, scramble control animals, like vehicle-treated mice, committed 

to Escape or Stay on the second day of SAM interaction and did not deviate from these self-

selected behavioral phenotypes on the third and fourth days (for both: χ2: F1 = 0.2, p ≥ 0.64).  

While 54% of animals treated with AAV-Orx1R-shRNA chose to Stay in the SAM arena with 

the aggressive CD1 mouse on Day 2 of social stress, this number decreased incrementally on the 

last two days of SAM exposure (Fig. 4B; χ2: F1 = 0.0, p ≥ 1.0; χ2: F1 = 0.2, p ≥ 0.69).  By the end 

of Day 4 of SAM interaction, 72.7% of AAV-Orx1R-shRNA-treated mice displayed the Escape 

phenotype compared to 54.5% of those that received the scramble control (Fig. 5B; χ2: F1 = 0.0, 

p ≥ 0.87).   

For Escape and Stay phenotypes, the duration of social interaction with the aggressive CD1 

mouse was significantly different (Phenotype Effect: F1,45 = 175.3, p < 0.001; Time Effect: F3,45 

= 26.1, p < 0.001; Interaction Effect: F3,45 = 26.1, p < 0.001; Escape vs Stay: Day 1, t17 = 1.1, p ≥ 

0.259; Day 2, t17 = 5.8, p < 0.001; Day 3 t17 = 10.6, p < 0.001; Day 4 t17 = 11.9, p < 0.001) and 

changed for Escape mice over the four-day course of the experiments (Fig. 4C; F3,18 = 17.8, p < 

0.001).  As Escape mice learned to use one of two escape tunnels provided [26, 27, 29, 33, 35], 

they spent significantly less time in the SAM arena with an aggressive CD1 mouse on Days 2 

through 4; i.e. escape latency was reduced (Fig. 4D; Day 1 vs Day 2, t6 = 2.8, p ≤ 0.011; Day 1 
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vs Day 3, t6 = 5.7, p < 0.001; Day 1 vs Day 4, t6 = 6.5, p < 0.001; Day 2 vs Day 3, t6 = 2.9, p ≤ 

0.009; Day 2 vs Day 4, t6 = 3.7, p ≤ 0.002; Day 3 vs Day 4, t6 = 0.8, p ≥ 0.437); whereas vehicle-

treated Stay mice remained submissively within the SAM arena for the entire 5 min period (Fig. 

4D).  Stay animals treated with the Orx1R antagonist (SB-674042), however, spent significantly 

less time with the aggressive CD1 mouse on Day 4 of the SAM paradigm compared to those 

administered vehicle (Fig. 4D; Treatment Effect: F1,54 = 2.8, p ≥ 0.111; Time Effect: F3,54 = 2.9, 

p ≤ 0.043; Interaction Effect: F3,54 = 2.9, p ≤ 0.043; Day 4 Vehicle Stay vs Orx1R Antagonist 

Stay, t20 = 3.4, p < 0.001). 

Treatment of the Orx1R antagonist (SB-674042) administered on the third day of the SAM 

had no effect on latency to escape in animals exhibiting the Escape phenotype compared to 

vehicle-treated mice (Fig. 4D; Treatment Effect: F1,30 = 0.2, p ≥ 0.675; Time Effect: F3,30 = 26.9, 

p < 0.001; Interaction Effect: F3,30 = 0.3, p ≥ 0.856).  Knockdown of intra-BLA Orx1R (AAV-

Orx1R-shRNA) had no effect on the latency to escape compared to the scramble control (AAV-

Scramble-shRNA) group, although there was a similar decrease over interaction days (Fig. 4E; 

Treatment Effect: F1,60 = 0.0, p ≥ 0.960; Time Effect: F3,60 = 5.5, p ≤ 0.002; Interaction Effect: 

F3,60 = 0.0, p ≥ 0.995).  These results, in combination, suggest that intra-BLA Orx1R promote 

coping strategies associated with responses to increased stress, and acute inhibition of these 

receptors allows for greater expression of behavior that is derived from reduced output of pro-

stress neurocircuitry (Escape). 

BLA Orx1R regulate weight gain and food-seeking behavior, but do not increase 

locomotion 

As the orexin system is important for motivated behaviors, such as food-seeking, we assessed 

food intake throughout these experiments to determine if the combination of stress and Orx1R 
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treatments infused into the BLA would alter normal feeding behavior.  In the pharmacological 

experiments, social stress caused fluctuations in feeding behavior throughout four days of SAM 

exposure (Fig. S6A).  While vehicle-treated mice exhibited lower food consumption on Day 1 of 

the SAM compared to Day 2 (Treatment Effect: F1,99 = 1.9, p ≥ 0.177; Time Effect: F3,99 = 7.9, p 

≤ 0.001; Interaction Effect: F3,99 = 1.6, p ≥ 0.192; t18 = 3.0, p ≤ 0.008) and Day 3 compared to 

Days 2 (t18 = 4.2, p ≤ 0.001) and 4 (t18 = 2.8, p ≤ 0.012), there were no significant differences 

between cage control animals (not exposed to social stress), which consumed relatively equal 

amounts of food throughout all four days of the SAM (Fig. S6A).  Inhibition of Orx1R resulted in 

greater food consumption on treatment day (Day 3), and less intake on Day 4 compared to 

vehicle-treated mice (Fig. S6B; Treatment Effect: F1,96 = 0.001, p ≥ 0.974; Time Effect: F3,96 = 

12.0, p ≤ 0.001; Interaction Effect: F3,96 = 6.0, p ≤ 0.001; Orx1R Antagonist Day 1 vs Day 2, t14 = 

4.2,  p ≤ 0.001; Orx1R Antagonist Day 2 vs Day 3, t14 = 3.3,  p ≤ 0.005; Orx1R Antagonist Day 2 

vs Day 4, t14 = 6.7, p ≤ 0.001; Day 3 Vehicle vs Orx1R Antagonist, t32 = 2.4, p ≤ 0.021; Day 4 

Vehicle vs Orx1R Antagonist, t32 = 3.1, p ≤ 0.004).  Further, home cage locomotion was 

unaltered by the dose of the Orx1R antagonist (SB-674042) or the other treatments (OrxA, Orx1R 

Stimulation [OrxA + MK-1064], & Orx2R antagonist) used in this set of experiments (Fig. S5A; 

t32 = 1.1, p ≥ 0.299), nor was it upset by knockdown of Orx1R (Fig. S5B; F2,24 = 1.4, p ≥ 0.267). 

Since the administration of adeno-associated viruses aimed to knockdown Orx1R in the BLA 

was followed by 30 days to allow for viral incubation (Fig. 1B), animal weights were taken 

weekly to assess the influence of intra-BLA Orx1R on this metabolic process as it relates to food-

seeking behavior.  No differences in body weight gain were observed between cage control 

animals, which did not undergo surgery, and scramble controls; however, Orx1R knockdown 

(AAV-U6-Orx1R-shRNA) resulted in a reduction in weight gain that became more prominent as 
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the incubation period progressed with Days 1 and 5 revealing significant decreases compared to 

the cage control group (Fig. S6D; Treatment Effect: F2,120 = 1.9, p ≥ 0.172; Time Effect: F5,120 = 

142.5, p ≤ 0.001; Interaction Effect: F10,120 = 2.2, p ≤ 0.022; Day 1 Cage Control vs AAV-Orx1R-

shRNA, t16 = 2.8, p ≤ 0.014; Day 5 Cage Control vs AAV-Orx1R-shRNA, t16 = 2.7, p ≤ 0.017).  

Food consumption in scramble control animals, which experienced social stress, differed from 

cage controls only after four days of SAM social interaction (Fig. S6C; Treatment Effect: F2,120 = 

4.7, p ≤ 0.019; Time Effect: F5,120 = 1.2, p ≥ 0.302; Interaction Effect: F10,120 = 2.6, p ≤ 0.007; 

Day 5 Cage Control vs AAV-Scramble-shRNA, t12 = 2.8, p ≤ 0.016).  While modest reductions 

in food intake were observed in AAV-U6-Orx1R-shRNA animals compared to scramble controls, 

a significant difference was only detected after introduction of social stress (Day 1) of the 

experimental protocol (Fig. S6C; Day 1 AAV-Scramble-shRNA vs AAV-Orx1R-shRNA, t20 = 

2.8, p ≤ 0.005; Day 5 Cage Control vs AAV-Orx1R-shRNA, t16 = 4.1, p ≤ 0.001).  Together these 

results identify a role of intra-BLA Orx1R in maintaining normal feeding behavior and weight 

gain. 

Activity of Orx1R in the BLA regulates cued fear responses 

On test day (Day 5 for both pharmacological and knockdown experiments; Fig. 1B), after four 

days of SAM social stress exposure (US+) paired with a conditioned stimulus (tone; Fig. 1A), 

fear conditioning was assessed in mice by measuring freezing behavior (CR) in the absence of a 

social aggressor (US-).  While cued fear responses (enhanced freezing associated with the CS) 

were observed in both Escape and Stay phenotypes under control conditions (Figs. 5A, B; CS 

Effect: F1,17 = 47.7, p < 0.001; Escape CS- vs CS+, t6 = 3.9, p ≤ 0.008; Stay CS- vs CS+, t11 = 5.7, 

p < 0.001), Stay mice displayed heightened freezing behavior to both context (CS-, opaque 

cylinder divider) and cue (CS+) compared to Escape animals (Fig. 5B; Phenotype Effect: F1,17 = 
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7.6, p ≤ 0.013; Escape vs Stay: CS-, t17 = 2.8, p ≤ 0.011; CS+, t17 = 2.3, p ≤ 0.033).  Inhibition of 

intra-BLA Orx1R (SB-674042) did not affect the fear freezing profile in Escape mice (Figs. 5A, 

D; Treatment Effect: F1,10 = 1.1, p ≥ 0.313; CS Effect: F1,10 = 24.7, p < 0.001; Interaction Effect: 

F1,10 = 0.3, p ≥ 0.574; Orx1R Antagonist Escape CS- vs CS+, t4 = 3.4, p ≤ 0.026); however, 

antagonist-treated Stay mice exhibited significantly reduced contextual (CS-) and cued (CS+) fear 

responses (Figs. 5A, H; Treatment Effect: F1,20 = 8.8, p ≤ 0.008; CS Effect: F1,20 = 29.6, p < 

0.001; Interaction Effect: F1,20 = 0.0, p ≥ 0.869; CS- vs CS+: Vehicle Stay, t11 = 3.9, p < 0.001; 

Orx1R Antagonist Stay, t9 = 3.8, p < 0.001; CS- Vehicle Stay vs Orx1R Antagonist Stay, t20 = 2.6, 

p ≤ 0.017; CS+ Vehicle Stay vs Orx1R Antagonist Stay, t20 = 2.7, p < 0.001).  Like mice of the 

Escape phenotype, knockdown of BLA Orx1R (AAV-Orx1R-shRNA) did not affect conditioned 

freezing behavior (Fig. S7; Treatment Effect: F1,20 = 0.1, p ≥ 0.776; CS Effect: F1,20 = 19.3, p < 

0.001; Interaction Effect: F1,20 = 0.1, p ≥ 0.747; CS- vs CS+: AAV-Scramble-shRNA, t8 = 2.6, p ≤ 

0.016; AAV-Orx1R-shRNA, t12 = 3.7, p < 0.001).  Importantly, activation of intra-BLA Orx1R 

and Orx2R with OrxA did not change the fear freezing profile in Escape (Treatment Effect: F1,9 = 

0.9, p ≥ 0.364; CS Effect: F1,9 = 26.8, p < 0.001; Interaction Effect: F1,9 = 0.2, p ≥ 0.655) or Stay 

mice (Treatment Effect: F1,15 = 0.1, p ≥ 0.733; CS Effect: F1,15 = 47.7, p < 0.001; Interaction 

Effect: F1,15 = 1.2, p ≥ 0.295) compared to Vehicle control (Figs. 5A, E, & I). However, biased 

stimulation of Orx1R in the BLA with a combination of OrxA and an Orx2R antagonist (MK-

1064) eliminated the conditioned response in Escape (Figs. 5A & F; Treatment Effect: F1,11 = 

1.0, p ≥ 0.332; CS Effect: F1,11 = 16.4, p ≤ 0.002; Interaction Effect: F1,11 = 3.6, p ≥ 0.084; Orx1R 

Stim. CS- vs CS+: t8 = 2.1, p ≤ 0.073), but not Stay mice (Figs. 5A & J; Treatment Effect: F1,19 = 

4.1, p ≥ 0.060; CS Effect: F1,19 = 45.1, p < 0.001; Interaction Effect: F1,19 = 0.0; p ≥ 0.955; Orx1R 

Stim. CS- vs CS+: t7 = 4.6, p ≤ 0.003). 
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Corticosterone levels are reduced with intra-BLA Orx1R antagonism 

Immediately following assessment of conditioned fear (within 5 min of each trial), trunk blood 

plasma was collected and used to measure the concentration of rodent stress hormone, 

corticosterone, which was released in response to exposure of conditioned fear stimuli (Fig. 5C).  

As in previous studies [27, 28], corticosterone levels were elevated in both Escape and Stay 

animals relative to unstressed cage controls (Fig. 5C; F2,13 = 32.7, p < 0.001; Cage Control vs 

Vehicle Escape, t11 = 8.1, p < 0.001; Cage Control vs Vehicle Stay, t12 = 8.1, p < 0.001); 

however, Stay mice have higher levels of B compared to those of the Escape phenotype (Fig. 5C; 

Vehicle Escape vs Vehicle Stay, t10 = 2.8, p ≤ 0.015).  Inhibition of Orx1R (SB-674042) in the 

BLA, while having no effect on Escape stress hormone concentrations, decreased Stay B levels 

compared to vehicle-treated animals of the same phenotype (Fig. 5C; F1,16 = 17.5, p < 0.001; 

Phenotype Effect: F1,16 = 1.2, p ≥ 0.298; Interaction Effect: F1,16 = 6.3, p ≤ 0.023; Vehicle Escape 

vs Stay, t10 = 2.7, p ≤ 0.015; Orx1R Antagonist Escape vs Stay, t6 = 0.9, p ≥ 0.358; Vehicle 

Escape vs Orx1R Antagonist Escape, t6 = 1.1, p ≥ 0.283; Vehicle Stay x Orx1R Antagonist Stay, 

t10 = 5.1, p < 0.001).  Although antagonist-treated Escape animals had significantly higher B 

levels compared to non-stressed cage controls (F2,9 = 7.9, p ≤ 0.010; Cage Control vs Orx1R 

Antagonist Escape t6 = 6.1, p < 0.001), Orx1R antagonist-treated Stay mice B levels did not 

differ significantly from B levels in non-stressed mice (Fig. 5C; Cage Control x Orx1R 

Antagonist Stay, t6 = 2.3, p ≥ 0.062).  No correlations, however, between corticosterone 

concentrations and fear freezing were observed (Vehicle: F1,10 = 2.4, p ≥ 0.1525; Orx1R Ant.: F1,6 

= 0.006, p ≥ 0.9402).  Activation of Orx1R and Orx2R with OrxA or selective stimulation of 

Orx1R (OrxA + MK-1064) did not impact corticosterone levels relative to vehicle controls 

(Treatment Effect, F3,28 = 1.1, p ≥ 0.351; Phenotype Effect, F1,28 = 4.9, p ≤ 0.034; Interaction 
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Effect, F3,28 = 0.8, p ≥ 0.489); however, the phenotypic separation that is witnessed under control 

conditions was not observed after these treatments (Fig. 5C).  Further, these stimulation 

treatments resulted in elevated corticosterone levels relative to cage control mice (Fig. 5C; OrxA 

Escape vs Cage Control, t5 = 3.7, p ≤ 0.014; OrxA Stay vs Cage Control, t5 = 3.2, p ≤ 0.025; 

Orx1R Stim. Escape vs Cage Control, t5 = 5.0, p ≤ 0.004; Orx1R Stim. Stay vs Cage Control, t5 = 

5.1, p ≤ 0.004).  These results highlight a role for BLA Orx1R in mediating the expression of 

behavioral and physiological fear responses. 

Antagonism of intra-BLA Orx1R recruits alternative signaling pathways 

To determine how the shift in behavioral patterns observed with intra-BLA Orx1R inhibition 

coincides with adjustments to transcriptional levels for molecular mechanisms associated with 

Orx1R signaling, we performed RT-qPCR analyses of specific genes of interest within the BLA.  

As phenotype and treatment may influence receptor gene (HCRTR1 & HCRTR2) expression, we 

analyzed levels in BLA tissue (Figs. 6A & B).  While vehicle treatment did not result in changes 

in HCRTR1 expression (Phenotype Effect: F1,19 = 0.3, p ≥ 0.585; Treatment Effect: F1,19 = 5.5, p 

≤ 0.03; Interaction Effect: F1,19 = 0.2, p ≥ 0.690), Orx1R antagonist-treated mice of the Escape 

phenotype exhibited significantly reduced HCRTR1 gene expression compared to non-stressed 

cage controls (Fig. 6A; t11 = 2.2, p ≤ 0.050).  Escape animals in the vehicle control group 

exhibited elevated HCRTR2 expression (Phenotype Effect: F1,19 = 2.8, p ≥ 0.111; Treatment 

Effect: F1,19 = 1.6, p ≥ 0.221; Interaction Effect: F1,19 = 14.1, p < 0.001) relative to control Stay 

mice (t9 = 3.0; p ≤ 0.016) and Escape animals treated with an Orx1R antagonist (Fig. 6B; t7 = 

2.6, p ≤ 0.035).  However, antagonist treatment resulted in elevated HCRTR2 expression in Stay 

mice compared to those that escaped (t10 = 2.2, p ≤ 0.05) and vehicle-treated animals of the same 

phenotype (Fig. 6B; t12 = 2.4, p ≤ 0.034).  Changes in both HCRTR1 and HCRTR2 gene 
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expression following Orx1R inhibition appear to occur in a phenotype-dependent way in the 

BLA. 

Since PLCβ1 mRNA (PLCB1) is expressed in the amygdala [13], and its protein product 

likely plays a dominant role in Orx1R signaling [36] in the BLA, we quantified relative fold 

changes in cage control, vehicle-, and Orx1R antagonist-treated mice (Fig. 6C).  In both vehicle 

and Orx1R antagonist groups, Escape mice expressed significantly lower amounts of PLCβ1 

(PLCB1) compared to Stay animals of the same treatment (Fig. 6C; Phenotype Effect: F1,19 = 

27.8, p < 0.001; Treatment Effect: F1,19 = 1.4, p ≥ 0.259; Interaction Effect: F1,19 = 0.2, p ≥ 

0.664; Vehicle Escape vs Stay, t9 = 5.0, p < 0.001; Orx1R Antagonist Escape vs Stay, t10 = 3.1, p 

≤ 0.012).  Further, while Stay animals had similar expression levels of PLCB1 compared to non-

stressed controls (F2,19 = 0.3, p ≥ 0.723), Escape mice in both vehicle- and Orx1R antagonist-

treated groups had lower levels compared to these cage control animals (Fig. 6C; F2,14 = 11.2, p 

< 0.001; Cage Control vs Vehicle, t10 = 5.1, p < 0.001; Cage Control vs Orx1R Antagonist, t11 = 

3.3, p ≤ 0.007).  These data seem to suggest that adaptive physiological shifts in intra-BLA 

PLCB1 expression may play a role in, or result from, phenotype development, without 

identifying how Orx1R antagonism is involved. 

As ERK signaling is one of the alternative molecular pathways that can be recruited during 

Gq receptor activation, we evaluated intra-BLA transcriptional shifts in ERK genes (MAPK1 & 

MAPK3) that result as an effect of Orx1R antagonism (Figs. 6D & S8).  There were no 

significant differences in relative ERK2 (MAPK1) mRNA in any group (Fig. S8; Phenotype 

Effect: F1,19 = 0.3, p ≥ 0.611; Treatment Effect: F1,19 = 2.8, p ≥ 0.113; Interaction Effect: F1,19 = 

0.0, p ≥ 0.97).  However, in Stay mice treated with an Orx1R antagonist (SB-674042), we 

observed a robust increase in ERK1 (MAPK3) expression that was significantly different 
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compared to Escape animals in the same treatment group (Phenotype Effect: F1,19 = 13.5, p ≤ 

0.002; Treatment Effect: F1,19 = 6.3, p ≤ 0.021; Interaction Effect: F1,19 = 4.9, p ≤ 0.039; Orx1R 

Antagonist Escape vs Stay, t10 = 3.5, p ≤ 0.006), vehicle-treated animals of the Stay phenotype 

(Stay Vehicle vs Orx1R Antagonist, t12 = 3.1, p < 0.001), and non-stressed cage control mice 

(Fig. 6D; t13 = 4.1, p < 0.001).  The results for molecular signaling pathways suggest potential 

links amongst Orx1R inhibition, phenotype plasticity, and the relationship between PLCβ1 

(PLCB1) and ERK1 (MAPK3) signaling recruitment in behaviorally distinctive groups, which 

also differ in stress sensitivity.  

Since brain-derived neurotrophic factor (BDNF) is tied to neuroplasticity [37, 38] that may 

result in behavioral changes, like extinction of fear memories [39], we assessed its relative gene 

expression which we predicted would be increased with intra-BLA Orx1R antagonist treatment 

(Fig. 6E).  As hypothesized, intra-BLA Orx1R inhibition resulted in elevated BDNF (Phenotype 

Effect: F1,19 = 8.4, p ≤ 0.009; Treatment Effect: F1,19 = 3.5, p ≤ 0.077; Interaction Effect: F1,19 = 

1.9, p ≤ 0.181) in Stay compared to Escape mice (t10 = 2.8, p ≤ 0.018) and vehicle-treated Stay 

mice (Fig. 6E; t12 = 2.2, p ≤ 0.049).  As Stay mice treated with an Orx1R antagonist (SB-674042) 

experienced shifts from stress-vulnerable to resilient behavioral responses, the alterations in 

gene expression reported here may be implicit in this behavioral plasticity. 

Molecular restructuring following intra-BLA Orx1R inhibition is related to fear 

responsiveness 

Expression levels of HCRTR2 in vehicle- (Regression Analysis: F1,9 = 16.1, p ≤ 0.003) and 

Orx1R antagonist-treated mice were negatively correlated to cued freezing (Figs. 7A & B; 

Regression Analysis: F1,10 = 7.2, p ≤ 0.023).  Relative expression levels of PLCB1 were 

positively correlated to cued freezing behavior in vehicle-treated mice (Fig. 7C; Regression 
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Analysis: F1,9 = 6.4, p ≤ 0.032); however, this relationship is not observed following intra-BLA 

Orx1R inhibition (Fig. 7D; Regression Analysis: F1,10 = 0.7, p ≥ 0.433).  Contextual freezing 

behavior was associated with MAPK3 expression in only vehicle-treated mice (Figs. S9I & J; 

Vehicle, F1,9 = 5.5, p ≤ 0.044; Orx1R Antagonist, F1,10 = 2.6, p ≥ 0.137).  Unlike contextual 

freezing behavior (Fig. S9J; Orx1R Antagonist, F1,10 = 2.6, p ≥ 0.137), intra-BLA antagonism of 

Orx1R cued freezing behavior is negatively correlated to ERK1 (MAPK3) expression (Fig. 7F; 

Regression Analysis: F1,10 = 6.3, p ≤ 0.031).  This relationship is not observed in vehicle-treated 

mice (Fig. 7E; F1,9 = 3.8, p ≥ 0.083).  Finally, there are no associations of HCRTR1 (Vehicle, F1,9 

= 0.7, p ≥ 0.416; Orx1R Antagonist, F1,10 = 1.2, p ≥ 0.302) and BDNF (Vehicle, F1,9 = 0.2, p ≥ 

0.639; Orx1R Antagonist, F1,10 = 0.9, p ≥ 0.369) expression with respect to fear freezing 

behavior (see also Figs. S9 & S10).  Overall, gene expression was not largely correlated with 

cued fear freezing when phenotypes were assessed independently (Fig. S10); however, after 

intra-BLA Orx1R antagonism, HCRTR2 expression was negatively correlated with cued fear 

freezing only in Stay animals (Fig. S10D; F1,5 = 13.7, R2 = 0.7324, p ≤ 0.014).  Mostly these 

results indicate that behavioral and transcriptional relationships exist within collective 

operational adaptations that link behavioral change to molecular modification.  These 

relationships suggest a function-related connection between Orx1R antagonist-induced shifts in 

HCRTR2 and MAPK3 gene expression and fear-related behaviors.  

Cells expressing Orx1R in the BLA do not co-express Orx2R 

Given that Orx1R antagonism within the BLA alters expression of Orx2R (HCRTR2) mRNA, a 

change which is related to cued fear behavioral responses in mice, we decided to investigate 

whether both orexin receptor subtypes are expressed within the same amygdalar cells using in 

situ hybridization (Figs. 2L-O).  Most cells within the BLA express neither HCRTR1 nor 
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HCRTR2 (Fig. 2N, F2,9 = 42.1, p < 0.001; Orx1R
+ vs Other, t6 = 7.5, p < 0.001; Orx2R

+ vs Other, 

t6 = 8.4, p < 0.001).   However, in BLA cells, HCRTR1 and HCRTR2 mRNA largely do not 

overlap (Fig. S11; t16 = 192.4, p < 0.001), and approximately 80% of Orx1R
+ cells do not co-

express Orx2R (Figs. 2L, M, & O; t6 = 10.1, p < 0.001). 

Fear response after Orx2R inhibition is phenotypically different from Orx1R antagonism 

As blocking Orx1R in the BLA produced a dominant effect on conditioned fear freezing in Stay 

mice (Fig. 5H), an effect that is linked to an increase in HCRTR2 gene expression (Fig. 6B), we 

predicted antagonism of Orx2R (MK-1064) might have a more prominent effect on fear behavior 

in Escape mice.  Effects of intra-BLA Orx2R antagonism on fear responses were compared to 

vehicle- (Escape Mice: Treatment Effect: F1,11 = 2.1, p ≥ 0.178; CS Effect: F1,17 = 12.4, p ≤ 

0.005; Interaction Effect: F1,17 = 8.0, p ≤ 0.017; Stay Mice: Treatment Effect: F1,17 = 0.1, p ≥ 

0.719; CS Effect: F1,17 = 37.0, p < 0.001; Interaction Effect: F1,17 = 0.5, p ≥ 0.476) animals (Figs. 

5A, G, & K).   

In Escape mice, acute inhibition of Orx2R in the BLA eliminated the cued-induced (CS+) 

freezing response observed after vehicle treatment (Figs. 5A & G; t5 = 0.7, p ≥ 0.533).  Further, 

during the post-tone period (CS+), Orx2R antagonist-treated Escape mice exhibited reduced 

freezing compared to vehicle-treated animals of the same phenotype (Figs. 5A & G; t11 = 2.3, p ≤ 

0.045).   

While the slope of the freezing profile was steeper in Stay mice treated with an Orx2R 

antagonist directed at the BLA compared to Stay animals in the vehicle control group, there were 

no statistical differences in the levels of contextual (CS-) and cued (CS+) freezing observed (Figs. 

5A & K).  These results suggest Orx receptor activity in the BLA influences social stress-
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induced fear behavior in a phenotype dependent way. 

Transcriptional changes after Orx2R antagonism contrast those observed after Orx1R 

inhibition 

Since blocking Orx1R produced changes in mRNA expression relevant to BLA cell signaling 

dynamics, we predicted Orx2R antagonism to induce opposing changes to these transcriptional 

relationships (Fig. 6).  While Orx1R inhibition (Treatment Effect: F2,27 = 3.5, p ≤ 0.043) resulted 

in a reduction in HCRTR1 gene expression in Escape mice (Cage Control vs Orx1R Ant. Escape, 

t11 = 2.2, p ≤ 0.050), Orx2R antagonism presented a similar decrease, but only in Stay animals 

(Fig. 6A; Vehicle vs Orx2R Ant.: t10 = 2.2; p ≤ 0.044).  Expression of HCRTR2 in the BLA 

(Treatment Effect: F2,27 = 9.8, p < 0.001; Interaction Effect: F2,27 = 8.6, p < 0.001) was reduced 

in both Escape (Vehicle vs Orx2R Ant.: t7 = 4.5, p < 0.001; Orx1R Ant. vs Orx2R Ant.: t8 = 3.5, p 

< 0.001) and Stay phenotypes (Vehicle vs Orx2R Ant.: t10 = 3.5, p ≤ 0.002; Orx1R Ant. vs Orx2R 

Ant.: t10 = 4.7, p < 0.001) after blocking Orx2R, which contrasts with Orx1R antagonism which 

enhanced mRNA levels in Stay mice (Fig. 6B; Orx1R Ant. Escape vs Stay: t10 = 2.2, p ≤ 0.05; 

Vehicle Stay vs Orx1R Ant. Stay: t12 = 2.4, p ≤ 0.034).  Further, intra-BLA Orx2R inhibition 

muted the reduction in PLCβ1 (PLCB1; Phenotype Effect: F1,27 = 19.1, p < 0.001; Interaction 

Effect: F2,27 = 4.3, p ≤ 0.023) observed in Escape mice under Vehicle treatment (t7 = 2.8, p ≤ 

0.017) conditions (Fig. 6C) while having no effect on MAPK3 gene expression (Phenotype 

Effect: F1,27 = 11.3, p ≤ 0.002; Treatment Effect: F2,27 = 4.3, p ≤ 0.023; Interaction Effect: F2,27 = 

5.1, p ≤ 0.013), which was increased in Stay mice after Orx1R antagonist treatment (Fig. 6D; 

Vehicle vs Orx1R Ant.: t12 = 3.1, p < 0.001; Orx1R Ant. Vs Orx2R Ant.: t10 = 2.7, p ≤ 0.022).  

Finally, Orx2R antagonist treatment enhanced BDNF expression (Interaction Effect: F2,27 = 10.6, 

p < 0.001) in Escape mice (Orx2R Ant. Escape vs Stay: t8 = 2.9, p ≤ 0.019; Vehicle Escape vs 
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Orx2R Ant. Escape: t7 = 2.7, p ≤ 0.013; Orx1R Ant. Escape vs Orx2R Ant. Escape: t8 = 2.5, p ≤ 

0.017), while diminishing transcription in Stay animals (Vehicle vs Orx2R Ant.: t10 = 2.2, p ≤ 

0.05), an effect that is phenotypically opposite to that observed after Orx1R inhibition (Fig. 6E; 

Orx1R Ant. Escape vs Stay: t10 = 2.8, p ≤ 0.018; Vehicle Stay vs Orx1R Ant. Stay: t12 = 2.2, p ≤ 

0.049; Orx1R Ant. Stay vs Orx2R Ant. Stay: t10 = 3.9, p < 0.001).  Importantly, no relationships 

between gene expression and conditioned fear freezing were observed for any of the tested cell 

signaling markers after Orx2R antagonism except for BDNF (Figs. S12A-D), in which a 

significant negative correlation was revealed (Fig. S12E; F1,8 = 15.2, R2 = 0.6548, p ≤ 0.0046).  

Gene expression uncovers a potential molecular mechanism behind intra-BLA Orx1R 

antagonism 

To help generate a theoretical mechanism to explain the physiological basis surrounding the 

observed behavioral (and phenotypic) shifts resulting from intra-BLA inhibition of Orx1R, we 

explored transcriptional relationships in systems that exhibited similar regression patterns (Figs. 

6, 7, & 8).  With antagonism of Orx1R, there is a strongly positive relationship between 

HCRTR2 and MAPK3 expression (Fig. 8A; Regression Analysis: F1,10 = 8.3, p ≤ 0.016).  

Importantly, this association does not exist after vehicle treatment (Fig. S13A; F1,9 = 1.1, p ≥ 

0.322).  While there are no observed relationships between BDNF and HCRTR2 expression 

levels in either treatment group (Fig. 8B & S13B; Vehicle, F1,9 = 0.1, p ≥ 0.732; Orx1R Ant., 

F1,10 = 0.3, p ≥ 0.582), BDNF expression is positively correlated to ERK1 (MAPK3) expression 

in animals treated with an Orx1R antagonist (Fig. 8C; Vehicle [Fig. S13C], F1,9 = 0.0, p ≥ 0.951; 

Orx1R Ant., F1,10 = 8.2, p ≤ 0.017).  Importantly, no relationships exist between HCRTR1 

expression and the other genes of interest (Fig. S13D-I).  The connections reported here allowed 

us to predict a working model to help explain how Orx1R function within the BLA to establish 
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behavioral patterns consistent with stress-induced phenotype development (Fig. 9). 
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Figure S1.  (A)  Injection sites for pharmacology (top & middle rows) and viral infusions (bottom row) 

successfully targeted BLA in test mice.  In the SAM, (B) pharmacological experiment groups self-

selected into a 40:60 split of Escape and Stay animals, respectively, by the end of Day 2 (N = 71); while 

(C) mice of the genetic knockdown experimental group more evenly (50:50) divided into Escape and 

Stay phenotypes by the end of Day 2 of the experimental design (N = 22).  Expression levels of intra-

BLA Orx1R (HCRTR1) mRNA in (D) Cage Controls, (E) Scramble Controls, and (F) Orx1R-shRNA 

animals revealed an (G) approximately 60% knockdown of Orx1R with viral treatment (N = 16, F2,13 = 

35.4, p < 0.001; bars are statistically different from one another as illustrated with unique letters, e.g. A is 

significantly different from B; p < 0.001).  
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Figure S2.  In the BLA, the majority of cells express the glutamatergic cell marker, CamKIIα, and very 

few cells express mRNA for the calcium-binding protein, calbindin (N = 4, F2,9 = 3,311.7, p < 0.001; 

CamKIIα+ vs Calb+, t6 = 25.2, p < 0.001; CamKIIα+ vs Other, t6 = 20.8, p < 0.001; bars are statistically 

different from one another as illustrated with unique letters, e.g. A is significantly different from B; p < 

0.001). 
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Figure S3.  The amount of time mice spend attentive to the escape route is influenced by Orx receptor 

activity in the BLA.  (A) While Stay mice, in general, spend less time attentive to SAM escape routes, 

investigation of the Escape routes on Days 3 & 4 is heightened in both Escape and Stay mice after Orx1R 

antagonism and reduced with OrxA treatment (N = 71; Day 3: Phenotype Effect, F1,61 = 36.0, p < 0.001, 

Treatment Effect, F4,61 = 7.3, p < 0.001, Interaction Effect, F4,61 = 4.8, p ≤ 0.002; Day 4: Phenotype 

Effect, F1,61 = 46.0, p < 0.001, Treatment Effect, F4,61 = 5.2, p < 0.001, Interaction Effect, F4,61 = 3.2, p ≤ 

0.019).  Individual analyses based on a priori hypotheses reveal significant reductions in attention toward 

escape in (B) Escape (Treatment Effect, F2,39 = 5.8, p ≤ 0.016; Interaction Effect, F6,39 = 3.0, p ≤ 0.016; 

Day 3: Orx1R Ant. vs OrxA, t7 = 2.8, !p ≤ 0.007; Day 4: Vehicle vs OrxA, t9 = 2.6, +p ≤ 0.013; Orx1R Ant. 

vs OrxA, t7 = 4.3, !p < 0.001)  and (C) Stay mice after intra-BLA OrxA administration (Day 4: Orx1R Ant. 

vs OrxA, t13 = 2.3, !p ≤ 0.036).  (D) Escape mice in the Orx1R Stim. group exhibited lower attention 

toward escape compared to animals treated with an Orx1R Ant. (Treatment Effect, F2,45 = 3.8, p ≤ 0.045; 

Day 3: Orx1R Ant. vs Orx1R Stim., t9 = 2.7, p ≤ 0.023; Day 4: Orx1R Ant. vs Orx1R Stim., t9 = 3.1, #p ≤ 

0.003).  (E) Stay mice administered the Orx1R Stim. treatment presented lower attention toward escape 
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on Day 3 compared to animals in the Orx1R Ant. group (#p ≤ 0.017).  Mice treated with an Orx2R 

antagonist displayed lower attention toward escape on Day 4 compared to Orx1R Ant. treatment in both 

(F) Escape (Treatment Effect, F2,45 = 3.8, p ≤ 0.045; Orx1R Ant. vs Orx2R Ant., t9 = 2.5, $p ≤ 0.015) and 

(G) Stay (t15 = 2.3, $p ≤ 0.034) phenotypes.  Symbols represent significant differences compared to 

Escape mice in the same treatment group (*), Vehicle (+), OrxA (!), Orx1R Stim. (#), and Orx2R Ant. ($).  
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Figure S4.  Activation of intra-BLA Orx1R and Orx2R with OrxA or biased stimulation of Orx1R (Orx1R 

Stim. = OrxA + Orx2R Ant.) promotes Stay behavior in a small, though not significant, percentage of 

Escape mice (N = 23). 
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Figure S5.  Intra-BLA Orx1R activity does not influence home cage mobility.  (A) In the BLA, infusion 

of an Orx1R antagonist, OrxA, biased activation of Orx1R (Orx1R Stim.), or an Orx2R antagonist does not 

affect locomotion in the animal’s home cage environment (N = 71, F4,66 = 0.813, p ≥ 0.813).  (B)  

Similarly, genetic knockdown of intra-BLA Orx1R has no influence over home cage mobility (N = 27, 

F2,24 = 1.4, p ≥ 0.267).  
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Figure S6.  Intra-BLA Orx1R activity plays a role in controlling weight gain.  (A)  While social stress 

impacts an animal’s eating patterns (N = 35, Time Effect: F3,99 = 7.9, p ≤ 0.001; Vehicle Day 1 vs Day 2, 

t18 = 3.0, p ≤ 0.008; Vehicle Day 2 vs Day 3, t18 = 4.2, p ≤ 0.001; Vehicle Day 3 vs Day 4, t18 = 2.8, p ≤ 

0.012) (B) acute inhibition of intra-BLA Orx1R modifies this cycle on the day of treatment (Day 3) and 

the day after (N = 34, Day 4; Time Effect: F3,96 = 12.0, p ≤ 0.001; Interaction Effect: F3,96 = 6.0, p ≤ 

0.001; Orx1R Ant. Day 1 vs Day 2, t14 = 4.2,  p ≤ 0.001; Orx1R Ant. Day 2 vs Day 3, t14 = 3.3,  p ≤ 0.005; 

Orx1R Ant. Day 2 vs Day 4, t14 = 6.7, p ≤ 0.001; Day 3 Vehicle vs Orx1R Ant., t32 = 2.4, +p ≤ 0.021; Day 

4 Vehicle vs Orx1R Ant., t32 = 3.1, +p ≤ 0.004; unique letters indicate significant differences, e.g. A is 

different from B).  (C)  Knockdown of Orx1R in the BLA does not influence food consumption behavior 

(N = 27, Treatment Effect: F2,120 = 4.7, p ≤ 0.019; Interaction Effect: F10,120 = 2.6, p ≤ 0.007) until social 
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stress is introduced (Day 1; AAV-Scramble-shRNA vs AAV-Orx1R-shRNA, t20 = 2.8, +p ≤ 0.005), at 

which point knockdown temporarily reduces food intake, an effect that is matched by scramble controls 

only after 4 days of social stress (Day 5) relative to non-stressed cage control animals (^p < 0.05; Day 5 

Cage Control vs AAV-Orx1R-shRNA, t16 = 4.1, ^p ≤ 0.001; Cage Control vs AAV-Scramble-shRNA, t12 

= 2.8, ^p ≤ 0.016).  (D)  While body weight gain is reduced in knockdown mice, this effect becomes 

significant (relative to cage controls) only after they are subjected to social stress (N = 27, Days 1-5; 

Time Effect: F5,120 = 142.5, p ≤ 0.001; Interaction Effect: F10,120 = 2.2, p ≤ 0.022; Day 1 Cage Control vs 

AAV-Orx1R-shRNA, t16 = 2.8, ^p ≤ 0.014; Day 5 Cage Control vs AAV-Orx1R-shRNA, t16 = 2.7, ^p ≤ 

0.017). 
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Figure S7.  Knockdown of intra-BLA Orx1R prior to social stress-induced fear conditioning, does not 

affect an animal’s fear learning response (N = 22, CS Effect: F1,20 = 19.3, #p < 0.001). 
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Figure S8.  Treatment with intra-BLA Orx1R antagonist did not change expression levels of MAPK1 (N 

= 31, Phenotype Effect, F1,19 = 0.3, p ≥ 0.611; Treatment Effect, F1,19 = 2.8, p ≥ 0.113; Interaction Effect, 

F1,19 = 0.001, p ≥ 0.970).  
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Figure S9.  Molecular changes in BLA signaling dynamics as a result of intra-BLA Orx1R antagonism 

are not related to contextual fear response.  Transcription levels of HCRTR1, HCRTR2, PLCB1, and 

MAPK1 are not related to contextual fear freezing in (A, C, E, & G) Vehicle- (N = 11) or (B, D, F, & H) 

Orx1R Antagonist-treated animals (N = 12).  While a significant positive relationship was observed 

between contextual fear freezing and ERK1 (MAPK3) mRNA in (I) Vehicle-treated mice, (J) this positive 

relationship is absent (becomes more closely resembling a negative relationship) in animals infused with 

the Orx1R Antagonist.  Contextual fear freezing is not associated with BDNF transcription levels in (K) 

Vehicle- or (L) Orx1R Antagonist-treated mice.  
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Figure S10.  Phenotype-dependent cued fear learning is not correlated to changes in transcription levels.  

There are no phenotype-specific relationships observed between relative transcription levels of HCRTR1, 

HCRTR2, PLCB1, MAPK1, MAPK3, and BDNF and cued fear freezing response in (A, C, E, G, I, & K) 

Vehicle-treated mice (N = 11).  While this trend holds true mostly for animals treated with an (B, F, H, J, 

L) Orx1R antagonist as well (N = 12), (D) there is exists a significant negative relationship between 

HCRTR2 expression and cued fear freezing in only Stay mice administered the Orx1R antagonist (F1,5 = 

13.7, R2 = 0.7324, p ≤ 0.014). 

 

 

 

 

 

 



   

158 
 

 
Figure S11.  The proportion of BLA cells that express both HCRTR1 and HCRTR2 is small (~2%) 

compared to those that do not express the mRNA for both Orx receptors (N = 9, t16 = 192.4, p < 0.001). 
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Figure S12.  Inhibition of Orx2R in the BLA is not reveal correlations between cued fear freezing and 

transcription of (A) HCRTR1, (B) HCRTR2, (C) PLCB1, or (D) MAPK3 (N = 10).  (E) However, after 

intra-BLA Orx2R antagonism, a significant negative relationship between BDNF and fear freezing was 

observed (N = 10, F1,8 = 15.2, R2 = 0.6548, p ≤ 0.0046).  
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Figure S13.  Statistical correlations of molecular changes in the BLA associated with Orx1R antagonism 

(Fig. 11) are not present in Vehicle-treated animals.  (A) With vehicle administration, intra-BLA changes 

in MAPK3 and HCRTR2 mRNA levels are not correlated (N = 11).  Similarly, in vehicle-treated mice (N 

= 11), relationships in BLA transcription levels do not exist for (B) BDNF and HCRTR2 or (C) BDNF 

and MAPK3.  Further, BLA analyses of mice administered vehicle (N = 11) did not reveal relationships 

between HCRTR1 and (D) HCRTR2, (E) MAPK3, or (F) BDNF.  After intra-BLA Orx1R antagonism (N 

= 12), HCRTR1 gene expression levels in the BLA were not correlated with (G) HCRTR2, (H) MAPK3, 

or (I) BDNF.  
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Chapter 3:  Orexin receptor modulation in basolateral amygdala reveals generalization of 

social stress learning 

 

 

ABSTRACT 

Fear-associated memories and behavior are often expressed in contexts/environments 

distinctively different from those in which they are created.  This generalization process 

contributes to psychological disorders, particularly PTSD.  Stress-related neurocircuits in the 

basolateral amygdala (BLA) receive inputs from hypothalamic orexin (Orx) neurons. These 

neurons mediate activity by targeting orexin 1 (Orx1R) and orexin 2 (Orx2R) receptors which 

govern opposing behavioral functions.  In the BLA, inhibition of Orx1R or activation of Orx2R 

ameliorate stress responsiveness and behavior.  We discovered that most Orx1R
+ cells also 

express CamKIIα, while a majority of Orx2R
+ cells are colocalized with GAD67.  Further, 

HCRTR1 expression was positively correlated, and HCRTR2 expression was negatively 

correlated with freezing in a phenotype-dependent fashion (Escape vs Stay) in the Stress 

Alternatives Model (SAM).  The SAM consists of 4-days of social interaction trials between test 

mice and novel larger aggressors.  Exits positioned at opposite ends of the SAM oval arena 

provide opportunities to actively avoid aggression.  By Day 2, mice commit to a behavioral 

phenotype: Escape or Stay.  Pharmacologically manipulating Orx receptor activity in the BLA, 

before Day 3 of the SAM, was followed with standard tests of anxiety: Open Field (OF) and 

Elevated Plus Maze (EPM).  Freezing and locomotion during SAM interaction were generalized 

to the non-social OF environment.  This transference of behaviors was blocked by intra-BLA 

Orx1R antagonism, but not Orx2R antagonism in Stay mice.  Moreover, the pattern of social 

avoidance in the SAM for Escape and Stay mice were recapitulated in the OF test, with 

behavioral transference being mediated by Orx1R and Orx2R activity. 
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INTRODUCTION  

Fear learning plays an important role in many psychological disorders, including anxiety, 

depression, and PTSD.  In these disorders, particularly PTSD and related animal models, fear-

associated memories and behavior are often expressed in contexts and/or environments that are 

distinctively different from those in which they are generated, a learning process known as 

generalization or transference [1-6].  Preclinical models for these disorders often use 

environmental or social stressors [7], and frequently demonstrate specific fear learning 

mechanisms, such as Pavlovian conditioning [8, 9].  However, several classical tests for anxiety 

and/or depression (such as Elevated Plus Maze [EPM] or Open Field [OF] Test) in rodents have 

failed to faithfully translate to successful clinical trials [10, 11].  We suggest that more 

efficacious models should carefully include ecologically and ethologically designed applications 

[7, 12] that specifically consider learning in the production of behavioral outcomes and decision-

making [13]. 

During socially stressful interactions, such as aggression, behavioral responses are 

influenced by previous experience, environmental options, and the intensity of the social contact 

[8, 9, 14, 15].  These behavioral dynamics are controlled by neural and endocrine reactivity to 

stress.  We designed the Stress Alternatives Model (SAM) to allow for a window onto the 

development of anxious and depressive behavior, and the mechanisms of decision-making that 

produce resilient and susceptible phenotypes.  In an oval arena with apical escape routes, novel 

larger aggressive individuals interact with a smaller adult test subjects.  Test animals self-select 

one of two phenotypes: Escape or Stay, which exhibit stress resilient and susceptible responses 

to social interaction/preference tests (SIP) and in plasma glucocorticoid concentrations [9, 16, 

17].  Anxiolytic drugs (corticotropin releasing factor type 1 receptor [CRF1] antagonist 
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antalarmin, orexin 1 receptor [Orx1R] antagonist SB-674042, and orexin 2 receptor [Orx2R] 

agonist [Ala11, ᴅ-Leu15]–OrxB) prompt resilient Escape behavior in susceptible Stay animals [9, 

16, 17].  Alternatively, anxiogenic drugs (Yohimbine, an α2 adrenoreceptor antagonist, and 

Orx2R antagonist MK-1064) promote Stay behavior in Escape phenotype mice.  Behaviors 

reflecting motivation to escape the SAM are also modified by stress-related neuromodulatory 

events [16, 17].  A fear conditioning protocol (tone = conditioned stimulus [CS]) precedes the 

aggressive interaction (unconditioned stimulus [US]) in the SAM, in which the cued conditioned 

response (CR = freezing) in Stay mice is reduced by intra-basolateral amygdala (intra-BLA) 

injection of an Orx1R antagonist [17]. 

Orexins (hypocretins) are comprised of two peptides, OrxA (HCrt1)and OrxB (HCrt2), 

cleaved from the same pro-peptide produced in equal proportions in the lateral, dorsomedial 

hypothalamus perifornical area (LH-DMH/PeF) [18, 19].  While OrxA has equally high binding 

affinity for Orx1R and Orx2R, OrxB has a modestly higher affinity for Orx2R over Orx1R [20, 

21].  In the BLA, and in other regions such as the paraventricular thalamus, the two receptor 

types are functionally opposed [22-25].  We suspect therefore, that specific receptor binding is 

defined by cellular localization [17], such that functions of the Gq-linked Orx receptors are 

married to the output of the neuronal types in which each primarily exists.  During experiments 

examining the anti-stress properties of Orx1R antagonism in the BLA, it became clear that the 

classical fear conditioning we expected for stress-susceptible animals alone [9, 26], was more 

complex than originally hypothesized [17].  Instead of classical fear conditioning being limited 

to susceptible Stay mice, both Stay and Escape mice exhibit cued CRs.  Moreover, Stay mice 

also exhibit enhanced contextual conditioning (freezing prior to tone in opaque divider) during 

the same SAM protocol [17].  Additionally, intra-BLA injection of an Orx1R antagonist and icv 

https://www.sciencedirect.com/topics/neuroscience/binding-affinity
https://www.sciencedirect.com/topics/neuroscience/binding-affinity
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delivery of an Orx2R agonist reduce cued fear conditioning [16, 17].  Although Escape 

individuals experience significantly reduced neural and endocrine reactivity to stress, as well as 

diminished stress-related behavior compared to Stay animals [9, 16, 26] they undergo classical 

and contextual conditioning.  While the phenotypes are fundamentally different in the magnitude 

of responses (such as freezing), the fear learning processes can be induced in resilient (Escape) 

animals [17]. 

In addition to the Orx1R antagonist inhibiting secretion of the stress hormone corticosterone 

in both vulnerable (Stay) and resilient (Escape) mice, there were also specific alterations of 

signaling-related gene expression [17].  Specifically, inhibition of Orx1R in BLA promoted 

increased Orx2R (HCRTR2) gene expression in non-glutamatergic, presumably GABAergic, 

neurons [17].  In BLA, following Orx1R inhibition (likely in pyramidal neurons) there was also a 

significant increase in ERK1 (MAPK3) and Brain-Derived Neurotrophic Factor (BDNF) 

transcripts [17].  We hypothesized that these changes occurred primarily in GABAergic cells 

containing Orx2R.  This potential cross-neuron stimulation of Orx2R, ERK1, and BDNF mRNA 

production was only evident in vulnerable Stay mice following intra-BLA administration of an 

Orx1R antagonist.  The data suggest the Orx system not only modifies behavioral activity 

through actions in the BLA, it also acts to shift the signaling systems that underlie those 

behaviors [17].  We surmised that if behavior and signaling systems were both altered following 

intra-BLA Orx1R antagonism, then the learning and memory systems that allow and support 

those behaviors might also be changed. 

As inhibition of Orx1R in the BLA corresponded with transcriptional changes in Orx 

receptors and conditioned fear responses [17], we first predicted that mRNA levels of Orx 

receptors in the BLA would be related to phenotype-dependent socially induced freezing 
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behavior in the SAM arena.  Additionally, we noticed adaptive adjustment of specific self-

positioning strategies during avoidance of the aggressor appear during SAM trials.  That is to 

say, resilient Escape mice seemed to make more use of SAM arena edge space on the way to 

using the escape route at the apical edge, even though the CD1 aggressors primarily patrol there.  

Not surprisingly, susceptible Stay mice make greater use of center areas.  Those observations 

lead us to examine if the development of unique Escape and Stay coping strategies were being 

translated into equivalent behavior in subsequent trials using alternative testing models post-

treatment.  Since the open field (OF) and elevated plus (EPM) tests have uniquely defined 

movement strategies that have been associated with anxious responses [11,27,28], our surprising 

results suggested that the typical OF and EPM outcomes can be overridden.  Based on these 

findings, we hypothesized that social stress-induced fear freezing behavior will be generalized 

(learned transfer of the adaptive response from one context to another) to a novel OF Test 

environment, and that Orx1R inhibition or Orx2R stimulation would mute this learning response.  

As intra-BLA Orx receptors are important for generalization of fearful responses, we also 

hypothesized that specific learning of environmental self-positioning strategies during social 

aggressor avoidance in the SAM may be transferred/generalized to the non-social OF Test with 

pharmacological manipulation of Orx receptor activity.  Finally, we proposed that measures of 

anxious behavior in the classical EPM after social stress and behavioral testing may be 

unreliable and inconsistent with results from the SAM and OF Test learning trials. 

MATERIALS & METHODS  

Social Stress and Decision-Making Paradigm 

In the SAM paradigm (Fig. 1A), social conflict between a larger novel CD1 mouse and smaller 

C57BL/6NHsd male mouse takes place for five minutes over four days, during which test animals 
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may shorten interaction with the aggressor by escaping out of size-limited tunnels at the ends of 

an oval open field arena.  A tone given during isolation in the SAM apparatus prior to arena 

exposure conditions test subjects to the upcoming social interaction.  As distinct and stable 

phenotypes (Escape & Stay) are established on Day 2, drug manipulation on Day 3 allows for 

behavioral comparisons between phenotypes and drug controls (vehicle) during the SAM (Days 

3 & 4) and in tests of anxiety that follow SAM exposure (Open Field and Elevated Plus Maze).  

All procedures were performed in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Publications No. 80-23) and approved by the USD Institutional Animal Care and 

Use Committee. 

Experiment Overview (see also COMPLETE MATERIALS & METHODS) 

For these experiments, Orx receptor-targeting drugs (Orx1R antagonist: SB-674042, Orx2R 

antagonist: MK-1064, OrxA, concoction of OrxA & MK-1064 [for biased stimulation of Orx1R], 

and Orx2R agonist: YNT-185) were directed at the BLA 1h prior to SAM interaction on Day 3 

(Fig. 1B).  After SAM interaction on Day 4, mice were exposed to the OF Test (Day 4) and 

EPM (Day 5).  Behavioral measurements were taken the active phase (dark cycle), and included 

freezing (conflict-associated [SAM] or generalized [OF Test]), locomotion (SAM, OF Test, and 

home cage), time spent in center area (SAM and OF Test), and standard EPM measurements 

(time in open/closed arms and intersection zone).  Brains were collected and used for visual 

representations of mRNA (using RNAscope) or relative changes in gene expression (rt-qPCR) 

of Orx1R (HCRTR1) and Orx2R (HCRTR2) receptors, Ca++/Calmodulin Kinase type 2 alpha 

(CAMKIIα; glutamatergic cell marker), Glutamate Decarboxylase (GAD1; GABAergic cell 

marker), and parvalbumin (PVALB; calcium-binding protein found in a subset of GABA 

neurons).  All statistical analyses were built from a priori hypotheses and performed using two-
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way repeated measures ANOVA for SAM freezing behavior across days (Phenotype x Day), 

two-way ANOVA for in situ cellular localization studies and SAM, OF, or EPM behaviors 

(Phenotype x Treatment), Regression analyses where correlations between SAM and OF 

behaviors were made, and t-test, followed (where appropriate) by post hoc analyses. 

 

RESULTS (see also COMPLETE RESULTS)  

Social stress-induced freezing linked to specific Orx receptors in specific neurons 

Freezing in response to social conflict is common and most pronounced on Day 4 of the SAM 

paradigm (Fig. 2A; Phenotype Effect: F1,168 = 4.8, p ≤ 0.033; Time Effect: F3,168 = 4.2, p ≤ 

0.007; Interaction Effect: F3,168 = 4.1, p ≤ 0.008; Day 4 Escape vs Stay: t56 = 3.8, p < 0.001).  

This freezing behavior exhibits phenotype specific positive (Escape mice) and negative (Stay) 

regression relationships with HCRTR1 (Escape; Fig. 2B; F1,8 = 7.8, R2 = 0.4946, p ≤ 0.0233) and 

HCRTR2 (Stay; Fig. 2C; F1,12 = 9.7, R2 = 0.4481, p ≤ 0.0088).  The Orx1R and Orx2R are found 

in a minority of BLA neurons (Fig. 2D; F3,44 = 134.0, p < 0.001), suggesting that the strong 

functional relationship to freezing is determined by specific neurocircuits, presumably including 

CamKII-positive glutamatergic pyramidal cells for Orx1R effects on freezing in Escape mice 

(Figs. 2E-G; Interaction Effect: F2,30 = 37.4, p < 0.001; Orx1R
+ CamKIIα+ vs CamKIIα-: t10 = 

6.4, p < 0.001; Orx2R
+ CamKIIα+ vs CamKIIα-: t10 = 5.8, p < 0.001; CamKIIα+ Orx1R

+ vs 

Orx2R
+: t10 = 5.9, p < 0.001; CamKIIα+ Orx1R

+ vs Orx1R
+ & Orx2R

+: t10 = 2.8, p ≤ 0.009), and 

likely GAD67-positive GABAergic neurons for Orx2R relationship with freezing in Stay mice 

(Figs. 2H-J; GAD67 Expression Effect: F1,24 = 322.9, p < 0.001; Interaction Effect: F2,24 = 73.3, 

p < 0.001; Orx1R+ GAD67+ vs GAD67-: t8 = 18.0, p < 0.001; GAD67+ Orx1R
+ vs Orx2R

+: t8 = 

8.4, p < 0.001; GAD67+ Orx1R
+ vs Orx1R

+ & Orx2R
+: t8 = 2.9, p ≤ 0.008; Orx1R

+ & Orx2R
+ 
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GAD67+ vs GAD67-: t8 = 12.3, p < 0.001; GAD67- Orx1R
+ vs Orx1R

+ & Orx2R
+: t8 = 2.9, p ≤ 

0.008; GAD67- Orx2R
+ vs Orx1R

+ & Orx2R
+: t8 = 5.5, p < 0.001). 

Orx receptor-dependent generalization of freezing and locomotion are phenotype specific 

Importantly, freezing in response to social conflict in the SAM is generalizable to the OF test for 

vehicle treated Stay mice (Fig. 3; Antagonist groups: Phenotype Effect, F1,43 = 16.0, p < 0.001; 

Stimulation groups: Drug Effect, F3,46 = 17.1, p < 0.001; Phenotype Effect, F1,46 = 9.1, p ≤ 

0.004).  These Stay mice exhibit significantly more conflict freezing than Escape mice (Fig. 3A; 

t19 = 2.67, p ≤ 0.015).  The distinctive phenotype difference in behavior is eliminated by Orx1R 

antagonist treatment, but not by Orx2R antagonist (Fig. 3A; t15 = 2.8, p ≤ 0.014).  Further, 

phenotype differences are abolished with OrxA and Orx1R stimulation as a result of Escape mice 

displaying more freezing, and after Orx2R agonist as both phenotypes experience a reduction in 

freezing (Fig. 3B; Escape Vehicle vs OrxA: t10 = 3.4, p ≤ 0.007; Stay Vehicle vs OrxA: t16 = 3.3, 

p ≤ 0.005; Stay Vehicle vs Orx1R Stim.: t21 = 3.0, p ≤ 0.008; Escape Vehicle vs Orx2R Stim.: t9 

= 2.3, p ≤ 0.047; Escape OrxA vs Orx2R Stim.: t5 = 3.2, p ≤ 0.023; Stay Vehicle vs Orx2R Stim.: 

t17 = 3.3, p ≤ 0.004; Stay OrxA vs Orx2R Stim.: t9 = 8.7, p < 0.001; Stay Orx1R Stim. vs Orx2R 

Stim.: t13 = 8.5, p < 0.001). 

Generalization of locomotion is also transferable from SAM to OF for Escape mice (Fig. 4; 

Antagonist groups: Phenotype Effect, F1,43 = 9.0, p ≤ 0.005; Stimulation groups: Phenotype 

Effect, F1,46 = 8.2, p ≤ 0.006), with significant positive regressions between OF and SAM 

locomotion for Orx1R antagonist, but also for OrxA and the Orx2R agonist (Figs. 4E-H; Orx1R 

Ant.: F2,3 = 15.9, p ≤ 0.028; OrxA: F2,2 = 49.4, p ≤ 0.02; Orx2R Stim.: F2,1 = 351.5, p ≤ 0.034).  

Escape mice (vehicle treated) exhibit significantly more locomotion in the SAM and OF (Figs. 

4A, C), but not in the home cage (Fig. S9; SAM: t19 = 2.7, p ≤ 0.014; OF: t19 = 2.5, p ≤ 0.023).  
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This phenotypic distinction is observed after Orx2R antagonism, but not Orx1R antagonism 

(Figs. 4A, C; SAM.: t11 = 2.3, p ≤ 0.039) or Orx1R stimulation (Figs. 4B, D; SAM: t13 = 2.5, p ≤ 

0.026; OF: t13 = 2.5, p ≤ 0.028).  However, the correlation of locomotive behavior in SAM and 

OF is still present despite the reversal of the phenotypic divide (Orx1R Ant.: F2,3 = 15.9, p ≤ 

0.028). 

Generalization of phenotypic behavior patterns are modulated by Orx receptors 

As freezing and locomotion in response to social conflict are generalizable from SAM apparatus 

to OF, we sought to understand whether the basic patterns of phenotypic response (Stay and 

Escape), would be reflected in standard tests of anxious responsiveness, such as OF or EPM. 

There was a generalization effect of phenotypic behavior in OF (Fig. 5; Antagonist groups, 

SAM: Phenotype Effect, F1,43 = 7.4, p ≤ 0.010; OF: Phenotype Effect, F1,43 = 15.7; Stimulation 

groups, SAM: Drug Effect, F3,45 = 5.5, p ≤ 0.003; OF: Phenotype Effect, F1,46 = 4.9, p ≤ 0.032).  

However, for treated mice this transference was strictly dependent on movement patterns 

learned during 4 days in the SAM.  Escape mice, which used the edges of the SAM to locate 

apical escape routes located on the edge, also favored edges in the OF (Figs. 5F top; ).  In 

contrast, Stay mice frequented the center of the SAM apparatus to avoid patrolling CD1 

aggressors, and maintained that pattern in OF when treated with Orx1R or Orx2R antagonists or 

an Orx2R agonist (Figs. 5E, F bottom, G, H; Orx1R Ant.: F1,8 = 16.8, p ≤ 0.003; Orx2R Ant.: F1,5 

= 13.5, p ≤ 0.014; Orx2R Stim.: F1,4 = 40.2, p ≤ 0.003). 

The EPM results following 4 days of SAM interaction did not produce a phenotypic 

distinction between Escape and Stay mice for open arm, closed arm, or interaction zone times 

(Figs. S11; Open Arms: Phenotype Effect, F1,46 = 7.5, p ≤ 0.009; Closed Arms: Phenotype 

Effect, F1,46 = 8.5, p ≤ 0.005).  Surprisingly, anxious, stress-vulnerable Stay mice [9, 24], 
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exhibited significantly more time in open arms following OrxA treatment (t7 = 2.2, p ≤ 0.037), 

and Orx1R stimulation (Figs. S11B, D; t13 = 2.2, p ≤ 0.044); opposite of the expected finding 

relative to anxiety. 

 

DISCUSSION  

The process of phenotype development in the SAM requires numerous learning phases.  

Decision-making for stress-vulnerable individuals (Stay) in the SAM paradigm shifts to resilient 

(Escape) responses after anxiolytic drugs or behavioral modifications (such as exercise) are 

administered [9, 13].  This is also true after intra-BLA Orx1R inhibition or icv Orx2R stimulation 

[16, 17].  Conversely, decisions in the SAM switch from stress resilient responses to stress 

susceptible responses in Escape phenotype animals following anxiogenic treatments that include 

Orx2R antagonism [9, 17].  Furthermore, social aggression-based contextual and cued fear 

conditioning are reduced by intra-BLA Orx1R antagonism and by icv Orx2R stimulation [16, 

17], which suggested to us that amygdalar Orx receptors modify associative learning related to 

fear behavior.  Activation of the Orx system amends performance in novel object recognition, 

while reducing social interaction following defeat [29], further suggesting that Orx and stress-

related behavior together modify the conditions for learning.   

In the SAM, following the CS cue for fear conditioning, socially induced freezing in 

response to aggressive contact also takes time to learn, and appears most consistently after 4 

days of training (Fig. 2A).  Importantly, SAM-induced behavioral changes, like freezing, after 

acute pharmacological intervention (Day 3) are long-lasting, showing behavioral exhibiting 

changes on the day of treatment but also later (Days 4 & 5) [9, 16, 17].  Social aggression-

induced, phenotype-dependent freezing behavior on Day 4 is bidirectionally correlated, 
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positively for Escape with HCRTR1 and negatively for Stay with HCRTR2 gene expression in 

the BLA (Figs. 2B & C).  The locations of these receptors are distinctively organized primarily 

with HCRTR1 expressed (> 60%) in glutamatergic pyramidal (Figs. 2D-F, S5D, F) and HCRTR2 

in GABAergic neurons (Figs. 2G-I, S5E, F), suggesting separation of cellular function in the 

stress circuits of the BLA that are dependent on learning.  Simply put, the data suggest that, in 

Escape mice, as Orx1R mRNA in BLA (mostly pyramidal neurons) increases, freezing also 

increases.  Additionally, the data suggest that as Orx2R mRNA increases in Stay BLA (mostly 

GABA neurons), freezing also decreases.  Pyramidal Orx1R-containing neurons in the BLA are 

located in a larger pro-stress circuitry, and activate anxiogenic and pro-depressive behaviors and 

conditioned fear learning [17, 30].  This circuitry is also innervated by noradrenergic neurons of 

the locus coeruleus (LC), which are modulated by Orx1R and mediate cue-dependent fear 

memories [31-33].  In the BLA, Orx2R-containing GABA neurons inhibit the pro-stress 

circuitry, but also result in anxiolytic and anti-depressive behaviors and reduce conditioned-fear 

learning [16, 24].  The data suggest that learned responses are not only tuned to the Orx receptor 

type and particular neurocircuitry element in which they exist, but also reflected by the gene 

expression changes that occur over the 4 days of training.  Surprisingly, the coping strategies 

learned in the SAM is transferred to other behavioral tests for anxiety, such as the open field 

(OF; Figs. 3, 4, 5), but not the elevated plus maze (EPM; Fig. S11). 

We have previously noted that Escape and Stay behavior both require learning social 

behavioral patterns and associative cues, to efficiently minimize vulnerability from attack while 

using the escape hole or remaining in the SAM arena [8, 14].  Escaping mice utilize one of the 

two tunnels for egress with progressively reduced latency, while Stay mice display socially 

induced conflict freezing with progressively increased duration (Fig. 2A).  This suggests that 
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both Stay and Escape animals utilize coping strategies that include learning how to minimize 

vulnerability from aggression more efficiently with each trial.  This means it is necessary to 

monitor the patrolling patterns of the dominant aggressive male, to avoid those spaces while 

freezing (for Stay animals), or to develop ballistic or secretive escape movements to safely 

accomplish Escape.  As such, our model demonstrates more than one learned and adaptive 

reaction is possible in response to an unconditioned fearful stimulus in a fear conditioning 

paradigm.  Social defeat is replete with contextually rich stimuli, including the elements of 

social rank dynamics, which in natural settings allows for more than one appropriate behavioral 

response.  Others have demonstrated that Orx activation during social defeat reduces both social 

interaction and recognition learning in defeated mice [29], modifying appropriate behavioral 

responses.  Thus, the generalization or transference of responses (freezing, locomotion, center 

preference in Stay vs. edge preference in Escape mice) from the SAM to the OF arena, suggests 

behavioral plasticity in coping strategies linked to specific stress phenotypes.   

Regardless of the eventual phenotype, Escape and Stay mice must learn the patrolling 

routines of the novel, dominant, larger, aggressive (CD1) mice.  These mice patrol the edges of 

the SAM, because it is ecologically safer, and can easily block escape this way, since the tunnels 

are located on the apical edge.  Stress-vulnerable (Stay) mice learn to frequent the center of the 

SAM arena, to avoid the aggressor.  After 4 days of SAM training, these anxious, stress-

vulnerable Stay mice also frequent the center of the OF arena, just the opposite of what would 

be expected, since susceptible animals demonstrate reduced social interaction [29] in the SIP test 

[16, 34].  Conversely, Escape mice seek egress by following the edge of the arena to the tunnel, 

and thus in the OF, these stress-resilient (Escape) mice also keep close to the edges.  Finally, the 

duration of socially induced freezing in the OF is correlated with prior freezing in the SAM, 
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reflecting the learning that occurred there (Fig. 3E). 

The behavioral transference or generalization learning observed here likely results from 

distinctive Orx1R or Orx2R signaling within decision-making and anxiety/fear neurocircuitries 

that are inextricably tied to learning systems [17, 31-33].  When decision-making coincides with 

stress, recruitment of neural networks that define executive function, including the dorsolateral 

prefrontal, anterior cingulate, and orbitofrontal cortices, utilize connections with the emotion 

processing system of the amygdala [35, 36], which can be modified by other brain regions, such 

as the LC [31-33].  Likewise, learning events prompted by fear are mediated through potentially 

distinctive circuits involving hippocampus, lateral hypothalamus, LC, and amygdala [31-33].  In 

this way, the gating of stress-induced learning behavior, like those associated with transference 

and generalization, requires amygdalar engagement. 

Importantly, we demonstrate transference or generalization is strongly modified by Orx 

receptor actions in the BLA.  Antagonism of Orx receptors in the BLA impacts spatial memory, 

specifically during the consolidation/re-consolidation phase [37].  However, we report an 

observed caveat that Orx influence over BLA-gated learning events may depend on the anxious 

state of the individual.  For example, in Stay mice, intra-BLA Orx1R antagonism promotes 

learning to increase time in the center of the SAM arena (Figs. 5A, C, E, F).  These Orx1R reside 

predominantly in glutamatergic pyramidal cells of the BLA (Figs. 2A-F, S5F).  Interestingly, 

while Orx2R inhibition promotes activity in the center of the OF, and is suggestive of Stay 

learning of center avoidance in the SAM (Figs. 5A, C, G), typically BLA Orx1R and Orx2R 

inhibition have opposite effects on anxious behaviors in the SAM [17].  

Stress-induced generalization learning requires integration of anxiety elements of 

neurocircuitry [38, 39].  Stress-susceptible (Stay) mice exhibit enhanced socially induced 
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freezing behavior in the SAM (Fig. 3A), which is carried over (generalized or possibly 

overgeneralized) to the non-social OF Test arena (Fig. 3E).  Uniquely, our behavioral design 

incorporates conditioning over four days to a naturalistic fear in the form of social aggression 

(US+).  Our model captures fear generalization when mice are introduced to a new testing 

context (i.e. OF Test), where the absence of the unconditioned stimulus (social aggressor) 

should be more immediately distinguishable than the exclusion of a shock, as in less 

ethologically relevant stress paradigms.  While it is true that timing and layout of experimental 

design may modify the intensity of the generalized behavior [40], the transferred fear response 

observed in our study is tied to additional learned coping strategies (i.e. time in center and 

locomotion) when mice are moved from the SAM to the OF Test.  Thus, we posit that stress-

induced generalization learning requires integration of both learning and anxiety elements of 

neurocircuitry [38, 39]. 

Like learning how to move (Fig. 4) and identifying safe areas in the social context of the 

SAM (Fig. 5), generalization of freezing behavior is influenced by Orx receptor activity in the 

BLA (Fig. 3).  Activity from distinct neuronal populations within the lateral amygdala (LA) 

support the expression of generalized fear [41], and likely contribute to the observed 

transference of freezing behavior reported here.  While a relationship of the Orx system and 

contextual fear response has been identified through indirect noradrenergic connections to the 

LA from the LC [33], we provide evidence for a more direct influence of Orx in the amygdala 

on fear generalization.  In support of the relationship revealed between Orx2R expression in the 

BLA and socially induced freezing in the SAM (Fig. 2C), Stay mice display enhanced freezing 

behavior in both the SAM and OF Test environments after Orx2R antagonism (Figs. 3A, C), and 

reduced freezing with Orx2R stimulation (Figs. 3B, D).  Curiously, OrxA treatment, which 
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activates both Orx1R and Orx2R, elevated SAM freezing behavior in both Escape and Stay mice 

(Fig. 3B).  As Orx1R are expressed at higher levels in the BLA compared to Orx2R (Fig. 2D), it 

is reasonable to suggest that OrxA treatment would disproportionally activate Orx1R over Orx2R.  

Further, while Orx1R antagonism had no effect on socially induced freezing in the SAM (Fig. 

3A), it reduced freezing in the OF Test in Escape animals (Fig. 3C).  Biased activation of Orx1R 

enhanced freezing in both SAM and OF Test contexts in Stay animals (Figs. 3B, D).  While 

generalization of freezing behavior was apparent in vehicle-treated Stay mice (Fig. 3E), 

manipulation of intra-BLA Orx receptor activity disrupted this behavior (Fig. S7).  What is 

clear, however, is that Orx receptors in the BLA mitigate freezing behavior as learned in a social 

environment is carried over to a non-social context (Fig. 3), and these receptors appear to do so 

in a phenotype-dependent way (Figs. 2B, C).   

The EPM results testing for anxiety relationships in vehicle-treated animals do not show 

socially induced phenotypic separation (Fig. S11).  This was surprising at first, because both 

SAM and SIP results suggest a strong correlation between Escape and resilience, as well as Stay 

animals having high stress vulnerability.  In the EPM, both Escape and Stay mice spend most of 

their time in the closed arms, with significant excursions into the open arms, which were not 

affected by either Orx1R or Orx2R antagonists (Figs. S11A, C), an observation consistent with 

previous studies [42, 43].  Similarly, animals tested on the EPM before SAM trials, where 

Escape and Stay phenotypes develop, also do not exhibit differences in open or closed arm times 

[13].  It may simply be that social and environmental stressors provide radically dissimilar 

results.  However, with application of OrxA, Orx1R stimulation, or Orx2R stimulation, 

phenotypic differences are again revealed (Figs. S11B, D).  In the OF, stimulation of Orx1R 

(OrxA and Orx1R stimulation) prompted Stay animals to spend more time in the open (and less 
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in the closed) arms (Figs. S11B, D).  Again, the results seem to have been modified by previous 

experience in the SAM, which calls into question the value of both the OF and EPM tests.  If the 

results of the tests can be dramatically skewed, or reversed, by previous experience in the SAM, 

they may also be slanted by additional, perhaps not obvious, environmental or social stresses in 

other experimental paradigms, or by other life experiences before experimentation.  The clinical 

translatability of these tests has previously been called into question [10-12], and our results add 

reason to question their validity.  We urge caution for all those planning to use EPM or OF in 

future experiments. 

In conclusion, the Orx system interacts with BLA neurons to regulate fear learning and 

generalization during social stress.  Additionally, neurons that synthesize Orx1R and Orx2R in 

the BLA are mostly distinct.  While Orx1R are located primarily in glutamatergic neurons, a 

smaller majority of Orx2R are found in GABAergic interneurons.  Although learning strategies 

are influenced by anxious state and behavioral phenotype, our results suggest that within the 

BLA, Orx receptors modulate learning outcomes and generalization, while concomitantly 

modifying stress-related behavior.  The intra-BLA Orx receptors bidirectionally balance these 

learning states with Orx1R inhibition and, alternatively, Orx2R stimulation contributing to 

behavioral transference and a reduction in fear-induced generalization.  While orexin’s effect 

over learning extends beyond the BLA, including targets like the LC and hippocampus, we 

demonstrate an important role for intra-BLA Orx receptors to influence learning in a receptor- 

and anxious state-dependent manner.  
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Figure 1.  The Stress Alternatives Model (SAM) results in phenotype establishment after two days of 

social stress.  (A) The SAM is a 4-day paradigm in which test mice are conditioned to a tone (middle) 

before an opaque cylinder is lifted and animals must decide whether to Escape (left) or submit (Stay, 

right) to a large social aggressor.  By the end of Day 2, test mice commit to the Escape or Stay behavioral 

phenotype.  (B) Experimental design for behavioral trials include stereotaxic surgeries for cannula 
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implantation followed by a recovery and handling period before the beginning of the SAM.  On Day 3, 1 

hr before SAM exposure, mice were administered Orx receptor targeting drugs into the BLA.  Following 

SAM social interaction on Day 4, mice were exposed to the Open Field (OF) Test and on Day 5 they 

were introduced to the Elevated Plus Maze (EPM).  
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Figure 2.  Stress-induced and phenotype-dependent freezing behavior is bidirectionally correlated with 

Orx1R (HCRTR1), expressed predominantly in glutamatergic neurons, and Orx2R (HCRTR2), in 

GABAergic neurons, gene expression in the BLA.  (A)  Phenotype (Escape & Stay) distinctions in SAM-

derived conflict freezing are significant and most pronounced on Day 4 (Phenotype Effect: F1,168 = 4.8, p 

≤ 0.033; Time Effect: F3,168 = 4.2, p ≤ 0.007; Interaction Effect: F3,168 = 4.1, p ≤ 0.008; Day 4 Escape vs 

Stay: t56 = 3.8, *p < 0.001).  (B) In Escape mice, intra-BLA Orx1R (HCRTR1) transcription is positively 

associated with socially induced freezing (social stress-related freezing) in the SAM (F1,8 = 7.8, R2 = 

0.4946, p ≤ 0.0233).  (C) Conversely, socially induced freezing behavior in the SAM is negatively related 

to Orx2R (HCRTR2) mRNA levels in the BLA of Stay mice (F1,12 = 9.7, R2 = 0.4481, p ≤ 0.0088).  While 

Orx receptors are associated to phenotype and freezing behavior, (D) only a small percentage of the total 

number of BLA cells contain Orx1R, Orx2R, or both receptor subtypes (F3,44 = 134.0, p < 0.001; 

significance is by unique symbol, e.g. A is significantly different from B, C, & D).  (E & F) In the BLA, 

Orx1R (green), but not Orx2R (white), are highly co-expressed with the glutamatergic cell marker 
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CamKIIα (red; some of the observed colocalizations are indicated with solid green arrows = Orx1R+ + 

CamKIIα+, solid white arrow = Orx2R+ + CamKIIα+, and unfilled white arrows = Orx2R+ + CamKIIα-).  

(G) The number of BLA Orx1R+ cells expressing CamKIIα is over 60% while Orx2R+ cells co-express 

the glutamatergic marker ~30% of the time, and about 50% of the small proportion of BLA cells that 

express both Orx1R and Orx2R also express CamKIIα.  (H & I) Expression of Orx2R (white) overlaps 

with GAD67 (red) more than Orx2R (green) in the BLA (a few observed colocalizations are identified 

with unfilled green arrows = Orx1R+ + GAD67-, solid white arrow = Orx2R+ + GAD67+, and unfilled 

white arrows = Orx2R+ + GAD67-).  (J) Analyses reveal Orx2R are expressed in GABA neurons in a 

greater proportion than Orx1R or cells that co-express Orx1R & Orx2R.  _p ≤ 0.05 for comparisons to 

CamKIIα-/GAD67- cells in the same receptor (Orx1R+ or Orx2R+) group; +p ≤ 0.05 for comparisons to 

Orx1R+ of the same CamKIIα+/GAD67+ profile; #p ≤ 0.05 for comparisons to Orx2R+ of the same 

CamKIIα+/GAD67+ profile.  CeA = central amygdala; ITC = intercalated cells of the amygdala 
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Figure 3.  Socially induced freezing behavior in the SAM is transferred to the non-social OF Test in Stay 

mice.  (A) Stay mice treated with intra-BLA infusion of an Orx2R antagonist, but not an Orx1R 

antagonist, exhibit enhanced freezing in the SAM.  (B) Mice in OrxA and Orx1R stimulation groups 

exhibit enhanced freezing, while animals treated with an Orx2R agonist demonstrate significantly reduced 

freezing in the SAM.  (C) Antagonism of Orx1R receptors in the BLA reduced generalized OF Test 

freezing in Escape mice only, while Orx2R antagonist treatment increased OF freezing in Stay animals.  

(D) Freezing in the OF Test was increased in Orx1R stimulation group mice, while intra-BLA agonism of 

Orx2R reduced freezing in both phenotypes.  (E) In vehicle-treated control Stay mice, conflict freezing in 

the SAM is positively correlated to OF Test freezing (F1,11 = 8.7, R2 = 0.4423, p ≤ 0.0131).  _p ≤ 0.05 for 

comparisons between phenotypes in the same treatment group; +p ≤ 0.05 for comparisons to Vehicle-

treated mice of the same phenotype; #p ≤ 0.05 for comparisons to Orx1R Ant. group of the same 

phenotype; !p ≤ 0.05 for comparisons to OrxA treatment animals of the same phenotype; %p ≤ 0.05 for 

comparisons to mice in the Orx1R stimulation group of the same phenotype. 
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Figure 4.  Social stress-induced locomotion in SAM is generalized/transferred to a non-social OF Test 

environment after intra-BLA manipulation of Orx receptor activity in Escape animals.  (A) Escape mice 

express higher locomotor activity compared to Stay animals during social stress in the SAM, but this 

phenotype difference is not observed after intra-BLA Orx1R antagonism.  (B) Infusion of an Orx2R 

agonist into the BLA enhances locomotion in the SAM in Stay mice.  (C) While Escape animals in the 

vehicle control group display higher locomotion compared to Stay mice in the OF Test, this divergent 

phenotype response is not observed after intra-BLA Orx1R or Orx2R antagonism.  (D) Similarly, OrxA 

and Orx2R stimulation eliminates the difference in locomotion between Escape and Stay mice in the OF 

Test.  (E) Unlike vehicle controls (gray dotted line represents linear regression line, F1,12 = , R2 = 0.0695, 

p ≥ 0.5281), a significant positive relationship between SAM and OF Test locomotion is observed in 

Escape mice treated with an Orx1R antagonist (F2,3 = 15.9, R2 = 0.8413, p ≤ 0.0282).  (F) A significant 

negative correlation is revealed between SAM and OF Test locomotion in Escape mice treated with an 

Orx2R antagonist (F1,4 = 11.4, R2 = 0.7401, p ≤ 0.0279).  Like Orx1R antagonism, significant positive 

associations between locomotor activity in the SAM and OF Test for Escape mice treated with (G) OrxA 

(F2,2 = 49.4, R2 = 0.9611, p ≤ 0.02) or (H) an Orx2R agonist (F2,1 = 351.5, R2 = 0.9972, p ≤ 0.034).  _p ≤ 

0.05 for comparisons between phenotypes in the same treatment group; +p ≤ 0.05 for comparisons to 

Vehicle-treated mice of the same phenotype; !p ≤ 0.05 for comparisons to OrxA treatment animals of the 
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same phenotype; %p ≤ 0.05 for comparisons to mice in the Orx1R stimulation group of the same 

phenotype. 
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Figure 5.  Treatments targeting Orx receptors in the BLA promote transfer learning from the SAM to the 

OF Test in Stay mice.  (A) In the SAM, the amount of time spent in the center of the arena is not different 

between Escape and Stay animals in the vehicle control group, but phenotype divergence occurs after 

intra-BLA Orx1R antagonism with Stay mice spending more time in the center.  (B) Escape mice treated 

with an Orx2R agonist display increased time in the center of the SAM arena.  (C) While Escape and Stay 

vehicle-treated mice did not show differences in the amount of time spent in the center of the OF Test, 

both intra-BLA Orx1R antagonism and Orx2R antagonism prompted phenotype separation with Stay 

animals spending more time in the center of the OF.  (D) No differences in time spent in the center of the 

OF Test were observed in Orx receptor stimulation groups.  (E) Regression analysis revealed a 

significant and positive relationship (F1,8 = 16.8, R2 = 0.6780, p ≤ 0.0034) between time spent in the 

center of the SAM and time spent in the center of the OF Test after intra-BLA Orx1R antagonism in Stay 

animals, but not in vehicle-treated Stay mice (dotted gray line represents regression line, F1,12 = 2.1, R2 = 

0.1631, p ≥ 0.1712).  (F) Examples of tracking software maps for Orx1R antagonist-treated Stay mice 
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that prefer the edges of the SAM and OF Test (top) and those that bias the center regions (bottom).  (G) 

Significant and positive correlations exist for time spent in the center of the SAM and time spent in the 

center of the OF Test for Stay mice treated with an Orx2R antagonist (F1,5 = 13.5, R2 = 0.7293, p ≤ 

0.0144) or (H) an Orx2R agonist (F1,4 = 40.2, R2 = 0.9096, p ≤ 0.0032).  _p ≤ 0.05 for comparisons 

between phenotypes in the same treatment group; !p ≤ 0.05 for comparisons to Vehicle-treated mice of 

the same phenotype. 
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COMPLETE MATERIALS & METHODS 

Animals   

Adult male C57BL/6NHsd mice (6-8 weeks old) weighing ~22-28 g were obtained from Envigo 

(Indianapolis, IN; N=194) and acclimated for a 5-day period in groups five, after which animals 

were singly housed in rooms held at 22°C and 35% relative humidity for the remainder of the 

experiments.  Food and water were provided ad libitum.  For studies involving pharmacological 

manipulations (N = 109), bilateral stereotaxic surgeries were performed where guide cannula (26 

ga cut to 4.0 mm) were directed at the basolateral amygdala, or intra-BLA.  A separate set of 

retired male breeder Hsd:ICR mice (CD1, N = 30) weighing ~50 g (Envigo) were individually 

housed, and used to initiate aggression in the Stress Alternatives Model (SAM; Fig. 1A).   

Mice were subjected to a 12:12 light-dark cycle (with lights turning off at 6 p.m.), and 

behavioral experiments were performed during the animals’ active phase (scotophase).  Two 

days (48 h) after surgeries, test subjects (C57BL/6NHsd mice) were handled daily for 7 days 

before SAM exposure and behavioral testing the five proceeding days (Fig. 1B).  All procedures 

(surgery and behavioral testing) were performed in a manner that minimized suffering.  The 

number of animals used was in accordance with the National Institutes of Health’s Guide for the 

Care and Use of Laboratory Animals (NIH Publications No. 80-23) and approved by the 

Institutional Animal Care and Use Committee of the University of South Dakota. 

Stereotaxic Surgeries   

Mice were anesthetized using isoflurane (2% at 1.0 L/min flow rate) before bilateral intra-BLA 

guide cannula (PlasticsOne, Roanoke, VA; 26 ga cut to 4.0 mm) implantation.  Following 

surgery, mice were provided a recovery period (7 days) before behavioral testing.  Cannula 

placement was performed using the following stereotaxic coordinates: -1.35 mm AP, ± 3.30 ML, 
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and -4.90 mm DV.  During surgery and for ~45 minutes post-surgery, mice were kept on a 

warming pad to maintain core body temperature.  Immediately following surgery and 24 hours 

after surgical procedures, mice were provided pain relief in the form of subcutaneous injections 

of the analgesic ketorolac (5 mg/kg). 

Drugs & Drug Administration   

As several drugs were used to activate or inhibit intra-BLA Orx receptors, we broke the 

assessments into two broad categories: Orx receptor antagonist groups and Orx receptor 

stimulation groups.  The Orx receptor antagonist groups consisted of mice treated with the Orx1R 

antagonist SB-674042 (N = 20; IC50 = 3.76 nM for Orx1R; MedChemExpress, Monmouth 

Junction, NJ) and the Orx2R antagonist MK-1064 (N = 17; IC50 = 0.5 nM for Orx2R; 

MedChemExpress).  For Orx receptor stimulation groups, mice were administered OrxA (N = 13; 

EC50 = 20 nM for Orx1R & Orx2R; ToCris, Minneapolis, MN), a concoction of OrxA & MK-

1064 (N = 19; for biased Orx1R activation), or the Orx2R agonist YNT-185 (N = 12; EC50 = 28 

nM for Orx2R; Wako Chemicals, Richmond, VA).  Drug effects were compared to vehicle-

treated (N = 28; artificial cerebrospinal fluid; aCSF + 25% DMSO) control animals that 

underwent cannula implantation surgeries and were exposed to the same testing conditions and 

procedures as drug-treated mice.  On Day 3 of the behavioral design (Fig. 1B), mice were 

infused bilaterally in the BLA (300 nL/side) with their designated treatment an hour before social 

interaction in the SAM.   

All drug treatments were diluted using a 3:1 ratio of aCSF to dimethylsulfoxide (DMSO); 

and all treatments, excluding SB-674042 and YNT-185, were brought to a 0.1 nmol/0.3 μL 

concentration.  The dose for the Orx2R antagonist, MK-1064, was 3x lower than previously used 

concentrations that produced anxiogenic effects when administered to the whole brain 

(intracerebroventricularly; icv) [1].  Similarly, the intra-BLA dose for OrxA was selected and 
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adjusted based on icv administrations that produced anxious behaviors in mice [2].  As the Orx1R 

antagonist SB-674042 and the Orx2R agonist YNT-185 have lower binding affinities compared 

to the Orx2R antagonist (MK-1064), we chose a slightly higher doses (0.3 nmol/0.3 μL for SB-

674042 and 10 nmol/0.3 µL for YNT-185) in order to compensate for these differences.   

Artificial cerebrospinal fluid (aCSF; 8.59 g NaCl, 0.201 g KCl, 0.279 g, CaCl2, 0.16 MgCl2, 

0.124 g NaH2PO4, 0.199 g Na2HPO4/L H2O) was mixed and brought to a physiological pH 

(~7.33) using NaOH before being filtered, degassed, and stored at 4°C.  Drugs were infused 

using injector cannula (33 ga cut to 4.9 mm, extending 0.9 mm below each guide cannula) placed 

into implanted guide cannulae, and injecting with a 1.0 µL digital syringe (Model 7101 Zero 

Dead Volume, Knurled Hub 2.75”, 22GA Needle; Hamilton Company, Reno, NV) at a rate of 

0.5 μL/min.  After drug administration, the injector and syringe were left in place for 90 sec.  

Home cage mobility was measured briefly (~3 min) after SAM interaction on Day 3 in order to 

note changes in locomotion that resulted, not from social stress, but instead from drug 

interactions. 

Behavioral Design   

Behavioral procedures were performed during the dark cycle when the animals are active, under 

red light (~700 nm λ).  Video cameras (GoPro Hero 3 & Hero 7) were used to record behavioral 

measures for later analyses.  To assess conflict freezing during the SAM (Figs. 2A, B), mice 

from three separate cohorts (N = 73) were run through four days of the SAM.  For 

pharmacological experiments (Figs. 3-5), animal groups included mice treated with vehicle 

(N=28, used for drug treatment comparisons), SB-674042 (Orx1R Ant.; N=20), MK-1064 

(Orx2R Ant.; N=17), OrxA (N=13), OrxA + MK-1064 (Orx1R Stim.; N=19), and YNT-185 

(Orx2R Stim.; N = 12).   
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Each treatment group was subjected to 4 days of social stress in the SAM with intra-BLA 

drug administration occurring on Day 3 an hour before SAM exposure (Fig. 1A, B).  Day 4 of 

the experimental design includes SAM social interaction followed immediately by Open Field 

(OF) testing (Fig. 1B).   On the final day (Day 5), mice were tested in the Elevated Plus Maze 

(EPM; Fig. 1B).  At the end of testing on Day 5, mice were briefly anesthetized using isoflurane 

(5% at 1.0 min/L for ~2 min) and rapidly decapitated.  Whole brains were collected, stored at -

80°C, and sectioned to discern accurate placement of cannula and injections into the BLA.  Only 

animals in which the BLA was successfully targeted bilaterally (82 mice out of 109 total; 

Vehicle = 21 [8 Escape & 13 Stay]; Orx1R Ant. = 15 [5 Escape & 10 Stay]; Orx2R Ant. = 13 [6 

Escape & 7 Stay]; OrxA = 9 [4 Escape & 5 Stay]; Orx1R Stim. = 15 [6 Escape & 9 Stay]; Orx2R 

Stim. = 9 [3 Escape & 6 Stay]) were used for behavioral analyses (Fig. S1) 

Stress Alternatives Model (SAM)   

The Stress Alternatives Model (SAM) (Fig. 1A) includes the use of a white box (91 cm x 22 cm 

x 30 cm) with two concave dividers (r = 10.25 cm).  In this way, the SAM apparatus consists of 

three parts, which include an oval open field area (length = 71 cm, width = 22 cm, height = 30 

cm) and two enclosed (safe) areas (10 cm x 22 cm x 30 cm) which are accessible only to smaller 

C57BL/6N mice that choose to leave the open field area via provided escape tunnels (Fig. 1A).  

At the beginning of the SAM paradigm, an opaque cylinder (diameter = 15 cm, width = 20 cm) 

is placed in the center of the open field and an aggressive CD1 is positioned outside the cylinder 

in the open arena of the SAM.  A test mouse (C57BL/6N) is placed into the cylinder and 

subjected to a fear conditioning paradigm, consisting sequentially of a 30 sec acclimation period, 

a 5 second tone (2500 Hz at 75 dB; conditioned stimulus), a 10 second post-tone trace period, 
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and finally removal of the cylinder resulting in aggressive social interaction with the CD1 

(unconditioned stimulus) for a 5 min period. 

  During the first day of SAM exposure, the open field arena and the two escape routes on 

both ends are novel, but over the course of four days, mice are allowed to choose to utilize the 

escape route or remain in the SAM arena with the CD1 aggressor.  Importantly, each test mouse 

encounters a different and unfamiliar CD1 aggressor throughout the 4-day SAM paradigm.  By 

the end of Day 2 of the SAM, test mice will commit to one of two behavioral phenotypes that 

will be consistent for the remaining days (Days 3 & 4) of the SAM protocol: mice that choose to 

utilize the escape tunnels (escaping social aggression) are categorized as expressing the Escape 

phenotype, and those that remain in the SAM arena and submit to social aggression express the 

Stay phenotype (Fig. 1A).  Earlier studies from our lab revealed that Escape mice exhibit 

significantly reduced physiological and behavioral measurements of stress when compared to 

Stay mice [1, 3-5]; however, both phenotypes receive equally high levels of social aggression 

from CD1 mice. 

At the end of 5-minute interactions in the SAM, both mice (test mice and CD1 mice) were 

removed from the apparatus and placed into their home cages.  When a test mouse escaped, they 

were left in the enclosed area for the remainder of the 5 minutes, with a clear perforated sheet of 

plastic being placed in front of the escape route.  SAM interactions were recorded (GoPro Hero 3 

& Hero 7) and analyzed using ANY-maze Video Tracking Software (Version 6.0, Stoelting Co., 

Wood Dale, IL).  Between SAM trials, the apparatus was cleaned using 70 % ethanol, 

disinfectant wipes, and dried using clean paper towels. 

Animals were separated into phenotype groups after the first two days of the SAM: Escape if 

they utilized the escape route on Days 1 and/or 2 and Stay if the mouse did not utilize the escape 
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tunnel by the end of Day 2.  For pharmacological studies, animals within a given phenotype 

group were randomly assigned to receive treatments (vehicle, Orx1R Ant., Orx2R Ant., OrxA, 

Orx1R Stim., or Orx2R Stim.) on Day 3.  Behavioral measures on Day 4 (24 hours after drug 

administration) were analyzed, including conflict freezing, time in the center of the SAM arena, 

and social stress-induced locomotion. 

Conflict freezing describes motionless behavior in the presence of the social aggressor, and is 

defined as bouts of immobility, excluding normal breathing behavior, for one second or longer 

during social interaction in the SAM [1] or OF Test.  Conflict freezing includes freezing in 

anticipation or in response to aggression, as well as contextual freezing in response to being in 

the SAM open field where social aggression previously took place or the OF Test during 

transference. 

Time spent in the center of the SAM was defined as the amount of total time each mouse 

spent inside the center of the SAM (48 cm x 9 cm).  As this measure is often used as an indicator 

of stress in the OF Test [6], we sought to compare time spent in the center of the SAM open field 

to traditional OF testing.  We further explored how this behavior may change with phenotype 

expression: Stay and Escape. 

Locomotor activity was measured in the SAM to compare social stress-induced locomotion 

to that occurring subsequently in the OF Test, in which no social aggressor was present.  Home 

cage locomotion was also measured on Day 3 to assess whether behavioral measurements of 

locomotor activity in the SAM and OF Test were not simply drug-induced responses.  

Locomotion in the SAM, OF Test, and Home cage Mobility was calculated taking the total 

distance the mice traveled and normalizing it to the amount of time spent in the SAM, OF, or 

Home cage environment (cm/s).  
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Validation of the SAM   

As the SAM is a resource for describing anxious and depressive behaviors, it has been subjected 

to validation testing, using criteria for Construct, Predictive, and Face Validities [7].  

Incorporating aspects of social defeat and measures of active avoidance, the SAM construct 

explores behavioral fear and anxiety [8-11], depression and stress [12, 13], but further the 

mitigation of these stress-induced products via Escape, while being both ethologically and 

ecologically applicable [3, 14, 15] and preserving comparisons to pertinent human disorders [16, 

17], suggesting a degree of Construct Validity.  In the SAM, predictive validation has been 

confirmed through the induction of behavioral alterations, including the reversal of phenotypes, 

using antidepressive, anxiolytic, or anxiogenic drugs (antalarmin, NPS, and yohimbine) [4, 5, 

18].  Further, the SAM has been used in combination with, and produces analogous results to, 

the Social Interaction/Preference (SIP) Test [1, 19], which has been validated as translationally 

and predictively reliable in representing the efficacy of pharmacotherapies used to treat anxiety 

(benzodiazepines) and depression (SSRIs) [20-24].  Additionally, raised glucocorticoid 

concentrations exhibit an enhanced physiological stress response in animals facing social 

aggression in the SAM, where Stay mice present the greatest increase [1, 3-5, 18, 25].  As far as 

Face Validity, SAM exposure results in behavioral effects, largely examples of behavioral 

inhibition (FC freezing, Conflict freezing), startle (Conflict Startle), and social avoidance 

(Escape, Escape Latency, and SIP test), that imitate those seen in human depression and anxiety. 

Open Field (OF) Test  

On Day 4, after being subjected to 5 min of social aggression in the SAM, the OF Test [6] was 

conducted in an opaque, white square box (40 cm3), under red lighting (Fig. 1B).  Test mice 

(C57BL/6N) were placed in the center of the arena at the beginning of testing and allowed to 
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explore the open field area for 5 min while being video recorded (GoPro Hero 3 & Hero 7).  

Videos were used to perform behavioral analyses (ANY-maze 6.0).  Analyzed behaviors 

included freezing time (as defined and measured in the SAM), time spent in the center (20 cm2) 

of the apparatus, and locomotion (as defined and measured in the SAM and Home cage mobility 

assessment).  Between each trial, the arena was cleaned using 70% ethanol, disinfectant wipes, 

and dried thoroughly with clean paper towels. 

The OF Test has long been used as a model for anxiety in animal studies, specifically to 

determine how treatments alter anxious behavior [6].  Behavioral analysis in the OF began as 

soon as the animal was placed in the center of the arena, and continued for 5 min.  Time spent in 

the center of the OF arena (20 cm2) and time spent around the edges of the arena were recorded, 

as more time spent in the center of the OF arena is typically interpreted as an animal 

experiencing decreased anxious behavior, and more time around the border as an indication of 

increased anxious behavior.  For these experiments, it is important to note that we compared the 

OF behavior of this classic OF Test with SAM OF behavior. 

Elevated Plus Maze (EPM) 

On Day 5, test mice (C57BL/6N) were exposed to the EPM [26], one day after SAM social 

interactions (Fig. 1B).  The EPM apparatus includes an elevated (74 cm tall) plus-shaped 

platform with two open arms (50.5 cm x 10.5 cm x 1.5 cm edge height), two closed arms (50.5 

cm x 10.5 cm x 40 cm wall height), and an intersection zone (10.5 cm2).  Under red light, all 

animals were placed in the center of the EPM, with their heads facing a corner between an open 

and closed arm to avoid bias toward a specific arm.  Trials were video recorded (GoPro Hero 3 

& Hero 7) and behavioral measurements were scored by individuals blind to the treatment 
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groups.  Between all trials, the arena was cleaned sequentially using 70% ethanol, disinfectant 

wipes, and thoroughly dried with paper towels.   

Once mice were placed on the EPM apparatus, behavior was analyzed for 5 min.  Time spent 

in the open and closed arms of the EPM were measured, as they are typically thought to reflect 

the anxious state of an animal.  Increased time spent on the open arms is associated with less 

anxiety, while increased time spent on the closed arms reflects more generalized anxious 

behavior [26, 27].  Total time spent in intersection zone was also recorded.  The results for a 

single animal in the Orx1R Ant. Stay group is not included in the reported results as there was a 

camera malfunction during behavioral testing and no video was available for analysis. 

RNA Extraction 

Fresh frozen brains of mice exposed to the 4-day SAM paradigm and cage control animals not 

exposed to social stress (N = 30 Total; N = 6 Cage Controls, N = 10 Escape mice, & N = 14 Stay 

mice) were cut (Leica Biosystems, Buffalo Grove, IL; Leica CM1850 Clinical Cryostat, Cat. No. 

047131148) into 200 μm sections.  Microdissection of the BLA (AP -1.00 mm to -2.45 mm 

relative to Bregma) was performed on a cold plate using 25 GA punches (Stoelting Co., Wood 

Dale, IL; Brain Punch Set, 0.25 to 1.25 mm; Cat. No. 57401) and submerged into 500 μL of 

TRIzol reagent (Thermo Fisher Scientific, Waltham, MA; Invitrogen TRIzol Reagent, Cat. No. 

15-596-018). 

The TRIzol method as described previously [28] was used with some modifications.  In 

short, incubation of BLA tissue in 500 μL Trizol at room temperature took place for 5 min 

followed by phase separation through the addition of 100 μL of 1-bromo-3-chloropropane and 

centrifugation (4°C, 7,500xg, 15 min).  The topmost aqueous layer was collected and RNA 

precipitation through the addition of 250 μL of isopropanol and 1 μL glycol blue (Thermo Fisher 
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Scientific, Waltham, MA; GlycoBlue Coprecipitant, Cat. No. AM9516) followed by 

centrifugation (4°C, 12,000xg, 20 min) formed a visible RNA pellet.  The excess alcohol around 

the pellet was removed using a pipette, and the remaining RNA was washed with 75% ethanol 

before being centrifuged (4°C, 16,000xg, 5 min).  The majority of the ethanol was collected and 

discarded and the samples were positioned in a hot plate oven set to 60°C for 20-40 min to 

evaporate the remaining ethanol.  A concentrated RNA sample was created by adding 25 μL 

RNase-free water before quantification using a nanodrop (Implen Inc., Westlake Village, CA; 

Nanophotometer N50 Spectrometer).  Sample aliquots were diluted to 20 ng/μL and stored at -

80°C for later PCR analyses. 

Quantitative Reverse Transcription PCR (qRT-PCR) 

Purchased assays (Thermo Fisher Scientific, Waltham, MA) for the PCR analyses included 

HCRTR1 (4351370, Mm01185776_m1), HCRTR2 (4351370, Mm01179312_m1), and GAPDH 

(4453320, Mm99999915_g1) as the housekeeping gene.  A master mix for each PCR target was 

created using a one-step qRT-PCR kit (Cat. No. 4392653) before being mixed with RNA 

samples from BLA tissue in individual PCR tubes (MIDSCI, Valley Park, MO; Pryme 

Ergonomic PCR Tubes; Cat. No. B77201).  The PCR tubes were then loaded into Applied 

Biosystems QuantStudio 3 No. B77201 thermal cycler (Thermo Fisher Scientific, Waltham, MA; 

Cat. No. A28131) and, as per Taqman Assay vendor recommendations, were run through 40 

cycles at the following conditions: reverse transcription (48°C, 15 min), DNA polymerase 

activation (95°C, 10 min), denaturation (95°C, 15 sec), and annealing & extension (60°C, 1 min).   

No enzyme and no template control PCR sample tubes were created to rule out the possibility 

of contamination during PCR runs.  Individual samples from non-stressed cage control mice (N 

= 6), Escape mice (N = 10), and Stay mice (N = 14) were used for PCR analysis.  Duplicates for 
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each sample were run and the average Ct value was subtracted from the average housekeeping 

gene (GAPDH) Ct to give the ΔCt for analysis.  Determination of relative gene expression levels 

was made using the 2-ΔΔCt method [29], which was then compared to the average ΔCt of the non-

stressed cage controls.  Regression curves were made for these data where average fold change is 

correlated to SAM freezing behavior. 

In situ Hybridization (RNAscope) 

Fresh frozen brains (N = 12) of C57BL/6NHsd mice (9-10 weeks old) not exposed to social 

stress or behavioral testing were sectioned into 20 µm coronal sections and positioned on slides 

(Fisher Scientific, Pittsburgh, PA; Superfrost Plus, Cat. No. 12-550-15).  Tissue that incorporated 

the BLA from AP -1.50 to -1.80 relative to bregma was incubated in cold (4°C) 10% formalin 

for 20 min and then washed (2x for 1 min) in 1x phosphate buffer solution (PBS).  Dehydration 

of tissue was performed by sequentially washing the sections in ethanol (50%, 70%, and 100%; 5 

min each) followed by a final ethanol (100%) wash overnight in a -20°C freezer.   

Proteins were digested in the tissue sections the next day with a protease treatment before 

being rinsed in distilled H2O.  Bathing of tissue in RNAscope (Advanced Cell Diagnostics, 

Newark, CA) probes (HCRTR1, Cat. No. 466631; HCRTR2, Cat. No. 581631; GAD1, Cat No. 

400951; CAMKIIα, Cat. No. 445231; PVALB, Cat. No. 421931) took place at 40°C for 2 h in a 

specially designed hybridization oven (ACD HybEZ II oven, Cat. No. 321711).  Next, sequential 

washes (RNAscope Wash Buffer Reagents [310091]: Wash Buffer 50x diluted to 1x) and 

bathing with amplification buffers (RNAscope Fluorescent Multiplex Detection Reagents 

[320851]: AMP1 [320852], AMP2 [320853], AMP3 [320854], AMP4 ALT A [320855], AMP4 

ALT B [320856]) was performed to bind fluorophores and enhance the signaling of target 

mRNA.  Lastly, the sections were stained with DAPI (20 sec) and a mounting medium (Fisher 
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Scientific; Prolong Gold Antifade Mountant, Cat. No. P10144) before being coverslipped and 

stored at 4°C in the dark until imaging. 

Section visualization and image acquisition were performed using a confocal microscope 

(Nikon NIE) and camera (Photometrics CoolSNAP MYO camera).  Areas of interest were 

selected from images and analyzed and counted for fluorescence using ImageJ software.  The 

colocalization of fluorescence-tagged mRNA were identified as overlap of signal or as puncta of 

different fluorescence clustering on the same DAPI signaling, which would suggest that the 

mRNA expression is in a single cell. 

Statistical Analyses  

Statistical analyses and experimental designs were based on a priori hypotheses.  Two-way 

ANOVA (Orx receptor targeting drug x Phenotype design) was used to examine the contribution 

of drug effects relative to behavioral phenotype expression (Stay x Escape).  Regression 

analyses were used to investigate correlations of gene expression (HCRTR1 & HCRTR2) and 

SAM conflict freezing responses.  Further, regression analyses were used to identify 

associations between SAM-dependent behavioral responses (Day 4) and OF Test behaviors (Day 

4).  Evaluations of locomotor activity in the home cage after drug treatment were assessed by 

one-way ANOVA.  Comparisons between two treatments (Vehicle, Orx1R Ant., Orx2R Ant., 

OrxA, Orx1R Stim, or Orx2R Stim.) within a given phenotype (Escape or Stay) were investigated 

by Student’s t-tests.  

Each animal provided only a singular datum for all analyses.  Five assumptions of parametric 

statistics were applied to the data, which were transformed, when necessary, but also compared 

to non-parametric analyses, and graphed in their raw form.  Analyses with both non-parametric 

and parametric statistics were performed along with examination for multiple comparisons using 
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the Holm-Sidak method, and when the statistical analyses match, as they do for the data herein, 

we report the parametric results without α adjustment [30-35]. Significant effects between groups 

for one-way analyses were examined with Student–Newman–Keuls post hoc analyses (to 

minimize Type I error) and Duncan's Multiple Range Test (to minimize Type II error). 

 

COMPLETE RESULTS 

Socially induced conflict freezing response is positively correlated with BLA 

transcriptional changes in Orx1R and negatively associated with changes in Orx2R 

We previously demonstrated that Orx1R and Orx2R activity in the BLA bidirectionally effects 

stress responsivity [25, 36].  To understand how these receptors in the basolateral amygdala 

(BLA) might influence stress-sensitive phenotype development and learning, we first assessed 

the relationship between Orx receptor transcription (HCRTR1 & HCRTR2) levels and conflict 

freezing (Figs. 2A-C).  In the Stress Alternatives Model (SAM; Fig. 1A), social stress-induced 

conflict freezing is an indicator of fear-based behavioral inhibition and is most pronounced on 

Day 4 of the SAM paradigm [36], where Stay mice express significantly elevated freezing 

behavior (individual results combined from 3 cohorts: Phenotype Effect: F1,168 = 4.8, p ≤ 0.033; 

Time Effect: F3,168 = 4.2, p ≤ 0.007; Interaction Effect: F3,168 = 4.1, p ≤ 0.008; Day 4 Escape vs 

Stay: t56 = 3.825, p < 0.001) compared to Escape animals (Fig. 2A).  Relative transcription levels 

of Orx1R (HCRTR1) in Escape, but not Stay, mice were positively associated with Day 4 

freezing behavior in the SAM (Figs. 2B, S2A; Escape: F1,8 = 7.8, p ≤ 0.0233; Stay: F1,12 = 0.3, p 

≥ 0.6095).  Alternatively, Orx2R (HCRTR2) mRNA levels in the BLA were negatively 

correlated with SAM freezing behavior in only Stay mice (Figs. 2C, S2B; Stay: F1,12 = 9.7416, p 

≤ 0.0088; Escape: F1,8 = 1.3, p ≥ 0.2840).  These results indicate that Orx receptor activity in the 
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BLA may be important for stress-related fear- and learning-based behaviors, but these 

associations are closely linked to an animal’s stress responsive state (Escape or Stay).  

In the BLA, Orx1R is primarily expressed on glutamatergic neurons and Orx2R on both 

glutamatergic and GABAergic cells 

In the BLA, approximately 25% of cells express Orx1R, while less than 20% contain Orx2R and 

even fewer (< 3%) co-express both Orx1R and Orx2R (Fig. 2D; F3,44 = 134.0, p < 0.001; Orx1R
+ 

vs Orx2R
+, t22 = 2.1, p ≤ 0.050; Orx1R

+ vs Orx1R
+ & Orx2R

+, t22 = 7.0, p < 0.001; Orx1R
+ vs 

Other, t22 = 9.6, p < 0.001; Orx2R
+ vs Orx1R

+ & Orx2R
+, t22 = 7.9, p < 0.001; Orx2R

+ vs Other, 

t22 = 14.1, p < 0.001; Orx1R
+ & Orx2R

+ vs Other, t22 = 21.8, p < 0.001).  To consider how Orx 

receptors in BLA microcircuits influence behavioral states, we identified the relative 

relationships of Orx1R (HCRTR1) and Orx2R (HCRTR2) expression in CamKIIα+ 

(glutamatergic) and GAD67+ (GABAergic) neurons.  In the brain sections we sampled, ~70% of 

cells were CamKIIα+ and ~20% expressed the GABA marker GAD67 (Fig. S5D; t9 = 16.8, p < 

0.001).  We have previously shown that Orx1R in the BLA are predominantly located in 

glutamatergic neurons that do not express Orx2R [25].  

To assess the cellular location of Orx2R and differences of Orx receptors in excitatory or 

inhibitory neurons, we used RNAscope in situ hybridization techniques, and evaluated 

proportional differences in Orx receptor-containing cells with respect to CamKIIα expression 

(Figs. 2D-I, S3, S5).  While >60% of Orx1R
+ cells co-expressed CamKIIα (Receptor Effect: F2,30 

= 0.0, p ≥ 0.9; CamKIIα Expression Effect: F1,30 = 0.7, p ≥ 0.398; Interaction Effect: F2,30 = 37.4, 

p < 0.001; Orx1R
+ CamKIIα+ vs CamKIIα-: t10 = 6.4, p < 0.001), less than 40% of Orx2R

+ cells 

were colocalized with the glutamatergic marker (Orx2R
+ CamKIIα+ vs CamKIIα-: t10 = 5.8, p < 

0.001), and ~51% of cells that colocalize both Orx receptors are glutamatergic (Fig. 2F).  



   

204 
 

Further, the amount of CamKIIα+ neurons that express Orx2R were significantly lower than 

those that produce Orx1R (t10 = 5.9, p < 0.001) or both receptor subtypes (Fig. 2G; t10 = 3.1, p ≤ 

0.004).  Alternatively, a greater proportion of Orx2R
+ cells do not express CamKIIα, while less 

than 40% of Orx1R
+ cells and under 50% of cells expressing both receptors do not house the 

glutamate marker (Fig. 2G; CamKIIα- Orx1R
+ vs Orx2R

+: t10 = 6.3, p < 0.001; CamKIIα- Orx2R
+ 

vs Orx1R
+ & Orx2R

+: t10 = 3.5, p ≤ 0.002; CamKIIα- Orx1R
+ vs Orx1R

+ & Orx2R
+: t10 = 2.8, p ≤ 

0.009).   

We next compared the proportion of Orx receptors with respect to GABA cells in the BLA, 

which express the glutamate decarboxylase gene (GAD1) for GAD67 (Figs. 2H-J, S4, S5; 

Receptor Effect: F2,24 = 0.0, p = 1.0; GAD67 Expression Effect: F1,24 = 322.9, p < 0.001; 

Interaction Effect: F2,24 = 73.3, p < 0.001).  Less than 20% of Orx1R
+ cells are GABAergic, 

which is significantly less than the number of Orx1R
+ cells that do not contain GAD67 (t8 = 

18.0, p < 0.001) and less than Orx2R
+ cells that also express the GABA marker (t8 = 8.4, p < 

0.001) or both receptor subtypes (Fig. J2; t8 = 2.9, p ≤ 0.008).  The number of Orx2R
+ BLA cells 

that express GAD67 is not significantly lower than those that do not express this GABA marker 

(t8 = 1.3, p ≥ 0.206), as nearly 50% of Orx2R
+ cells produce GABA (Fig. 2J).  Of the small 

number of BLA neurons that co-express both Orx receptors, most (~70%) are not GABAergic 

(Fig. 2J; Orx1R
+ & Orx2R

+ GAD67+ vs GAD67-: t8 = 12.3, p < 0.001; GAD67- Orx1R
+ vs 

Orx1R
+ & Orx2R

+: t8 = 2.9, p ≤ 0.008; GAD67- Orx2R
+ vs Orx1R

+ & Orx2R
+: t8 = 5.5, p < 

0.001). 

We had previously predicted that the calcium-binding protein, parvalbumin (PV), which acts 

as a marker for a specific subpopulation of GABAergic neurons, might be important for Orx 

receptor activity in the BLA [1, 36], so we also looked for distributions of Orx receptors within 
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this specific type of neuron (Fig. S6; Receptor Effect: F2,18 = 0.0, p = 1.0; PV Expression Effect: 

F1,18 = 705.0, p < 0.001; Interaction Effect: F2,18 = 1.2, p ≥ 0.329).  All Orx receptor-expressing 

cells co-expressed PV at very low levels (Fig. S6F; Orx1R
+ PV+ vs PV-: t6 = 22.4, p < 0.001; 

Orx2R
+ PV+ vs PV-: t6 = 16.1, p < 0.001; Orx1R

+ & Orx2R
+ PV+ vs PV-: t6 = 11.5, p < 0.001).  

Interestingly, there appears to be a topographical organization of Orx1R in the BLA, with the 

greatest expression being in the medial portion and very little in the lateral-most section of this 

amygdalar region (Fig. S5A).  The distribution of Orx2R in the BLA seems to be less organized 

(Fig. S5B).   

In order to fully consider the influence of Orx receptor activity on BLA neurons, we further 

assessed the proportion of CamKIIα+ or GAD67+ BLA cells that expressed the genes for the Orx 

receptors (Figs. S5D-F).  In the brain sections we sampled, over 15% of glutamatergic neurons 

also expressed Orx1R, while less than 10% expressed Orx2R, and under 5% co-expressed Orx1R 

and Orx2R (Fig. S5D; F2,15 = 84.6, p < 0.001; Orx1R
+ vs Orx2R+: t10 = 8.2, p < 0.001; Orx1R

+ vs 

Orx1R
+ & Orx2R

+: t10 = 12.8, p < 0.001; Orx2R
+ vs Orx1R

+ & Orx2R+: t10 = 5.8, p < 0.001).  

Alternatively, very few GABAergic neurons express both Orx receptors and less than 10% 

express Orx1R; however, ~25% of GAD67+ neurons co-express Orx2R (Fig. S5E; F2,12 = 84.0, p 

< 0.001; Orx1R
+ vs Orx2R

+: t8 = 9.7, p < 0.001; Orx1R
+ vs Orx1R

+ & Orx2R+: t8 = 2.6, p ≤ 0.023; 

Orx2R
+ vs Orx1R

+ & Orx2R
+: t8 = 12.3, p < 0.001).  These data suggest while the number of cells 

expressing Orx receptors in the BLA is relatively small (Fig. 2D), ~16.25% of BLA cells house 

Orx1R and are glutamatergic and ~7.5% of BLA cells are GABAergic and express Orx2R (Fig. 

S5F).  Collectively, these results propose Orx1R activity influences BLA signaling primarily 

through glutamatergic pyramidal neurons while Orx2R receptors activate, through a small 

majority, inhibitory interneurons in BLA microcircuits. 
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Stress-induced freezing is ameliorated with acute intra-BLA Orx2R stimulation 

In the SAM, longer periods of freezing are observed in Stay mice compared to Escape mice, and 

this freezing behavior intensifies over the 4-day SAM paradigm [1], where we see the greatest 

difference on Day 4 (Fig. 2A).  We have previously demonstrated that single treatments before 

Day 3 of SAM interaction, including drugs that target the Orx system, produce longer lasting 

behavioral changes observed on Days 4 and 5 [1, 5, 25].  Here, we compared freezing behavior 

on the last day of SAM exposure (Day 4) to freezing in the novel OF Test environment (also Day 

4) where there is no social aggressor, to see if stress exposure leads to fear-related generalization 

in a non-threatening environment.  As reported previously [1] Stay mice experienced periods of 

freezing in the SAM that were significantly increased relative to Escape mice under the control 

conditions of vehicle treatment (Figs. 3A, B, white bars; t19 = 2.67, p ≤ 0.015).   

Since Orx1R and Orx2R gene expression in the BLA are related to socially induced conflict 

freezing behavior in a phenotype-dependent fashion (Figs. 2B, C), we assessed the influence of 

pharmacologically inhibiting intra-BLA Orx receptors on freezing during conflict behavior in the 

SAM (Fig. 3A; Drug Effect, F2,43 = 1.1, p ≥ 0.339; Phenotype Effect, F1,43 = 16.0, p < 0.001; 

Interaction Effect, F2,43 = 2.2, p ≥ 0.126).  Treatment with an Orx1R antagonist (SB-674042) 

eliminated differences in conflict freezing between Escape and Stay mice (t13 = 0.9, p ≥ 0.365), 

but did not result in significant differences compared to vehicle-treated controls (Fig. 3A, light 

gray bars; Escape: Vehicle vs Orx1R Ant., t11 = 0.001, p ≥ 0.999; Stay: Vehicle vs Orx1R Ant., 

t21 = 1.3, p ≥ 0.212).  Antagonizing Orx2R (MK-1064) resulted in an increase in freezing 

behavior in Stay mice compared to vehicle-treated controls, though only significant at the p ≤ 

0.080 level (Fig. 3A, t18 = 1.9).  Compared to Orx1R antagonist-treated mice, however, Stay 
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animals in the Orx2R antagonist group exhibited elevated freezing behavior (Fig. 3A; t15 = 2.8, p 

≤ 0.014).  

To further assess the role of Orx receptors in the BLA on stress-induced conflict freezing 

behavior, we pharmacologically stimulated intra-BLA Orx receptors (Fig. 3B; Drug Effect, F3,46 

= 17.1, p < 0.001; Phenotype Effect, F1,46 = 9.1, p ≤ 0.004; Interaction Effect, F3,47 = 0.7, p ≥ 

0.561). Treatment with OrxA, which stimulates both Orx1R and Orx2R, significantly increased 

freezing behavior in both Escape (t10 = 3.4, p ≤ 0.007) and Stay (t16 = 3.3, p ≤ 0.005) relative to 

vehicle-treated control animals of the corresponding phenotype (Fig. 3B, black bars).  While 

biased stimulation of Orx1R (accomplished through a drug mixture of OrxA and the Orx2R 

antagonist MK-1064) resulted in enhanced freezing in both Escape and Stay mice, only freezing 

in Stay animals reached statistical significance compared to vehicle-treated controls (Fig. 3B, 

light gray bars with dark gray outline; t21 = 3.0, p ≤ 0.008).  Alternatively, agonizing Orx2R 

(YNT-185) reduced stress-induced conflict freezing in Escape mice compared to those treated 

with vehicle (t9 = 2.3, p ≤ 0.047) and OrxA (t5 = 3.2, p ≤ 0.023).  In Stay animals, intra-BLA 

Orx2R stimulation reduced freezing behavior (Fig. 3B, dark gray bars with light gray outline) 

statistically below mice treated with vehicle (t17 = 3.3, p ≤ 0.004), OrxA (t9 = 8.7, p < 0.001), and 

Orx1R stimulation (t13 = 8.5, p < 0.001).  Together, these results suggest learned, phenotype-

dependent, freezing behavior is mediated and generalized through Orx receptor activity in the 

BLA.  

Stress-induced freezing in the SAM is transferred to the OF Test 

Following four days of social aggression exposure, mice were subjected to the Open Field (OF) 

Test (Fig. 1B) to determine how SAM-established behavioral phenotypes and Orx treatments 

would impact behavior in a novel, anxiety-producing environment.  As the OF Test was 
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performed immediately following SAM social interaction on Day 4 of the behavioral 

proceedings (Fig. 1B), we first assessed freezing behavior in the OF Test that may be a result of 

fear-induced generalization (Figs. 3C, D).  While there were no differences in freezing between 

phenotypes in vehicle- and Orx1R antagonist-treated groups (Drug Effect, F2,43 = 4.1, p ≤ 0.024; 

Phenotype Effect, F1,43 = 12.1, p < 0.001; Interaction Effect, F2,43 = 2.1, p ≥ 0.139; Vehicle: 

Escape vs Stay, t20 = 1.0, p ≥ 0.320; Orx1R Ant.: Escape vs Stay, t13 = 1.8, p ≥ 0.093), Escape 

mice that underwent acute Orx1R antagonism exhibited reduced freezing in the OF Test 

compared to those mice administered vehicle treatment (Fig. 3C; t11 = 2.637, p ≤ 0.023).  As 

predicted, intra-BLA Orx2R inhibition elevated OF Test freezing behavior relative to Escape 

mice that underwent the same treatment (Fig. 3C; t11 = 2.5, p ≤ 0.029).  Further, these Stay mice 

that were administered an Orx2R antagonist experienced increased freezing in the OF Test 

compared to vehicle- (t19 = 3.0, p ≤ 0.008) and Orx1R Ant.-treated mice (Fig. 3C; t15 = 3.1, p ≤ 

0.008). 

In intra-BLA Orx receptor stimulation studies, OrxA treatment did not result in a change in 

freezing behavior in the OF Test that was different from vehicle-treated controls (Fig. 3D; Drug 

Effect, F3,46 = 3.2, p ≤ 0.033; Phenotype Effect, F1,47 = 12.0, p < 0.001; Interaction Effect, F3,47 = 

1.5, p ≥ 0.217; Escape: Vehicle vs OrxA, t10 = 0.2, p ≥ 0.814; Stay: Vehicle vs OrxA, t17 = 1.0, p ≥ 

0.336).  However, Orx1R stimulation produced a robust freezing response in Stay mice that was 

significantly different from Escape animals that experienced the same treatment (t13 = 3.8, p ≤ 

0.002) and vehicle-treated Stay mice (Fig. 3D; t21 = 3.4, p ≤ 0.003).  Acute activation of intra-

BLA Orx2R resulted in reduced OF Test freezing in Escape mice compared to vehicle controls 

(Fig. 3D; t9 = 3.4, p ≤ 0.008).  While Stay animals infused with an Orx2R agonist were not 

different from Escape mice administered the same treatment (t7 = 1.2, p ≥ 0.284) or vehicle 
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controls (t18 = 0.5, p ≥ 0.635), they did experience reduced OF Test freezing compared to 

animals that received the Orx1R stimulation treatment (Fig. 3D; t13 = 2.4, p ≤ 0.034). 

To determine if freezing behavior in the OF Test was a result of generalization after social 

stress exposure, we performed correlational analyses comparing freezing behavior in the SAM to 

that of the OF Test (Figs. 3E, S7).  There were no relationships observed in Escape mice 

following any Orx receptor treatment (Figs. S7A-F).  Further, a significant and positive 

association was observed in vehicle-treated Stay animals (Fig. 3E; F1,11 = 8.7, p ≤ 0.0131), but 

this relationship is lost in Orx1R antagonist treated mice (Fig. S7G). The lack of correlation 

following Orx1R antagonist suggests that Orx1R activity in vehicle-treated mice allowed for 

generalization of fear learning to be induced in these mice.  Importantly, Stay animals in the 

Orx2R antagonist or Orx1R stimulation groups displayed robust freezing behavior in both the 

SAM and OF Test (Figs. 3A-D), and while regressions revealed no relationships in these mice 

(Figs. S7H-J); a potential ceiling effect may have impaired the search for meaningful analyses. 

Stress-induced locomotion in the SAM explains OF test locomotion after acute alteration 

of intra-BLA Orx receptor activity in Escape mice 

As the Orx system plays a role in arousal [39, 40] and may initiate locomotor functions [41], we 

investigated locomotion in the SAM (Figs. 4A, B) and OF Test (Figs. 4C, D) as behaviors in 

both SAM and OF Tests (socially induced freezing and time in center) may be influenced by 

changes in locomotion.  Importantly, the pharmacological manipulations of BLA Orx receptors 

had no effect on home cage mobility (Fig. S9; F5,76 = 0.7, p ≥ 0.658; Escape: F5,26 = 1.3, p ≥ 

0.302; Stay: F5,44 = 1.0, p ≥ 0.433); however, several significant differences were observed 

during social stress in the SAM (Figs. 4A, B; Antagonist groups: Drug Effect, F2,43 = 0.9, p ≥ 

0.423; Phenotype Effect, F1,43 = 9.0, p ≤ 0.005; Interaction Effect, F2,43 = 1.7, p ≥ 0.191; 
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Stimulation groups: Drug Effect, F3,46 = 2.7, p ≥ 0.059; Phenotype Effect, F1,46 = 8.2, p ≤ 0.006; 

Interaction Effect, F3,46 = 0.7, p ≥ 0.564) and afterwards in the OF Test (Figs. 4C, D; Antagonist 

groups: Drug Effect, F3,43 = 3.0, p ≥ 0.061; Phenotype Effect, F1,43 = 7.8, p ≤ 0.008; Interaction 

Effect, F3,43 = 0.1, p ≥ 0.941; Stimulation groups: Drug Effect, F3,46 = 1.7, p ≥ 0.175; Phenotype 

Effect, F1,46 = 9.7, p ≤ 0.003; Interaction Effect, F3,46 = 0.3, p ≥ 0.858). 

In vehicle control animals, Escape mice displayed heightened locomotion compared to Stay 

animals in both the SAM (Figs. 4A, B, white bars; t19 = 2.7, p ≤ 0.014) and OF Test (Figs. 4C, 

D, white bars; t19 = 2.5, p ≤ 0.023).  While not different from vehicle-treated mice, intra-BLA 

Orx1R antagonism removes phenotypic separation of Escape and Stay locomotor activity in the 

SAM (Fig. 4A, light gray bars; t13 = 0.2, p ≥ 0.864) and OF Test (Fig. 4C, light gray bars; t13 = 

1.6, p ≥ 0.141).   Acute inhibition of Orx2R in the BLA resulted in a maintained phenotype 

separation in SAM locomotion, with Escape mice expressing higher locomotor activity than 

Stay animals (Fig. 4A, dark gray bars; t11 = 2.3, p ≤ 0.039); however, this relationship was not 

observed in the OF Test (Fig. 4C, dark gray bars; t11 = 1.1, p ≤ 0.314). 

Similar to vehicle-treated mice, animals in the Orx1R stimulation group exhibited phenotype 

differences in SAM (t13 = 2.5, p ≤ 0.026) and OF Test locomotion (Fig. 4B, light gray bars with 

dark gray outline; t13 = 2.5, p ≤ 0.028).  This divergent phenotype response was not observed 

with OrxA or Orx2R stimulation treatments.  However, agonism of BLA Orx2R resulted in Stay 

mice expressing elevated locomotion in the SAM that was significantly greater than Stay 

animals in vehicle (t18 = 2.9, p ≤ 0.010), OrxA (t9 = 2.7. p ≤ 0.009), and Orx1R stimulation (t13 = 

3.0, p ≤ 0.005) treatment groups (Fig. 4B).  This heightened locomotor response in Orx2R 

agonist-treated Stay mice was not observed in the OF Test (Fig. 4D). 
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Regression analyses comparing locomotion in the SAM to locomotor activity in the OF Test 

revealed no associations in Stay mice (Figs. S8C-H).  Further, no significant correlations were 

observed for Escape animals in vehicle (F1,6 = 0.4, p ≥ 0.528) and Orx1R stimulation (F1,4 = 5.0, 

p ≥ 0.090) treatment groups (Figs. S8A, B).  Strong positive correlations between SAM and OF 

Test locomotion in Escape mice were revealed with intra-BLA treatments of an Orx1R 

antagonist (Fig. 4E; F2,3 = 15.9, p ≤ 0.028), OrxA (Fig. 4G; F2,2 = 49.4, p ≤ 0.02), and an Orx2R 

agonist (Fig. 4H; F2,1 = 351.5, p ≤ 0.034).  In contrast, a significant negative relationship was 

observed between SAM and OF Test locomotor activity in Escape animals treated with an 

Orx2R antagonist (Fig. 4F; F1,4 = 11.4, p ≤ 0.028).  Together, these results suggest that Orx 

receptors in the BLA influence generalization learning of stress-related locomotor activity, 

transferred from SAM to OF. 

Transient manipulation of Orx receptor activity in the BLA promotes learning 

transference in Stay mice 

As both the SAM and OF Test arenas comprise open field environments, on Day 4 we compared 

behavior in the SAM arena to the behaviors exhibited in the OF Test, directly after the SAM 

social interaction (Fig. 5).  Mice of Escape and Stay behavioral phenotypes administered vehicle 

treatments did not differ in the amount of time spent in the center of the SAM arena (Figs. 5A, B, 

white bars; t19 = 0.5, p ≥ 0.699) or the OF Test (Figs. 5C, D, white bars; t19 = 1.3, p ≥ 0.213).  In 

the Orx receptor inhibition groups, there were no differences observed between animals 

administered Orx receptor targeting drugs and those of the vehicle control group in the SAM 

(Fig. 5A; Drug Effect, F2,43 = 0.02, p ≥ 0.978; Phenotype Effect, F1,43 = 7.4, p ≤ 0.010; 

Interaction Effect, F2,43 = 1.7, p ≥ 0.197; Escape: Vehicle vs Orx1R Ant., t11 = 1.3, p ≥ 0.226; 

Stay: Vehicle vs Orx1R Ant., t21 = 1.4, p ≥ 0.183; Escape: Vehicle vs Orx2R Ant., t12 = 0.9, p ≥ 
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0.380; Stay: Vehicle vs Orx2R Ant., t18 = 0.6, p ≥ 0.530) or OF Test behaviors (Fig. 5C; Drug 

Effect, F2,43 = 0.4, p ≥ 0.679; Phenotype Effect, F1,43 = 15.7, p < 0.001; Interaction Effect, F2,43 = 

1.4, p ≥ 0.268; Escape: Vehicle vs Orx1R Ant., t11 = 1.4, p ≥ 0.186; Stay: Vehicle vs Orx1R Ant., 

t21 = 0.4, p ≥ 0.699; Escape: Vehicle vs Orx2R Ant., t12 = 1.5, p ≥ 0.151; Stay: Vehicle vs Orx2R 

Ant., t18 = 1.5, p ≥ 0.163).  However, there was significant phenotype separation in mice that 

received the Orx1R antagonist as Stay animals spent more time in the center of the SAM (Fig. 

5A, light gray bars; t13 = 2.2, p ≤ 0.047) and OF Test (Fig. 5C, light gray bars; t13 = 2.2, p ≤ 0.05) 

compared to Escape mice administered the same treatment.  While Stay mice given the Orx2R 

antagonist did not statistically spend more time than Escape animals in the center of the SAM 

(Fig. 5A, dark gray bars; t11 = 1.6, p ≥ 0.144), phenotypic separation was clearly evident for time 

in the center when mice were exposed to the OF Test after Orx2R antagonist treatment (Fig. 5C, 

dark gray bars; t11 = 3.6, p ≤ 0.004). 

In the Orx receptor stimulation groups, SAM (Fig. 5B; Drug Effect, F3,45 = 5.5, p ≤ 0.003; 

Phenotype Effect, F1,45 = 0.4, p ≥ 0.516; Interaction Effect, F3,45 = 1.4, p ≥ 0.246) and OF Test 

(Fig. 5D; Drug Effect, F3,46 = 0.4, p ≥ 0.779; Phenotype Effect, F1,46 = 4.9, p ≤ 0.032; Interaction 

Effect, F3,46 = 0.4, p ≥ 0.750),  targeting the BLA, OrxA infusion resulted in a reduction, though 

not significant, in the amount of time spent in the center of the SAM in both Escape (t10 = 1.4, p 

≥ 0.186) and Stay mice (t16 = 1.8, p ≥ 0.089) compared to vehicle controls (Fig. 5B, black bars).  

Animals in the Orx1R stimulation group spent more time in the center of the SAM than those 

mice treated with OrxA (Escape: t8 = 2.3, p ≤ 0.05; Stay: t12 = 2.4, p ≤ 0.033), but did not differ 

from animals in the vehicle control group (Fig. 5B; Escape: t12 = 1.1, p ≥ 0.286; Stay: t20 = 1.6, p 

≥ 0.132).  Interestingly, a phenotype divergence was observed in mice treated with the Orx2R 

agonist, where Escape animals spent more time in the center of the SAM compared to Stay mice 
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(Fig. 5B, dark gray bars with light gray outline; t7 = 2.3, p ≤ 0.05).  These Escape mice also spent 

more time in the center of the SAM compared to OrxA-treated animals of the Escape phenotype 

(Fig. 5B; t5 = 5.4, p ≤ 0.003).  There were no significant differences in time spent in the center of 

the OF Test between any of the Orx receptor stimulation groups (Fig. 5D; Drug Effect, F3,46 = 

0.4, p ≥ 0.779; Phenotype Effect, F1,46 = 4.9, p ≤ 0.032; Interaction Effect, F3,46 = 0.4, p ≥ 0.750). 

We next performed regression analyses to assess whether time spent in the center of the 

SAM arena, where test mice primarily interact with a social aggressor, was being transferred to 

the non-social and novel OF Test environment, and if Orx receptor activity might play a role in 

transference learning (Figs. 5E-H).  Significant positive regressions were revealed in Stay 

animals between center time and treatment with an Orx1R antagonist (Fig. 5E, F; F1,8 = 16.8, p ≤ 

0.003), and an Orx2R agonist (Fig. 5H; F1,4 = 40.2, p ≤ 0.003).  Curiously, there was also a 

significant positive relationship observed after an Orx2R antagonist was administered (Fig. 5G; 

F1,5 = 13.5, p ≤ 0.014).  No significant correlations were observed in Escape mice in any 

treatment group (Figs. S10A-F), nor Stay animals in the vehicle (Fig. S10G; F1,11 = 2.1, p ≥ 

0.171), OrxA (Fig. S10H; F1,3 = 3.5, p ≥ 0.157), and Orx1R stimulation groups (Fig. S10I; F1,7 = 

1.3, p ≥ 0.296).  These results seem to suggest Orx receptors play a role in regulating 

phenotypically dependent behavioral transference in Stay animals during periods of stress, 

perhaps by acting through alternate (such as locus coeruleus) pathways related to stress and 

learning neurocircuitries [37, 38]. 

EPM results are muted by prior experience 

On Day 5 of the experimental design, mice were exposed to the Elevated Plus Maze (EPM) to 

assess behavioral measures of generalized anxiety as a comparator to SAM and OF Test results 

observed the day prior (Day 4; Fig. 1B).  In the Orx receptor antagonist groups, there were no 
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phenotype differences nor differences with respect to vehicle-treated control mice for time in the 

open (Fig. S11A, B; Drug Effect, F2,42 = 1.8, p ≥ 0.178; Phenotype Effect, F1,42 = 0.00006, p ≥ 

0.994; Interaction Effect, F2,42 = 0.07, p ≥ 0.933) or closed arms (Fig. S11C, D; Drug Effect, 

F2,42 = 5.8, p ≤ 0.006; Phenotype, F1,43 = 0.2, p ≥ 0.671; Interaction Effect, F2,42 = 0.1, p ≥ 0.871) 

of the EPM.  Contrary to our predictions and behavioral results in the SAM (Fig. 3A), Stay mice 

administered intra-BLA infusion of an Orx2R antagonist exhibited more time in the open arms 

(t14 = 2.1, p ≤ 0.05) and less time in the closed arms (t14 = 3.1, p ≤ 0.008) compared to Stay 

animals treated with an Orx1R antagonist (Figs. S11A, C).  Further, in assessing time spent in 

the intersection zone of the EPM (Drug Effect, F2,42 = 2.0, p ≥ 0.149; Phenotype Effect, F1,42 = 

5.1, p ≤ 0.029; Interaction Effect, F2,42 = 1.2, p ≥ 0.313), Stay animals in the Orx2R antagonist 

group spent more time in this area between the open and closed arms when compared to Escape 

mice in the same treatment group (t11 = 2.5, p ≤ 0.018), as well as vehicle- (t18 = 2.3, p ≤ 0.028) 

and Orx1R antagonist-treated Stay mice (Fig. S11E; t14 = 2.5, p ≤ 0.016). 

In the Orx receptor stimulation groups, there were no effects observed for the amount of time 

mice spent in the intersection zone of the EPM (Fig. S11F; Drug Effect, F3,46 = 0.7, p ≥ 0.533; 

Phenotype Effect, F1,46 = 2.3, p ≥ 0.138; Interaction Effect, F3,46 = 0.9, p ≥ 0.461); however, 

overall effects were observed for time in the open (Fig. S11B; Drug Effect, F3,46 = 2.0, p ≥ 

0.126; Phenotype Effect, F1,46 = 7.5, p ≤ 0.009; Interaction Effect, F3,46 = 1.3, p ≥ 0.296) and 

closed arms (Fig. S11D; Drug Effect, F3,46 = 1.9, p ≥ 0.135; Phenotype Effect, F1,46 = 8.5, p ≤ 

0.005; Interaction Effect, F3,46 = 1.4, p ≥ 0.318).  Stay mice treated with OrxA spent more time in 

the open arms of the EPM than those of the Escape phenotype (Fig. S11B, black bars; t7 = 2.2, p 

≤ 0.037), but this divergence of phenotypes was not observed for time in the closed arms (Fig. 

S11D, black bars; t7 = 1.8, p ≥ 0.078).  While Stay mice in the Orx1R stimulation group spent 
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more time in the open arms compared to their Escape counterparts (t13 = 2.2, p ≤ 0.044), the 

Escape animals in this treatment group spent less time in the open arms compared to vehicle 

controls of the same phenotype (Fig. S11B, light gray bars with dark gray outline; t12 = 2.6, p ≤ 

0.024).  The opposite result was observed for time in the closed arms of the EPM (Fig. S11D), 

where Orx1R stimulation resulted in Escape mice spending more time in the closed arms 

compared to Stay animals in the same treatment group (t13 = 2.7, p ≤ 0.020) and vehicle-treated 

Escape mice (t12 = 2.7, p ≤ 0.021).  Again, counter to our predictions, Escape mice infused with 

an intra-BLA Orx2R agonist spent significantly less time in the open arms (Fig. S11B) and more 

time in the closed arms (Fig. S11D) compared to Escape animals in the vehicle control (Open 

Arms: t9 = 3.5, p ≤ 0.006; Closed Arms: t9 = 4.1, p ≤ 0.003) and OrxA treatment groups (Open 

Arms: t5 = 3.6, p ≤ 0.015; Closed Arms: t5 = 2.9, p ≤ 0.034).  Together, these results suggest that 

anxiety-related learning in the SAM (or perhaps any environment) functionally modifies 

behavioral responses to novel anxious conditions, such that standard ethological manifestations 

no longer apply.  
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Figure S1.  Schematic shows successfully targeted intra-BLA injections of Escape and Stay mice treated 

with Vehicle, Orx1R Antagonist (SB-674042), Orx2R Antagonist (MK-1064), OrxA, Orx1R Stimulation 

(OrxA + MK-1064 combination), and Orx2R Stimulation (YNT-185) treatments.  Escape mice are 

identified as circles and Stay mice are symbolized with squares. 
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Figure S2.  (A) While relative expression levels of HCRTR1 are positively correlated with SAM-induced 

conflict freezing in Escape mice (see Fig. 2B of main manuscript), correlation analyses in Stay mice does 

not reveal this relationship (F1,12 = 0.3, R2 = 0.0224, p ≥ 0.6095).  (B) Similarly, Escape mice conflict 

freezing in the SAM is not associated with HCRTR2 transcription levels (F1,8 = 1.3, R2 = 0.1415, p ≥ 

0.2840); however, there is a negative relationship between freezing HCRTR2 expression in Stay animals 

(see Fig. 2C of main manuscript). 
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Figure S3.  Expression of (A,a) HCRTR1 (green), (B, b) HCRTR2 (white), (C, c) CamKIIα (red), and (D, 

d) DAPI (blue) in BLA cells.  Images in a, b, c, & d are enlarged figures from square outlines in A, B, C, 

& D.  Note- images align with Figs. 2E & F of primary manuscript.  
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Figure S4.  Expression of (A,a) HCRTR1 (green). (B, b) HCRTR2 (white), (C, c) GAD67 (red), and (D, 

d) DAPI (blue) in BLA cells.  Images in a, b, c, & d are enlarged figures from square outlines in A, B, C, 

& D.  Note- images align with Figs. 2H & I of primary manuscript. 
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Figure S5.  (A) While Orx1R mRNA (HCRTR1) expression has a topographical organization in the BLA 

(most abundant in medial portion - separated with white dotted line), (B) HCRTR2 does not exhibit an 

obvious pattern of expression.  (C) Approximately 70% of neurons in the BLA expressed the 

glutamatergic marker CamKIIα, while only around 20% expressed GAD67 (t9 = 16.8, p < 0.001).  (D) Of 

CamKIIα-expressing cells, ~18% express Orx1R, less than 10% express Orx2R, and even less express 

both Orx receptors (F2,15 = 84.6, p < 0.001).  (E) Over 25% of GABA neurons in the BLA expressing 

GAD67 also express Orx2R, while less than 10% express Orx1R or both Orx receptors (F2,12 = 84.0, p < 

0.001).  (F) A pie chart illustrates estimated proportions of BLA neurons and Orx receptors from reported 

results. 
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Figure S6.  Orexin receptors in the BLA are expressed on PVALB+ GABA neurons at very low levels.   

(A) Expression of HCRTR1 (green), (B) HCRTR2 (white), (C) PVALB (magenta), and DAPI (blue) when 

(E) merged (some observed colocalizations are identified with filled green arrow = Orx1R+ + PVALB+, 

solid white arrow = Orx2R+ + PVALB+, and unfilled magenta arrows = Orx1R- + Orx2R- + PVALB+) 

reveals (F) low overlap of Orx receptor mRNA with PVALB+ GABA neurons (compared to PVALB- 

cells in the same receptor [Orx1R+, Orx2R+, or Orx1R+ & Orx2R+] group, _p ≤ 0.05).  CeA = central 

amygdala 

  



   

225 
 

Figure S7.  (A-F) No significant correlations exist between freezing behavior in the SAM and freezing 

response in the OF Test for Escape mice in any treatment group.  Further, no freezing relationships were 

observed for Stay animals in the (G) Orx1R Antagonist (F1,8 = 2.0, p ≥ 0.1912), (H) Orx2R Antagonist 

(F1,5 = 2.2, p ≥ 0.1989), (I) OrxA (F1,3 = 0.1, p ≥ 0.7535), (J) Orx1R Stimulation (F1,7 = 0.2, p ≥ 0.6364), 

and (K) Orx2R Stimulation (F1,4 = 0.3, p ≥ 0.607) groups. 
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Figure S8.  (A) For Escape mice under control conditions (vehicle administration) there is no significant 

correlation between locomotion in the SAM and locomotion in the OF Test (F1,6 = 0.4, p ≥ 0.5281).  (B) 

Similarly, there is no significant relationship between SAM and OF Test locomotion for Escape animals 

in the Orx1R Stimulation group (F1,4 = 5.0, p ≥ 0.09).  (C-H) No significant correlations exist between 

locomotor activity in the SAM and locomotion in the OF Test for Stay mice in any treatment group; 

although, regression analyses for those (E) animals treated with an Orx2R antagonist exposed a positive 

relationship between SAM and OF Test locomotion that is significant at the p < 0.06 level (F1,5 = 6.1, p ≤ 

0.057). 
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Figure S9.  While locomotion in the SAM and OF Test are altered by Orx receptor-targeting drugs, 

home cage mobility is not affected (F5,76 = 0.7, p ≥ 0.658; Escape: F5,26 = 1.3, p ≥ 0.302; Stay: F5,44 = 1.0, 

p ≥ 0.433).  Circles represent Escape animals in the designated treatment group and squares signify Stay 

mice.  
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Figure S10.  (A-F) In animals exhibiting the Escape phenotype, there were no significant correlations 

between time in the center of the SAM arena and time in the center of the OF Test.  Additionally, there 

were no relationships observed in Stay mice for those in the (G) Vehicle (F1,11 = 2.1, p ≥ 0.1712), (H) 

OrxA (F1,3 = 3.5, p ≥ 0.1572), or (I) Orx1R Stimulation (F1,7 = 1.3, p ≥ 0.2955) treatment groups. 
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Figure S11.  Phenotype separation is observed after Orx receptor manipulation in post-SAM EPM, but 

results are not consistent with anxious state.  (A) Stay mice treated with an intra-BLA Orx2R antagonist 

spent more time in the open arms of the EPM than Stay animals treated with an Orx1R antagonist.  (B) 

Escape mice in Orx1R and Orx2R stimulation groups spent significantly less time in the open arms of the 

EPM compared to vehicle-treated control animals.  (C) Administration of an Orx2R antagonist into the 

BLA or Stay mice resulted in less time in the closed arms of the EPM compared to animals of the same 

phenotype that were treated with an Orx1R antagonist.  (D) Stimulation of Orx1R or Orx2R in the BLA 

promoted Escape animals to spend more time in the closed arms of the EPM compared to vehicle 

controls.  (E) Antagonizing intra-BLA Orx2R led to more time spent in the intersection zone of the EPM.  

(F) No differences in time in the intersection zone of the EPM were observed for the Orx receptor 

stimulation groups.  #p ≤ 0.05 for comparisons to mice in the Orx1R antagonist group of the same 
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phenotype; *p ≤ 0.05 for comparisons to Escape phenotype in the same treatment group; +p ≤ 0.05 for 

comparisons to Vehicle-treated mice of the same phenotype; !p ≤ 0.05 for comparisons to OrxA treatment 

animals of the same phenotype. 
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Chapter 4:  Female social defeat avoidance is modified by orexin 2 receptor activity 

 

ABSTRACT 

Stress responsive states require signaling balance in brain regions associated with the promotion 

of pro- and anti-stress behavioral output.  Biases in these circuits shift behavioral patterns and 

define phenotypes that exhibit stress resilience or vulnerability.  The Stress Alternatives Model 

(SAM) is a behavioral paradigm that separates mice into social stress-induced behavioral 

phenotypes: active avoidance (Escape) and accepting confrontation (Stay).  Manipulation of 

intra-BLA orexin 2 receptor (Orx2R) activity shifted phenotype-specific behaviors.  As the 

orexin system mediates stress responses in a sex-dependent fashion, we developed a model for 

investigating social stress in female mice using shock-induced aggression (SIA).  Unlike males 

exposed to the SAM paradigm, all females display Escape behavior, which can be altered by 

changing the paradigm to enhance the stress state.  Further, female mice possess more BLA cells 

that express Orx2R mRNA (HCRTR2) compared to males.  Antagonizing Orx2R subcutaneously 

at a low dose (30 nmol) in female animals resulted in phenotype divergence with a proportion of 

mice displaying slower escape (EscapeS), a result replicated in all females administered 

yohimbine (α2 receptor antagonist).  Like yohimbine-treated mice, females of the EscapeS 

phenotype also showed reduced social preference and enhanced cued fear freezing.  

Additionally, EscapeS animals had more HCRTR2-positive cells in the BLA.  These results 

suggest that Orx2R mediate stress responsivity, likely by balancing pro- and anti-stress circuitry.    



   

232 
 

INTRODUCTION 

Females are reported as having twice the rates of affective disorder diagnoses compared to males 

[1-3].  As stress prompts affective dysfunction and initiates disorder development, possibly in a 

sex-dependent manner [4], understanding behavioral and neurophysiological consequences of 

stress in female populations is paramount.  Models incorporating social defeat, while potent 

tools for delineating differential outcomes of stress-induced behavior and neurophysiology [5], 

are limited in their ability to provoke equivalent stress states in female populations.  In this way, 

much of our current understanding of stress neurocircuitry is biased toward the physiology and 

behavior of males. 

An impediment to understanding the heightened propensity of females to exhibit stress-

related psychiatric conditions such as anxiety and depression is an animal model with highly 

translatable results.  As the major impetus for developing such disorders is social stress, three 

recently developed models of social defeat for females have been put forth [6-8].  While these 

models proved to be important advances, they had limited effectiveness in producing social 

defeat in females, because the rate of aggression from males was low.  We report that our model 

of social stress, the Stress Alternatives Model (SAM), can be utilized to produce aggressive 

interaction in females.  This paradigm pits aggressive CD1 males with smaller female C57Bl/6 

test mice, and occurs in an oval arena provided with escape routes that allow for escape.  Four 

daily trials with a novel aggressor produces two behavioral phenotypes in males: Escape and 

Stay [9, 10].  Pharmacological treatments are given on Day 3, with anxiogenic drugs (such as the 

α2 antagonist yohimbine) reversing Escape (become Stay), and anxiolytic drugs (such as the 

CRF1 antagonist antalarmin) allow Stay animals to Escape [11]. 

Hypothalamus-derived orexins mediate stress responsive states in a sex-dependent fashion 



   

233 
 

[12, 13].  The end result of post-translational processing in orexinergic neurons is the production 

of two similar, yet distinct, neuromodulators: Orexin A (OrxA) and Orexin B (OrxB).   Targeted 

cells express type 1 and 2 orexin receptor subtypes (Orx1R and Orx2R) which, upon activation 

by OrxA (EC50 = 30 nM for Orx1R and 38 nM for Orx2R) or OrxB (EC50 = 2,500 nM for Orx1R 

and 36 nM for Orx2R), initiate Gq signaling pathways [14]. Orexinergic innervation is 

widespread and influences reward and arousal, but also motivation and stress [15-17]. Blocking 

Orx1R in the fear learning region of the brain, the basolateral amygdala (BLA), reduces anxious 

behavior (changes Stay to Escape), fear conditioning, and increases resilient behavior and 

motivation to Escape [18]. 

We adapted the SAM paradigm to include classical conditioning (a brief shock during 

anogenital sniffing) for the CD1 aggressor mice to effectively induce male aggression towards 

females.  With CD1 male mice behaving aggressively toward females, we were able to evaluate 

the behavioral profile of socially stressed females, the phenotypes that were produced, and how 

the relationship of exhibited behaviors to balanced pro- and anti-stress neurocircuitries of the 

BLA.  Females and males have been demonstrated to react differently to stressors, which 

involves distinct neurochemistry, including that of orexin [12, 13].  Those differences are 

reflected in unique female orexin signaling and behavior. 

 

METHODS & MATERIALS 

Animals   

Adult (6–12 weeks) female (N = 117) and male (N = 144) C57BL/6N mice (Envigo, 

Indianapolis) were briefly group housed (4–5 per cage for 5 days) before being individually 

housed on a 12:12 light-dark cycle (lights off at 6 P.M.) at 22°C, with ad libitum food and water.  
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Male Hsd:ICR (CD1) retired breeder mice (N = 50) were singly housed and used as aggressor 

mice in behavioral paradigms. Test mice (C57BL/6N) were exposed to daily handling for 7 days 

prior to behavioral trials. Procedures were performed in ways that minimized suffering and the 

use of animals, and were in accordance with the NIH's Guide for the Care and Use of Laboratory 

Animals (NIH Publications No. 80-23) and approved by the IACUC of USD. 

Surgeries and intra-BLA injections   

Stereotaxic surgeries were performed on a cohort of male C57BL/N mice (N = 50) where guide 

cannulae were positioned bilaterally above the basolateral amygdala (relative to bregma: AP, -

1.5 mm; ML, +/-3.3 mm; DL, 4.5 mm).  Mice were allowed to recover for 7 days and were 

provided pain relief (ketorolac, sc, 5 mg/kg) for 48 h following surgeries.  On the day of drug 

delivery (Day 3), injector cannula (4.8 mm) were inserted into the guide cannula and drugs were 

infused at a rate of 1 µl/min for 20 s to deliver 300 nL, after which the injector cannula was left 

in position for 90 s.  

Drugs   

For intra-BLA manipulation of Orx2R receptor, an Orx2R antagonist (MK-1064, IC50 = 18 nM for 

Orx2R; MedChemExpress, Monmouth Junction, NJ), Orx2R agonist (YNT-185 for fear response 

test, EC50 = 28 nM for Orx2R and [Ala11,ᴅ-Leu15]-OrxB for Social Interaction/Preference (SIP) 

test, EC50 = 0.13 nM for Orx2R; Tocris, Minneapolis, MN), and Vehicle, mixed in a 25% DMSO 

solution (75% artificial cerebrospinal fluid [aCSF; 8.59 g NaCl, 0.201 g KCl, 0.279 g, CaCl2, 0.16 

g MgCl2, 0.124 g NaH2PO4, 0.199 g Na2HPO4/L H2O brought to a pH of 7.3]), were administered 

on Day 3 of the experimental plan (Fig. 2a).  For subcutaneous (sc) pharmacological experiments, 

an Orx2R antagonist (MK-1064), an α2 receptor antagonist (yohimbine), and vehicle (1:3, Saline 

to DMSO ratio) were similarly delivered on Day 3 (Fig. S2).  Doses for drugs infused into the 



   

235 
 

BLA (0.1 nmol/300 nL/side for MK-1064 and [Ala11,ᴅ-Leu15]-OrxB; 10 nmol/300 nL/side for 

YNT-185) were selected and adjusted based on previous experiments from our laboratory [18, 

19].  As we were unsure which dose of MK-1064 to use systemically on female mice, for sc studies 

we performed a dose response, where our high dose (1 µmol) was chosen to be lower than that 

necessary to induce sleep in mice [20].  For our yohimbine control group, a dose of 5 mg/kg, 

which blocked escape in male mice [11], was used for pharmacological studies in females. 

Shock-induced aggression (SIA)   

Classical Pavlovian conditioning was used to train male CD1 mice to behave aggressively 

toward female C57BL/6N mice.  Male CD1 mice, investigating (specifically anogenital sniffing) 

female mice introduced into the males’ home cage, were delivered a brief mild shock (1 mA, <1 

s) to the rump region, resulting in intense aggression directed toward the female mice.  Once 

aggression was displayed by the CD1, mice were separated.  Typical interactions lasted under 5 

min, as aggression was often immediately obtained through the pairing of the female with a mild 

shock.  This procedure was repeated for 4 days prior to the use of the male CD1 mice in 

behavioral paradigms.  In the actual experiments, CD1 mice trained to associate a female mouse 

(scent) with a mild shock, seldom required shock to display aggression.  In cases where the CD1 

mouse did not behave aggressively toward the female during experimentation, a mild shock was 

applied to produce aggressive behavior. 

Behavioral paradigms   

The primary behavioral paradigm used in these studies utilized the SAM.  The SAM involves a 

4-day (5 min/day) experimental plan that starts with test animals (C57BL/6N mice) being 

introduced to an opaque cylinder in the center of an oval-shaped, open field arena (Fig. 1).  An 

aggressor (male CD1 mouse) roams the arena outside of the cylinder.  After a 30 s resting 
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period, a 5 s tone (conditioned stimulus, CS) and 10 s trace proceed the lifting of the cylinder 

divider allowing the aggressive CD1 mouse to attack (unconditioned stimulus, US) the test 

animal.  Importantly, no test mouse encounters the same CD1 mouse twice throughout the 4-

Day paradigm.  In the SAM arena, two escape routes existing on opposite apical ends of the 

open field space allow the smaller test mouse to escape aggressive encounters.  In male mice, the 

end of the second day marks a commitment to one of two stable behavioral phenotypes: Escape 

and Stay.  This commitment allows for pharmacological intervention on Day 3, which may 

reverse the chosen phenotype.  Anxiogenic drugs delay escape time and promote Stay behavior, 

whereas, anxiolytic drugs initiate escape behaviors in Stay mice.  A purpose of the following 

studies was to investigate how female behavior in the SAM differs from that in males. 

To explore female behavior with our SIA method, we exposed female C57BL/6N mice to 

several unique paradigms (Fig. S1).  A group of female mice (N = 22) were presented with the 

standard 4-Day SAM paradigm.  A separate cohort (N = 10) were introduced into a SAM-like 

setting, but without escape routes for four days (Inescapable Social Stress group).  In 

preliminary trials, all females introduced into the 4-Day SAM escaped.  We next tested an 

experimental plan in which a cohort of females (N = 16) was presented with a shorter SAM 

protocol (2-Day SAM group) to determine if Escape and Stay phenotypes could be differentiated 

in females.  Finally, to see how elevated stress levels might affect SAM behavior, we tested a 

group of females (N = 20) that were presented with brief bouts of aggression (less than 1 min) in 

a male CD1 home cage for four days preceding the standard 4-Day SAM paradigm (Prior Stress 

+ 4-Day SAM).  A separate experimental design, involving both female (N = 41) and male (N = 

17) mice, utilized the standard 4-Day SAM paradigm with sc drug administration on Day 3. 
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In all experiments, the behavioral paradigms were followed with the Social 

Interaction/Preference (SIP) and Fear Response tests as previously described [10, 18, 19, 21].  In 

brief, the SIP test involves introduction of a test mouse to a square (40 cm2) open field 

environment.  An empty perforated jar (Novel target) is positioned alongside on wall and the test 

mouse is allowed to explore this area, including the Novel target, for 1.5 min.  The mouse is 

briefly removed and the empty jar is replaced by an identical jar that contains an aggressive CD1 

mouse (Social target) not previously used in preceding behavioral trials.  Again, the test mouse 

is allowed to explore the environment and social target for 1.5 min.  More time spent within 3 

cm of the Social target compared to the Novel target is considered social preference behavior, 

and increased time spent in the corners when the Social target is social avoidance behavior.  Fear 

Response is tested by placing test mice within the same cylinder divider used during daily fear 

conditioning (context, CS-) and measuring freezing for 30 s.  Afterwards, freezing is measured 

during a 5 s tone and 10 s trace period (cue, CS+).  Importantly, during the fear response test, no 

CD1 aggressor is present.  At the end of the Fear Response test, mice were briefly anesthetized 

(5% isoflurane, 2 min) and rapidly decapitated.  Trunk blood was spun down (5 min) in 

heparinized tubes and plasma was collected.  Brains were extracted and flash frozen in cold 

isopentane on dry ice. 

All behavioral paradigm was performed during the animals’ awake period (Dark hours) 

under red light.  Each behavioral trial was recorded using GoPro (Hero 7) cameras.  Videos were 

analyzed using ANY-maze (version 6.0) software. 

Estrous cycle   

Vaginal lavages were performed daily based on a previously described protocol [22] with 

modifications.  In brief, 50 µL of distilled water (dH2O) was gently flushed 3-6 times into the 
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vaginal cavity and the contents were placed onto microscope slides.  Samples were dried under a 

heat lamp and stained for 1 min with Cresyl violet (0.1 g/100 mL dH2O), 1 min dH2O twice, and 

air dried.  The samples were viewed under a microscope and the stages of estrous were 

identified by the abundance of three distinct cell types (Fig. S3): proestrus samples included 

mostly round nucleated epithelial cells, estrus samples were characterized by dense clusters of 

cornified squamous epithelial cells, metestrus samples contained predominantly leukocytes with 

few cornified epithelial cells, and diestrus samples involved a mix of all cell types and was 

distinguished from metestrus by the presence of nucleated epithelial cells.  As our preliminary 

results do not definitively expose whether the stage of the estrous cycle might impact stress-

related behaviors, for drug treatment studies (Fig. S2) we only started female animals through 

behavioral the paradigm when they were in proestrus. 

In situ hybridization - RNAscope   

Sections of fresh frozen brains (coronal; 20 µm; relative to bregma AP -1.40 to -2.0) were placed 

in cold (4°C) 10% formalin for 20 min and subsequently washed (2x for 1 min) in 1x phosphate 

buffer solution (PBS), before dehydration with ethanol (50% x 1, 70% x 1, and 100% x 3; 5 min 

each with the final ethanol being kept at -20°C overnight).  The following day, proteins were 

digested using a protease treatment and rinsed with dH2O.  Brain sections were incubated for two 

hours in RNAscope (Advanced Cell Diagnostics, Newark, CA) probes (HCRTR2, Cat. No. 

460881) in a hybridization oven (ACD HybEZ II oven) set to 40°C.  Fluorophores were linked to 

probes and signaling was enhanced through application of a series of amplification buffers 

(RNAscope Fluorescent Multiplex Detection Reagents).  Finally, tissue was briefly stained with 

DAPI (20 sec) and coverslipped.  Image acquisition was performed fluorescence microscope 

(Nikon A1; 10x/0.30 Plan Fluor and 20x/0.75 Plan Apo VC Nikon objectives) and NIS Elements 



   

239 
 

software.  The BLA was identified from images and analyzed using QuPath 3.0 and ImageJ 

programs. 

Statistics   

Experimental design and analyses were based on a priori hypotheses.  For comparisons that 

involved SAM (and other behavioral paradigm) trials across days, SIP test results for Novel and 

Social target, and Fear Response test (CS- & CS+) analyses, we utilized two-way repeated 

measures ANOVA.  For changes occurring across treatment/experimental groups we applied a 

one-way ANOVA.  Non-stressed cage controls were added for comparisons of corticosterone 

levels, in situ hybridization results, and home cage mobility measurements, in which one-way 

ANOVA was used.  Assessments between two treatments/experimental conditions were 

performed by Student’s two-tailed t-tests.  To determine differences in percentage of escape or 

estrous cycle stage, chi-square and Fischer Exact statistical analyses were utilized.  Each mouse 

provided a single unit for analyses involving a priori hypotheses.  The five assumptions of 

parametric statistics were applied to the data, transformed when necessary, compared to non-

parametric analyses, and graphed in raw form.  Analyses for parametric and non-parametric 

statistics were used along with an examination for multiple comparisons applying the Holm-

Sidak method.  If the statistical analyses match, as they do for the data herein, we report the 

parametric results without α adjustment [23-28].  Effects between groups for one-way analyses 

were examined with Student–Newman–Keuls post hoc analyses (to minimize Type I error) and 

Duncan's Multiple Range Test (to minimize Type II error). 
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RESULTS 

Pharmacological manipulation of intra-BLA Orx2R activity modifies stress-related 

behavior  

The Stress Alternatives Model (SAM) is a 4-day social stress paradigm in which male mice 

diverge into distinguishable behavioral phenotypes, by actively avoiding (Escape) or accepting 

(Stay) confrontation (Fig. 1).   As the BLA appears to be important for SAM-promoted 

phenotype development [18], we targeted this area (intra-BLA) with Orx2R-targeting drugs to 

see if we could influence phenotype-specific behaviors in Social Interaction/Preference (SIP) 

and Fear Response tests (Figs. 2A, B, C).  In both Escape and Stay male mice, Orx2R 

antagonism reduced social preference (Figs. 2D, E; Treatment Effect: F2,30 = 8.1, p ≤ 0.002; 

Target Effect: F1,30 = 22.7, p < 0.001; Social, Vehicle vs Orx2R Antagonist, t19 = 2.4, p ≤ 0.02; 

Vehicle, Novel vs Social, t10 = 2.9, p ≤ 0.02; Treatment Effect: F2,14 = 10.4, p ≤ 0.002; Target 

Effect: F1,14 = 20.0, p < 0.001; Interaction Effect: F2,14 = 15.2, p < 0.001; Social, Vehicle vs 

Orx2R Antagonist, t10 = 2.5, p ≤ 0.02).  Agonism of Orx2R increased preference for both the 

novel and social target in Escape and Stay mice (Figs. 2D, E; Escape: Novel, Vehicle vs Orx2R 

Agonist, t21 = 2.1, p ≤ 0.05; Novel, Orx2R Antagonist vs Orx2R Agonist, t20 = 4.1, p < 0.001; 

Social, Orx2R Antagonist vs Orx2R Agonist, t20 = 2.6, p ≤ 0.016; Orx2R Agonist, Novel vs 

Social, t11 = 3.8, p ≤ 0.003; Stay: Novel, Orx2R Antagonist vs Orx2R Agonist, t11 = 3.2, p ≤ 

0.009; Social, Vehicle vs Orx2R agonist, t7 = 2.9, p ≤ 0.01; Social, Orx2R Antagonist vs Orx2R 

Agonist, t11 = 6.1, p < 0.001; Orx2R Agonist, Novel vs Social, t4 = 14.3, p < 0.001).  While 

Orx2R antagonism increased social avoidance in Escape mice (Fig. 2F; Treatment Effect: F2,30 = 

4.9, p ≤ 0.01; Social, Vehicle vs Orx2R Antagonist, t19 = 2.5, p ≤ 0.02; Social, Orx2R Antagonist 

vs Orx2R Agonist, t20 = 2.7, p ≤ 0.01), there was no effect in Stay animals (Fig. 2G).  Curiously, 
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both Orx2R antagonism and agonism reduced cued fear freezing and eliminated the learning 

response (more freezing post-tone than pre-tone) in Escape mice (Fig. 2H; Treatment Effect: 

F2,13 = 5.9, p ≤ 0.02; CS Effect: F1,13 = 9.6, p ≤ 0.008; Interaction Effect: F2,13 = 4.6, p ≤ 0.03; 

Post-Tone, Vehicle vs Orx2R Antagonist, t11 = 2.5, p < 0.001; Post-Tone, Vehicle vs Orx2R 

Agonist, t8 = 3.7, p < 0.001; Vehicle, Pre- vs Post-Tone, t7 = 4.8, p < 0.001).  However, intra-

BLA agonism of Orx2R diminished both contextual and cued fear freezing in Stay animals (Fig. 

2I; Treatment Effect: F2,22 = 7.2, p ≤ 0.004; CS Effect: F1,22 = 37.2, p < 0.001; Pre-Tone, Vehicle 

vs Orx2R Agonist, t16 = 2.3, p ≤ 0.03; Pre-Tone, Orx2R Antagonist vs Orx2R Agonist, t11 = 2.9, p 

≤ 0.02; Post-Tone, Vehicle vs Orx2R Agonist, t16 = 3.9, p < 0.001; Post-Tone, Orx2R Antagonist 

vs Orx2R Agonist, t11 = 3.6, p < 0.001;Vehicle, Pre- vs Post-Tone, t13 = 4.8, p < 0.001; Orx2R 

Antagonist, Pre- vs Post-Tone, t8 = 4.7, p < 0.001; Orx2R Agonist, Pre- vs Post-Tone, t5 = 2.9, p 

≤ 0.04). 

Orx2R expression is higher in female vs male BLA   

In the BLA, Orx2R are expressed at low levels in male mice [18].  Male and female mice differ 

in the amount of BLA cells that express Orx2R mRNA (HCRTR2) with females having higher 

levels (>20%) compared to male (~10%) mice (Fig. 3; t11 = 3.5, p ≤ 0.005). 

Shock-induced aggression (SIA) initiates attacks toward female mice   

In order to investigate the effects of social stress on female populations, we developed a method 

for producing male CD1 retired breeder mice that act aggressively toward female mice (Fig. 

4A).  As males investigated (including anogenital sniffing) female mice, a mild shock (1 mA, <1 

s) was applied to the rump region, which resulted in intense attacks of female conspecifics.  The 

number of shocks necessary to promote aggression varies (average = 2.85).  However, all males 

introduced to our protocol successfully exhibited aggression toward female mice (Fig. 4B).  
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Surprisingly, all females subjected to the SAM choose to avoid social aggression by the end 

of Day 3, which is different from males, in which ~45% escape (Fig. 4C; Day 1: Χ2 = 18.6, p < 

0.001; Day 2: Χ2 = 16.3, p < 0.001; Day 3 & 4: Χ2 = 19.5, p < 0.001).  However, manipulating 

the stress state of females by exposing them to brief bouts of social aggression for 4-Days prior 

to SAM exposure, the percentage of Escape mice can be reduced (Fig. 4D; Day 1: Χ2 = 4.9, p ≤ 

0.03; Day 2: Χ2 = 3.2, p ≤ 0.04).  The escape latency of males of the Escape phenotype mimics 

that of females, except for Day 1 where male mice utilize the escape routes at a slower rate (Fig. 

4E; Day Effect: F3,141 = 51.8, p < 0.001; Day 1: t47 = 2.4, p ≤ 0.02).  Interestingly, females of the 

Prior Stress + 4-Day SAM experimental conditions, display enhanced latency to escape times on 

Days 1-3; however, the learning profile, as indicated by the curve of the plot, remains similar 

(Fig. 4F; Paradigm Effect: F1,120 = 12.9, p < 0.001; Day Effect: F3,120 = 51.0, p < 0.001; Day 1: 

t40 = 4.3, p < 0.001; Day 2: t40 = 2.8, p < 0.001; Day 2: t40 = 2.6, p ≤ 0.01).  Importantly, while 

males of the Stay phenotype encounter greater levels of aggression in the SAM compared to 

both females and Escape males (Phenotype Effect: F2,192 = 42.9, p < 0.001; Day Effect: F3,192 = 

5.1, p ≤ 0.002), there is no difference in aggression received when comparing female and males 

that avoid social aggression (Fig. 4G).  Further, no differences in the amount of aggression 

received exist between females exposed only to the SAM or those that encountered prior stress 

before the SAM; however, females presented with an inescapable social stress environment 

using SIA experience the greatest amount of aggression (Fig. 4H; Paradigm Effect: F2,147 = 32.4, 

p < 0.001), which resembles that of Stay male mice. 

Social preference and avoidance in female mice is affected by stress state   

As male mice of the Escape phenotype tend to show more social preference and less avoidance 

compared to Stay animals in the SIP test [19] (Figs. 2D-G), we wanted to examine how females 
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subjected to various SIA paradigms (Fig. S1) would behave in this context (Fig. 5).  Female 

mice exposed to the standard 4-Day SAM paradigm (Fig. S1) exhibited social preference (Fig. 

5A; Paradigm Effect: F3,64 = 41.3, p < 0.001; Target Effect: F1,64 = 37.6, p < 0.001; Interaction 

Effect: F3,64 = 5.8, p < 0.001; 4-Day SAM, Novel vs Social, t21 = 7.1, p < 0.001) and reduced 

social avoidance (Fig. 5B; Paradigm Effect: F3,64 = 9.4, p < 0.001; Target Effect: F1,64 = 12.2, p 

< 0.001; Interaction Effect: F3,64 = 3.3, p ≤ 0.03; 4-Day SAM, Novel vs Social, t21 = 3.0, p ≤ 

0.007).  Animals subjected to inescapable social stress, a 2-Day SAM paradigm, or prior stress 

before 4-Day SAM exposure displayed reduced social preference (Fig. 5A; Novel, 4-Day SAM 

vs Inescapable Social Stress, t30 = 4.0, p < 0.001; Novel, 4-Day SAM vs 2-Day SAM, t36 = 6.6, p 

< 0.001; Novel, 4-Day SAM vs Prior Stress + 4-Day SAM, t40 = 7.1, p < 0.001; Social, 4-Day 

SAM vs Inescapable Social Stress, t30 = 5.7, p < 0.001; Social, 4-Day SAM vs 2-Day SAM, t36 = 

9.8, p < 0.001; Social, 4-Day SAM vs Social Stress + 4-Day SAM, t40 = 10.3, p < 0.001; Social, 

Inescapable Social Stress vs 2-Day SAM, t26 = 2.6, p ≤ 0.01; Social, Inescapable Social Stress vs 

Prior Stress + 4-Day SAM, t28 = 2.6, p ≤ 0.01; Inescapable Social Stress, Novel vs Social, t9 = 

2.6, p ≤ 0.01) and enhanced social avoidance (Fig. 5B; Novel, 4-Day SAM vs Inescapable Social 

Stress, t30 = 3.7, p < 0.001; Novel, 4-Day SAM vs 2-Day SAM, t36 = 2.7, p ≤ 0.01; Novel, 4-Day 

SAM vs Prior Stress + 4-Day SAM, t40 = 3.5, p < 0.001; Social, 4-Day SAM vs Inescapable 

Social Stress, t30 = 4.8, p < 0.001; Social, 4-Day SAM vs 2-Day SAM, t36 = 3.4, p < 0.001; 

Social, 4-Day SAM vs Social Stress + 4-Day SAM, t40 = 5.3, p < 0.001; Inescapable Social 

Stress, Novel vs Social, t9 = 2.0, p ≤ 0.05; 2-Day SAM, Novel vs Social, t15 = 2.1, p ≤ 0.04; Prior 

Stress + 4-Day SAM, Novel vs Social, t19 = 3.4, p < 0.001). 

As hormonal changes associated with the estrous cycle may further modify stress-related 

behaviors [32], we investigated whether behaviors exhibited in the SIP test were related to the 
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stage of the estrous cycle (Figs. 5C-D, S2).  Mice in proestrus exhibited the highest amount of 

social preference (Fig. 5C; Stage Effect: F3,49 = 6.7, p < 0.001; Target Effect: F1,49 = 34.8, p < 

0.001; Interaction Effect: F3,49 = 7.6, p < 0.001; Novel, Proestrus vs Diestrus, t28 = 3.1, p ≤ 

0.005; Social, Proestrus vs Estrus, t21 = 3.5, p < 0.001; Social, Proestrus vs Metestrus, t18 = 4.5, p 

< 0.001; Social, Proestrus vs Diestrus, t28 = 5.7, p < 0.001; Proestrus, Novel vs Social, t9 = 5.9, p 

< 0.001; Estrus, Novel vs Social, t12 = 3.5, p < 0.001), while animals in diestrus showed the 

greatest amount of social avoidance (Fig. 5D; Interaction Effect: F3,49 = 3.1, p ≤ 0.04; Social, 

Proestrus vs Diestrus, t28 = 3.1, p ≤ 0.002; Diestrus, Novel vs Social, t19 = 3.0, p ≤ 0.004). 

Fear response in female mice is impacted by stress responsive state   

While male mice of the Stay phenotype display enhanced contextual and cued fear freezing 

behavior relative to both male Escape animals and female mice (all of which escape in the SAM 

paradigm), male Escape animals exhibit enhanced cued fear freezing compared to females (Fig. 

6A; Phenotype Effect: F2,82 = 19.9, p < 0.001; CS Effect: F1,82 = 72.5, p < 0.001; Pre-Tone, Male 

Stay vs Male Escape, t61 = 3.5, p < 0.001; Pre-Tone, Male Stay vs Female, t56 = 4.8, p < 0.001; 

Post-Tone, Male Stay vs Male Escape, t61 = 2.5, p ≤ 0.02; Post-Tone, Male Stay vs Female, t56 = 

6.1, p < 0.001; Post-Tone, Male Escape vs Female, t57 = 3.5, p < 0.001).  Importantly, both 

phenotypes from male mice as well as female mice show cued fear learning, characterized by 

elevated freezing post-tone compared to pre-tone (Fig. 6A; Male Stay, t35 = 5.8, p < 0.001; Male 

Escape, t26 = 6.5, p < 0.001; Female, t21 = 2.9, p ≤ 0.005).  Female mice presented with our 

various stress paradigms (Fig. S1) all display cued fear learning (Fig. 6B; Paradigm Effect: F3,64 

= 8.1, p < 0.001; CS Effect: F1,64 = 87.6, p < 0.001; Interaction Effect: F3,64 = 5.1, p ≤ 0.003; 4-

Day SAM, Pre-Tone vs Post-Tone, t21 = 2.6, p ≤ 0.01; Inescapable Social Stress, Pre-Tone vs 

Post-Tone, t9 = 6.2, p < 0.001; 2-Day SAM, Pre-Tone vs Post-Tone, t15 = 5.2, p < 0.001; Prior 
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Stress + 4-Day SAM, Pre-Tone vs Post-Tone, t19 = 4.1, p < 0.001).  However, mice introduced 

to the experiments involving inescapable social stress, 2-Day SAM, and prior stress before 4-

Day SAM demonstrate increased cued fear relative to standard 4-Day SAM animals (Fig. 6B; 4-

Day SAM vs Inescapable Social Stress, t30 = 5.5, p < 0.001; 4-Day SAM vs 2-Day SAM, t36 = 

3.9, p < 0.001; 4-Day SAM vs Prior Stress + 4-Day SAM, t40 = 3.9, p < 0.001).  Further, those 

mice in the prior stress + 4-Day SAM experimental group display enhanced contextual fear 

freezing (Fig. 6B; 4-Day SAM vs Prior Stress + 4-Day SAM, t40 = 3.4, p ≤ 0.002).  Interestingly, 

mice in proestrus do not display fear learning and exhibit reduced cued freezing relative to 

animals in metestrus and diestrus (Fig. 6C; Stage Effect: F3,49 = 4.3, p ≤ 0.009; CS Effect: F1,49 = 

30.2, p < 0.001; Post-Tone, Proestrus vs Metestrus, t18 = 2.7, p ≤ 0.008; Post-Tone, Proestrus vs 

Diestrus, t28 = 3.7, p < 0.001; Estrus, Pre-Tone vs Post-Tone, t12 = 2.9, p ≤ 0.005; Metestrus, 

Pre-Tone vs Post-Tone, t9 = 2.6, p ≤ 0.01; Diestrus, Pre-Tone vs Post-Tone, t19 = 5.2, p < 0.001).   

Systemic administration of an Orx2R antagonist reveals stress-related phenotypes in 

female mice 

As it is unclear whether the hormonal fluctuations associated with stages of the estrous cycle are 

responsible for shifts in stress-related behaviors, we controlled for potential influence by 

selecting only female animals in proestrus for systemic (subcutaneous) pharmacological 

experiments (Figs. 7-9, S3).  Pharmacological treatments, while not statistically significant, 

seemed to shift the stage of the estrous cycle (Fig. S3).  Treatment with yohimbine, an α2 

adrenergic receptor antagonist known for anxiogenic effects, increased escape latency in females 

on the day of drug administration (Fig. 7B; Day Effect: F3,108 = 17.2, p < 0.001; Day 3, Vehicle 

vs Yohimbine, t11 = 4.9, p < 0.001; Day 3, MK-1064 – 1 µmol vs Yohimbine, t12 = 5.8, p < 

0.001), an effect that is similarly seen in male mice [11].  While minor deviations in latency to 
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escape were observed with low doses of an Orx2R antagonist (300 nmol & 30 nmol), there was 

no significant differences compared to vehicle-treated animals (Fig. 7B).  However, in the 30 

nmol-treated group, we observed disparities in how female mice responded to drug treatment, 

where we defined a distinct separation phenotypes: Slow Escape (EscapeS) and Fast Escape 

(EscapeF).  The females in the EscapeS classification exhibited delayed escape behavior similar 

to that observed in our yohimbine control mice (Fig. 7C; Treatment Effect: F3,66 = 3.9, p ≤ 0.02; 

Day Effect: F3,66 = 11.0, p < 0.001; Day 3, Vehicle vs MK-1064 – 30 nmol – EscapeS, t9 = 2.6, p 

≤ 0.03; Day 3, MK-1064 – 30 nmol – EscapeF vs MK-1064 – 30 nmol – EscapeS, t11 = 3.0, p ≤ 

0.01).  Escape males administered the same dose (30 nmol) of the Orx2R antagonist did not 

display the phenotype emergence observed in female mice (Fig. 7D), however, males already 

display distinct phenotypes (Fig. 4C).  Further, on the day of drug delivery (Day 3), home cage 

locomotion was impaired in yohimbine-treated mice, but not animals given MK-1064 at varying 

doses (Fig. S4A; F5,38 = 3.0, p ≤ 0.021; Cage Control vs Yohimbine, t8 = 6.3, p < 0.001; Vehicle 

vs Yohimbine, t11 = 4.6, p < 0.001; MK-1064: 1 µmol, t12 = 3.7, p ≤ 0.003; 300 nmol, t13 = 3.3, p 

≤ 0.006; 30 nmol, t18 = 3.1, p ≤ 0.006).  Importantly, home cage locomotion was restored to 

normal levels in the yohimbine treatment group 24 hours after treatment (Fig. S4B)  

Systemic delivery of Orx2R antagonist reduces social preference 

While female mice administered vehicle treatment, as well as low doses of an Orx2R antagonist 

(300 nmol & 30 nmol), displayed social preference in the SIP test, yohimbine-treated animals 

exhibited a decrease in social preference (Fig. 8A; Target Effect: F1,36 = 27.8, p < 0.001; Social, 

Vehicle vs Yohimbine, t11 = 3.1, p ≤ 0.003; Vehicle, Novel vs Social, t5 = 3.8, p < 0.001; MK-

1064 – 300 nmol, Novel vs Social, t7 = 2.1, p ≤ 0.045; MK-1064 – 30 nmol, Novel vs Social, t12 

= 3.0, p ≤ 0.005).  However, mice of the EscapeS phenotype displayed a reduction in social 
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preference similar to that observed after yohimbine treatment (Fig. 8B; Target Effect: F1,16 = 

24.1, p < 0.001; Social, Vehicle vs MK-1064 – 30 nmol – EscapeS, t9 = 2.7, p ≤ 0.01; MK-1064 

– 30 nmol – EscapeF, Novel vs Social, t7 = 2.8, p ≤ 0.01).  Only vehicle-treated mice, similar to 

untreated females (Fig. 5B), saw a reduction in social avoidance (Figs. 8C, D; t5 = 2.5, p ≤ 0.05). 

Fear response is enhanced in females with Orx2R antagonism   

All treatment groups exhibited fear learning behavior (Fig. 9A; CS Effect: F1,36 = 42.0, p < 

0.001; Vehicle, Pre-Tone vs Post-Tone, t5 = 2.5, p ≤ 0.05; MK-1064 – 1 µmol, Pre-Tone vs 

Post-Tone, t6 = 2.4, p ≤ 0.02; MK-1064 – 300 nmol, Pre-Tone vs Post-Tone, t7 = 2.5, p ≤ 0.02; 

MK-1064 – 30 nmol, Pre-Tone vs Post-Tone, t12 = 4.7, p < 0.001; Yohimbine, Pre-Tone vs Post-

Tone, t6 = 4.2, p < 0.001); however, low dose (30 nmol) Orx2R antagonism promoted increased 

contextual freezing behavior while yohimbine-treated female mice demonstrated enhanced 

freezing to the cue (Fig. 9A; Pre-Tone, MK-1064 – 1 µmol vs MK-1064 – 30 nmol, t18 = 2.4, p 

≤ 0.03; Post-Tone, Vehicle vs Yohimbine, t11 = 2.5, p ≤ 0.03).  After low dose Orx2R antagonist 

treatment, mice exhibited the EscapeS phenotype experienced elevated cued freezing compared 

to vehicle-treated control animals, an effect mimicking yohimbine treatment (Fig. 9B; CS 

Effect: F3,22 = 44.7, p < 0.001; Post-Tone, Vehicle vs MK-1064 – 30 nmol – EscapeS, t9 =  2.8, p 

≤ 0.009; MK-1064 – 30 nmol – EscapeS, Pre-Tone vs Post-Tone, t4 = 4.0, p < 0.001; MK-1064 – 

30 nmol – EscapeF, Pre-Tone vs Post-Tone, t7 = 3.5, p ≤ 0.002). 

HCRTR2 expression is distinct in pharmacologically induced phenotypes   

The number of cells in the BLA expressing Orx2R mRNA is higher in EscapeS mice compared 

to EscapeF animals (Fig. 10; t8 = 2.3, p ≤ 0.048).  This suggests the presence of a physiological 

difference in these phenotypes, which may define the stress responsive state. 
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DISCUSSION 

Pro- and anti-stress neurocircuitries are divided functionally into prelimbic (PrL) prefrontal 

cortical connections to anterior BLA and infralimbic (IL) connections to posterior regions 

(pBLA), which correspond to non-overlapping cells with genetic markers Rspo2 (coding for the 

protein R-spondin 2) and Ppp1r1b (coding for the protein DARPP-32) (29, 31).  In the male 

BLA, Orx1R are found in a minority of cells, which are primarily glutamatergic (CamKII-

expressing) pyramidal cells [18].  Balancing pro- and anti-stress systems appears to involve 

BLA microcircuits, but the relationship of Orx2R in these circuits is largely unexplored, with 

related studies providing only a glimpse into this complicated system.  For example, oral 

administration of an Orx2R antagonist in a clinical setting improves sleep, but in the process also 

produces antidepressive effects [33].  In contrast, systemic brain delivery 

(intracerebroventricular injection) of Orx2R agonists produces anxiolytic and antidepressive 

effects in an animal model of social defeat and avoidance [19].  Additionally, Orx2R null mice 

display enhanced behavioral despair [34] and reduced contextual freezing [35], as Orx2R 

knockout decreases stress responsivity [36].  While inhibition of Orx2R in the BLA diminished 

cued freezing in male Escape mice (Fig. 2H), we have previously revealed a possible anxiogenic 

outcome of blocking receptor function [21].  Inhibiting Orx1R reduces fear/panic-induced 

freezing [37-40], however, Orx2R antagonism directed at the BLA appears to eliminate fear 

learning in Escape mice (Fig. 2H) and agonism reduces fear freezing in Stay mice (Fig. 2I), 

suggesting a phenotype-dependent effect.  This response may further be specific to the BLA, as 

Orx2R activity in the nucleus accumbens shell, PrL, and paraventricular thalamus may enhance 

anxious behavior [41-44].  These collective qualities of Orx2R action suggest this receptor 

subtype, unlike Orx1R activity which is consistently linked to pro-stress outcomes [37, 38, 45], 
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differentially regulates behavioral responses in a way that reflects the initial, possibly innate, 

stress state [46].   

In the BLA, Orx2R expressing cells are more abundant in females compared to males (Fig. 

3), and female mice exposed to the SAM arena always escape and do so faster than males on 

Day 1 (Figs. 4E).  Further, females show greater social preference and diminished fear responses 

compared to males (Figs. 5A, 6A).  These sexually dimorphic responses may be altered by 

manipulating the female stress state (Figs. 5A-B, 6B), suggesting, like males [10, 11, 18, 19], 

SAM-induced escape behavior in females is linked to anti-stress outcomes.  

We suspected these behavioral differences in females and males might be associated with 

Orx2R function, and attempted to manipulate escape-related behaviors by pharmacologically 

inhibiting Orx2R activity.  In our dose response, the highest concentration (1 µmol) of MK-1064, 

selected to be slightly under the amount necessary to promote sleep [20], produced minimal 

changes to female behavior; however, the lowest dose (30 nmol) modified behaviors more 

noticeably (Figs. 8, 9).  Closer examination revealed a divergence in behavioral outcomes after 

treatment of low dose MK-1064 (Fig. 7C): animals exhibiting delayed escape (EscapeS) and 

mice showing normal escape (EscapeF).  Female mice defined as EscapeS animals further 

displayed pro-stress responses, which mimicked those of the anxiogenic α2 receptor antagonist 

yohimbine, in SIP and Fear Response tests (Figs. 8B, 9B).  We postulate the prominent effect of 

the lowest dose of MK-1064 to be a result of enhanced biased signaling of Orx2R, over Orx1R, 

as a result of limiting the drug load.  Interestingly, this low dose of Orx2R had no effect on male 

Escape mice, further highlighting sex differences in stress behavioral responses. 

The orexin system is plastic, and the number of hypothalamic cells that produce orexins 

fluctuate diurnally [47] and during dependency [48, 49].  We demonstrate a mechanism for 
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potential plasticity of Orx2R-expressing cells in the BLA that may define an animals’ stress 

responsive state as EscapeS mice have more of these cells (Fig. 10).  Importantly, it is unclear 

from the results reported here if the higher expression of HCRTR2-postive cells in EscapeS mice 

precedes drug administration.  If this were true, however, it would establish a 

neurophysiological difference that may explain phenotype emergence after drug administration.  

In males, antagonism of intra-BLA Orx2R in Escape animals lowers cued freezing behavior (Fig. 

2H); however, male Escape mice have higher HCRTR2 expression in the BLA compared to Stay 

animals [18].  In females, high Orx2R-expressing cells appears to be the stable state (Fig. 3); 

however, phenotype emergence promotes neurophysiological adaptations and plasticity within 

the BLA-contained orexin system.  If this is true, higher HCRTR2-expressing cells in the BLA 

acts as a homeostatic mechanism to help establish balance to counteract a bias in pro-stress 

signaling. 

Conclusions 

Shifts in microcircuits regulate stress responsivity and higher reactive states (Stay).  In males, 

these stress responsive states are modified by Orx2R activity in the BLA, where sex-defined 

differences in intra-BLA HCRTR2 may help explain sexual dimorphism in stress-induced 

behaviors.  By manipulating Orx2R activity in females, behavioral phenotypes emerge.  These 

phenotypic differences are further defined by the number of HCRTR2-expressing cells in the 

BLA.  Together, these results suggest the balance of Orx2R activity in the BLA is important for 

mediating stress responsivity in both males and females. 
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Figure 1.  The Stress Alternatives Model (SAM) is a 4-Day social stress paradigm in which mice are 

conditioned (Tone, CS+) to social aggression (US) and commit to a behavioral phenotype by the end of 

Day 2: Escape (active avoidance of social aggression) and Stay (accepting confrontation from aggressor). 
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Figure 2.  Administration of intra-BLA Orx2R-targeting drugs alters stress-related behavior in SIP and 

Fear Response tests.  (A) Experimental design for experiment pharmacologically targeting male intra-

BLA Orx2R.  (B) Social Interaction/Preference (SIP) test measures social preference (bottom left) and 

avoidance (bottom right).  (C) Fear Response test indicates if fear learning takes place and whether fear 

responses are observed in response to the context (CS-) or cue (CS+).  (D) Escape mice treated with an 

Orx2R antagonist exhibit reduced social preference (n = 33, Treatment Effect: F2,30 = 8.1, p ≤ 0.002; 

Target Effect: F1,30 = 22.7, p < 0.001; Novel, Vehicle vs Orx2R Agonist, t21 = 2.1, +p ≤ 0.05; Novel, 

Orx2R Antagonist vs Orx2R Agonist, t20 = 2.6, ^p ≤ 0.016; Social, Vehicle vs Orx2R Antagonist, t19 = 2.4, 

!p ≤ 0.02; Social, Orx2R Antagonist vs Orx2R Agonist, t20 = 4.1, ^p < 0.001; Vehicle, Novel vs Social, t10 

= 2.9, #p ≤ 0.02; Orx2R Agonist, Novel vs Social, t11 = 3.8, #p ≤ 0.003).   (E) In Stay mice, social 

preference is enhanced after Orx2R agonist treatment and reduced after administration of an Orx2R 

antagonist (n = 17, Treatment Effect: F2,14 = 10.4, p ≤ 0.002; Target Effect: F1,14 = 20.0, p < 0.001; 

Interaction Effect: F2,14 = 15.2, p < 0.001; Novel, Orx2R Antagonist vs Orx2R Agonist, t11 = 3.2, ^p ≤ 
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0.009; Social, Vehicle vs Orx2R Antagonist, t10 = 2.5, $p ≤ 0.02; Social, Vehicle vs Orx2R agonist, t7 = 

2.9, +p ≤ 0.01; Social, Orx2R Antagonist vs Orx2R Agonist, t11 = 6.1, ^p < 0.001; Orx2R Agonist, Novel 

vs Social, t4 = 14.3, #p < 0.001).  (F) Social avoidance is enhanced in Orx2R antagonist-treated Escape 

mice (n = 33, Treatment Effect: F2,30 = 4.9, p ≤ 0.01; Social, Vehicle vs Orx2R Antagonist, t19 = 2.5, !p ≤ 

0.02; Social, Orx2R Antagonist vs Orx2R Agonist, t20 = 2.7, ^p ≤ 0.01).  (G) There is no effect of 

treatment on social avoidance behavior in Stay mice.  (H) Cued fear freezing is reduced in Escape mice 

following either Orx2R antagonism or agonism (n = 16, Treatment Effect: F2,13 = 5.9, p ≤ 0.02; CS Effect: 

F1,13 = 9.6, p ≤ 0.008; Interaction Effect: F2,13 = 4.6, p ≤ 0.03; Post-Tone, Vehicle vs Orx2R Antagonist, 

t11 = 2.5, $p < 0.001; Post-Tone, Vehicle vs Orx2R Agonist, t8 = 3.7, +p < 0.001; Vehicle, Pre- vs Post-

Tone, t7 = 4.8, #p < 0.001).  (I) Agonism of intra-BLA Orx2R reduces both contextual and cued fear 

freezing in Stay animals (n = 29, Treatment Effect: F2,22 = 7.2, p ≤ 0.004; CS Effect: F1,22 = 37.2, p < 

0.001; Pre-Tone, Vehicle vs Orx2R Agonist, t16 = 2.3, +p ≤ 0.03; Pre-Tone, Orx2R Antagonist vs Orx2R 

Agonist, t11 = 2.9, +p ≤ 0.02; Post-Tone, Vehicle vs Orx2R Agonist, t16 = 3.9, +p < 0.001; Post-Tone, 

Orx2R Antagonist vs Orx2R Agonist, t11 = 3.6, !p < 0.001;Vehicle, Pre- vs Post-Tone, t13 = 4.8, #p < 

0.001; Orx2R Antagonist, Pre- vs Post-Tone, t8 = 4.7, #p < 0.001; Orx2R Agonist, Pre- vs Post-Tone, t5 = 

2.9, #p ≤ 0.04). 
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Figure 3.  Expression of Orx2R mRNA in the BLA is higher in female compared to male mice. (A) 

Representative image of female BLA with Orx2R mRNA (HCRTR2) expression (red = HCRTR2, blue = 

DAPI).  (B) Expression of HCRTR2 in male BLA.   (C) Female mice have more BLA cells that express 

Orx2R mRNA compared to males (n = 13, t11 = 3.5, *p ≤ 0.005).  
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Figure 4.  Female social stress and behavioral phenotype development is distinct from that in male mice.  

(A) Shock-induced aggression (SIA) involves applying a mild shock (1 mA, <1 s) to male (CD1 retired 

breeder) mice as they perform anogenital sniffing of female conspecifics. (B) The number of shocks 

needed to promote aggression varies, but all preliminary trials (n = 40) resulted in aggressive 

interactions.  (C) Female mice experiencing social aggression in the SAM all escaped by Day 3; whereas, 

~45% of male mice committed to the Escape phenotype by the end of Day 2 (n = 85, Day 1: Χ2 = 18.6, 

*p < 0.001; Day 2: Χ2 = 16.3, *p < 0.001; Day 3 & 4: Χ2 = 19.5, *p < 0.001).  (D) Female mice that 

experienced 4-Days of social stress prior to SAM introduction exhibited more Stay behavior (n = 42, Day 

1: Χ2 = 4.9, *p ≤ 0.03; Day 2: Χ2 = 3.2, *p ≤ 0.04).  (E) Male mice that chose the Escape phenotype 

experienced a slower latency to escape on Day 1 compared to female animals (n = 49, Day Effect: F3,141 = 

51.8, p < 0.001; Day 1: t47 = 2.4, *p ≤ 0.02; unique letters indicate differences from other Days, e.g. A is 
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different from B, p ≤ 0.02).  (F) Latency to escape in females that experienced social stress prior to SAM 

exposure displayed slower escape times on Days 1-3 (n = 42, Paradigm Effect: F1,120 = 12.9, p < 0.001; 

Day Effect: F3,120 = 51.0, p < 0.001; Day 1: t40 = 4.3, *p < 0.001; Day 2: t40 = 2.8, *p < 0.001; Day 2: t40 = 

2.6, *p ≤ 0.01; unique letters indicate differences from other Days, e.g. A is different from B, p < 0.001).  

(G) Male Stay mice experience more aggression than Escape mice, which receive similar levels of 

aggression as Female mice in the SAM arena (n = 85, Phenotype Effect: F2,192 = 42.9, p < 0.001; Day 

Effect: F3,192 = 5.1, p ≤ 0.002).  (H) Females in an inescapable social stress paradigm receive more 

aggression than females exposed to the SAM where they can avoid aggressive encounters (n = 52, 

Paradigm Effect: F2,147 = 32.4, p < 0.001).  
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Figure 5.  Female stress state impacts results in SIP test.  (A) Enhanced stress in females reduces 

preference for both novel and social targets (n = 68, Paradigm Effect: F3,64 = 41.3, p < 0.001; Target 

Effect: F1,64 = 37.6, p < 0.001; Interaction Effect: F3,64 = 5.8, p < 0.001; Novel, 4-Day SAM vs 

Inescapable Social Stress, t30 = 4.0, *p < 0.001; Novel, 4-Day SAM vs 2-Day SAM, t36 = 6.6, *p < 0.001; 

Novel, 4-Day SAM vs Prior Stress + 4-Day SAM, t40 = 7.1, *p < 0.001; Social, 4-Day SAM vs 

Inescapable Social Stress, t30 = 5.7, *p < 0.001; Social, 4-Day SAM vs 2-Day SAM, t36 = 9.8, *p < 0.001; 

Social, 4-Day SAM vs Social Stress + 4-Day SAM, t40 = 10.3, *p < 0.001; Social, Inescapable Social 

Stress vs 2-Day SAM, t26 = 2.6, ^p ≤ 0.01; Social, Inescapable Social Stress vs Prior Stress + 4-Day 

SAM, t28 = 2.6, ^p ≤ 0.01; 4-Day SAM, Novel vs Social, t21 = 7.1, _p < 0.001; Inescapable Social Stress, 

Novel vs Social, t9 = 2.6, _p ≤ 0.01).  (B) In females, social avoidance is increased in paradigms involving 

inescapable social stress, 2-Day SAM, and prior stress before 4-Day SAM (n = 68, Paradigm Effect: F3,64 

= 9.4, p < 0.001; Target Effect: F1,64 = 12.2, p < 0.001; Interaction Effect: F3,64 = 3.3, p ≤ 0.03; Novel, 4-

Day SAM vs Inescapable Social Stress, t30 = 3.7, *p < 0.001; Novel, 4-Day SAM vs 2-Day SAM, t36 = 

2.7, *p ≤ 0.01; Novel, 4-Day SAM vs Prior Stress + 4-Day SAM, t40 = 3.5, *p < 0.001; Social, 4-Day 

SAM vs Inescapable Social Stress, t30 = 4.8, *p < 0.001; Social, 4-Day SAM vs 2-Day SAM, t36 = 3.4, *p 

E F H I 
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< 0.001; Social, 4-Day SAM vs Social Stress + 4-Day SAM, t40 = 5.3, *p < 0.001; 4-Day SAM, Novel vs 

Social, t21 = 3.0, _p ≤ 0.007; Inescapable Social Stress, Novel vs Social, t9 = 2.0, _p ≤ 0.05; 2-Day SAM, 

Novel vs Social, t15 = 2.1, _p ≤ 0.04; Prior Stress + 4-Day SAM, Novel vs Social, t19 = 3.4, _p < 0.001).  

(C) Mice in proestrus exhibit enhanced social preference compared to other stages of the estrous cycle (n 

= 53, Stage Effect: F3,49 = 6.7, p < 0.001; Target Effect: F1,49 = 34.8, p < 0.001; Interaction Effect: F3,49 = 

7.6, p < 0.001; Novel, Proestrus vs Diestrus, t28 = 3.1, *p ≤ 0.005; Social, Proestrus vs Estrus, t21 = 3.5, 

*p < 0.001; Social, Proestrus vs Metestrus, t18 = 4.5, *p < 0.001; Social, Proestrus vs Diestrus, t28 = 5.7, 

*p < 0.001; Proestrus, Novel vs Social, t9 = 5.9, _p < 0.001; Estrus, Novel vs Social, t12 = 3.5, _p < 0.001).  

(D) Animals in diestrus display higher social avoidance behavior (n = 53, Interaction Effect: F3,49 = 3.1, p 

≤ 0.04; Social, Proestrus vs Diestrus, t28 = 3.1, *p ≤ 0.002; Diestrus, Novel vs Social, t19 = 3.0, _p ≤ 

0.004). 
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Figure 6.  Fear response in female mice is dependent on stress state.  (A) Male Stay mice exhibit the 

greatest amount of contextual and cued freezing, but male Escape animals freeze more to the cue than 

females  (n = 85, Phenotype Effect: F2,82 = 19.9, p < 0.001; CS Effect: F1,82 = 72.5, p < 0.001; Pre-Tone, 

Male Stay vs Male Escape, t61 = 3.5, *p < 0.001; Pre-Tone, Male Stay vs Female, t56 = 4.8, +p < 0.001; 

Post-Tone, Male Stay vs Male Escape, t61 = 2.5, *p ≤ 0.02; Post-Tone, Male Stay vs Female, t56 = 6.1, +p 

< 0.001; Post-Tone, Male Escape vs Female, t57 = 3.5, +p < 0.001; Male Stay, Pre-Tone vs Post-Tone, t35 

= 5.8, #p < 0.001; Male Escape, Pre-Tone vs Post-Tone, t26 = 6.5, #p < 0.001; Female, Pre-Tone vs Post-

Tone, t21 = 2.9, #p ≤ 0.005).  (B) In female mice, enhancing the stress state promotes increased freezing 

in the fear response test (n = 68, Paradigm Effect: F3,64 = 8.1, p < 0.001; CS Effect: F1,64 = 87.6, p < 

0.001; Interaction Effect: F3,64 = 5.1, p ≤ 0.003; Pre-Tone, 4-Day SAM vs Prior Stress + 4-Day SAM, t40 

= 3.4, *p ≤ 0.002; Post-Tone, 4-Day SAM vs Inescapable Social Stress, t30 = 5.5, *p < 0.001; Post-Tone, 
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4-Day SAM vs 2-Day SAM, t36 = 3.9, *p < 0.001; Post-Tone, 4-Day SAM vs Prior Stress + 4-Day SAM, 

t40 = 3.9, *p < 0.001; 4-Day SAM, Pre-Tone vs Post-Tone, t21 = 2.6, _p ≤ 0.01; Inescapable Social Stress, 

Pre-Tone vs Post-Tone, t9 = 6.2, _p < 0.001; 2-Day SAM, Pre-Tone vs Post-Tone, t15 = 5.2, _p < 0.001; 

Prior Stress + 4-Day SAM, Pre-Tone vs Post-Tone, t19 = 4.1, _p < 0.001).  (C) Female mice in metestrus 

and diestrus display elevated cued fear freezing behavior (n = 53, Stage Effect: F3,49 = 4.3, p ≤ 0.009; CS 

Effect: F1,49 = 30.2, p < 0.001; Post-Tone, Proestrus vs Metestrus, t18 = 2.7, *p ≤ 0.008; Post-Tone, 

Proestrus vs Diestrus, t28 = 3.7, *p < 0.001; Estrus, Pre-Tone vs Post-Tone, t12 = 2.9, _p ≤ 0.005; 

Metestrus, Pre-Tone vs Post-Tone, t9 = 2.6, _p ≤ 0.01; Diestrus, Pre-Tone vs Post-Tone, t19 = 5.2, _p < 

0.001). 

  



   

265 
 

 
Figure 7.  Systemic antagonism of Orx2R reveals female phenotype formation.  (A) Experimental design 

for pharmacological experiments.  (B) Yohimbine, an α2 receptor antagonist, significantly increases 

latency to escape, while low doses of an Orx2R antagonist (MK-1064) moderately alter latency to escape 

(n = 41, Day Effect: F3,108 = 17.2, p < 0.001; Day 3, Vehicle vs Yohimbine, t11 = 4.9, *p < 0.001; Day 3, 

MK-1064 – 1 µmol vs Yohimbine, t12 = 5.8, +p < 0.001).  (C) Phenotype separation in female mice after 

low dose (30 nmol) treatment of an Orx2R antagonist (MK-1064) reveals fast (EscapeF) and slow 

(EscapeS) escapers, where EscapeS animals express an enhanced latency to escape comparable to that 

observed after yohimbine treatment (n = 26, Treatment Effect: F3,66 = 3.9, p ≤ 0.02; Day Effect: F3,66 = 

11.0, p < 0.001; Day 3, Vehicle vs MK-1064 – 30 nmol – EscapeS, t9 = 2.6, *p ≤ 0.03; Day 3, MK-1064 – 

30 nmol – EscapeF vs MK-1064 – 30 nmol – EscapeS, t11 = 3.0, !p ≤ 0.01).  (D) Male Escape mice 

administered MK-1064 at 30 nmol did not display increased latency to escape. 
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Figure 8.  Pharmacologically revealed phenotypes in females show different responses in SIP test.  (A) 

Social preference is reduced with Yohimbine treatment (n = 41, Target Effect: F1,36 = 27.8, p < 0.001; 

Social, Vehicle vs Yohimbine, t11 = 3.1, *p ≤ 0.003; Vehicle, Novel vs Social, t5 = 3.8, _p < 0.001; MK-

1064 – 300 nmol, Novel vs Social, t7 = 2.1, _p ≤ 0.045; MK-1064 – 30 nmol, Novel vs Social, t12 = 3.0, _p 

≤ 0.005).  (B) Female mice treated with MK-1064 at the 30 nmol dose that exhibited slow escape 

behavior (EscapeS) displayed reduced social preference comparable to that observed in yohimbine-treated 
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mice (n = 26, Target Effect: F1,16 = 24.1, p < 0.001; Social, Vehicle vs MK-1064 – 30 nmol – EscapeS, t9 

= 2.7, *p ≤ 0.01; MK-1064 – 30 nmol – EscapeF, Novel vs Social, t7 = 2.8, #p ≤ 0.01).  (C-D) Only 

vehicle-treated mice exhibited reduced social avoidance behavior (t5 = 2.5, _/#p ≤ 0.05).  
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Figure 9.  Systemic antagonism of Orx2R affects fear response in females mice in a phenotype-

dependent fashion.  (A) Yohimbine increases cued fear freezing (n = 41, CS Effect: F1,36 = 42.0, p < 

0.001; Pre-Tone, MK-1064 – 1 µmol vs MK-1064 – 30 nmol, t18 = 2.4, +p ≤ 0.03; Post-Tone, Vehicle vs 

Yohimbine, t11 = 2.5, *p ≤ 0.03; Vehicle, Pre-Tone vs Post-Tone, t5 = 2.5, _p ≤ 0.05; MK-1064 – 1 µmol, 

Pre-Tone vs Post-Tone, t6 = 2.4, _p ≤ 0.02; MK-1064 – 300 nmol, Pre-Tone vs Post-Tone, t7 = 2.5, _p ≤ 

0.02; MK-1064 – 30 nmol, Pre-Tone vs Post-Tone, t12 = 4.7, _p < 0.001; Yohimbine, Pre-Tone vs Post-

Tone, t6 = 4.2, _p < 0.001).  (B) Female EscapeS phenotype displays elevated cued freezing behavior 

similar to yohimbine-treated female mice (n = 26, CS Effect: F3,22 = 44.7, p < 0.001; Post-Tone, Vehicle 

vs MK-1064 – 30 nmol – EscapeS, t9 =  2.8, *p ≤ 0.009; MK-1064 – 30 nmol – EscapeS, Pre-Tone vs 

Post-Tone, t4 = 4.0, #p < 0.001; MK-1064 – 30 nmol – EscapeF, Pre-Tone vs Post-Tone, t7 = 3.5, #p ≤ 

0.002). 
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Figure 10.  Cells in BLA expressing Orx2R are unique in antagonist-induced phenotypes.  (A) Image 

representing HCRTR2 expression in BLA cells of mice defined as EscapeF (red = HCRTR2, blue = DAPI) 

and (B) EscapeS.   (C) Mice exhibiting the EscapeS phenotype have more Orx2R mRNA expression 

compared to EscapeF animals (n = 10, t8 = 2.3, *p ≤ 0.048). 
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Figure S1.  Social stress paradigm outlines used for exploring female social stress. 
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Figure S2.  Lavage samples were collected daily to determine the stage of the estrous cycle for Non-

Stressed Cage Control mice and those of experimental groups: 4-Days SAM & Prior Stress + 4-Days 

SAM. 
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Figure S3.  While all animals started experimental trials in the proestrus stage of the estrous cycle, 

variation was observed in the number of animals in a particular stage of the cycle after drug treatment 

(Yohimbine or MK-1064). 
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Figure S4.  (A) Yohimbine reduces home cage locomotion on Day 3, 1 hr after drug administration (F5,38 

= 3.0, p ≤ 0.021).  Differences are observed relative to cage control (t8 = 6.3, ^p < 0.001), vehicle- (t11 = 

4.6, *p < 0.001), and MK-1064-treated mice (1 µmol: t12 = 3.7, +p ≤ 0.003; 300 nmol: t13 = 3.3, #p ≤ 

0.006; 30 nmol: t18 = 3.1, !p ≤ 0.006).  (B) There were, however, no effects on home cage mobility on 

Day 4 (24 hr after) drug treatment (F5,38 = 0.7, p ≥ 0.647).  
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