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ABSTRACT 

 
  Significant changes have been made on audio-based technologies over years in several 

different fields along with healthcare industry. Lung sound analysis is a potential source 

of noninvasive, quantitative information along with additional objective on the status of 

the pulmonary system. Recognition of abnormal respiratory sounds with a stethoscope 

known as auscultation is important in diagnosing respiratory diseases and providing first 

aid. At times, possibility of inaccurate interpretation of respiratory sounds happens be- 

cause of clinician’s lack of considerable expertise or sometimes trainees such as interns 

and residents misidentify respiratory sounds. We have built a tool to distinguish healthy 

respiratory sound from non-healthy ones that come from respiratory infection carrying 

patients. The audio clips were characterized using Linear Predictive Cepstral Coefficient 

(LPCC)-based features and the highest possible accuracy of 99.22% was obtained with a 

Multi-Layer Perceptron (MLP)-based classifier on the publicly available ICBHI17 respi- 

ratory sounds dataset [1] of size 6800+ clips. The system also outperformed established 

works in literature and other machine learning techniques. In future we will try to use 

larger dataset with other acoustic techniques along with deep learning-based approaches 

and try to identify the nature and severity of infection using respiratory sounds. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Respiratory diseases are leading causes of death and disability in the world. The poorest

regions of the world had the greatest disease burden. Ageing and risk factors includ-

ing smoking, environmental pollution, and body weight also play a key role, say the

researchers. Chronic respiratory diseases pose a major public health problem and about

65 million people suffer from chronic obstructive pulmonary disease and with an esti-

mated 3.91 million deaths in 2017 which accounts for 7% of all deaths worldwide and

its third leading cause of death. Between 1990 and 2017, the number of deaths due to

chronic respiratory diseases increased by 18%, from 3.32 million in 1990 to 3.91 million in

2017. About 334 million people suffer from asthma, the most common chronic disease of

childhood affecting 14% of all children globally.

Respiratory diseases like Pneumonia kills millions of people annually and is a lead-

ing cause of death among children under 5 years old. Over 10 million people develop

tuberculosis (TB) and 1.4 million die from it each year, making it the most common lethal

infectious disease. Lung cancer kills 1.6 million people each year and is the deadliest

cancer. Globally, 4 million people die prematurely from chronic respiratory disease. Res-

piratory diseases make up five of the 30 most common causes of death: COPD is third;

lower respiratory tract infection is fourth; tracheal, bronchial and lung cancer is sixth; TB

is twelfth; and asthma is twenty-eighth [1]. Altogether, more than 1 billion people suffer

from either acute or chronic respiratory conditions. The stark reality is that each year, 4

million people die prematurely from chronic respiratory disease [2]. Infants and young

children are particularly susceptible. A total of 9 million children under 5 years old die

annually, and pneumonia is the world’s leading killer of these children [1].

People often take breathing and our respiratory health for granted, but the lung is a
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vital organ that is vulnerable to airborne infection and injury. Respiratory system diseases

affect people’s social, economic and health life significantly. Social deprivation was the

most important factor affecting rates of death and disability, with the highest rates seen

in the poorest regions of the world. Lower mortality was seen in more affluent countries,

reflecting better access to health services and improved treatments.

So, treatment of lung diseases, which are the most common cause of death in the

world, is of great importance in the medical field. For these reasons, a lot of research

are going on for early diagnosis and intervention in respiratory diseases. In order to

accurately identify health problem regarding this information requires experience and

time, but according to the World Health Organization (WHO) statistics [3], 45% of the

WHO Member States report to have less than 1 physician per 1000 population, the WHO

ratio recommendation. Considering these statistics into account, to study individually

and diagnose every patient by a health specialist who are already overbooked, mistakes

can happen. This is why finding new ways to help doctors to save time is a priority.

Hence, automatic and reliable tools can help in diagnosing more people and it can also

help specialists to make less mistakes due to the work overload.

1.2 Motivation

As rapid growth of respiratory diseases is witnessed around the world, medical research

field has gained interest in integrating potential audio signal analysis-based technique.

From the past few decades, computer science constantly improving the ability to ana-

lyze media data automatically and with the help of diagnosis tools we are able to process

image and/or audio information. Hence, Computer science could help nursing staff or

doctors for diagnosis by proposing faster and reliable tools and by giving customizable

tools for medical monitoring to the patient. Like in other application domains, audio sig-

nal analysis tools can potentially help in analyzing respiratory sounds to detect problems
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Figure 1.1: Global age standardized mortality rate per 100000 people of
chronic obstructive pulmonary disease for both sexes in 195
countries and territories in 2017
(Source: https://www.bmj.com/content/368/bmj.m234)

in the respiratory tract. Audio analysis aids in timely diagnosis of respiratory ailments

more effortlessly in the early stages of a respiratory dysfunction. Apart from respiratory

check-ups, every cardiac assessment also includes an audio auscultation in which one the

medical specialist listens to sounds from the patient body with different tools like stetho-

scope or sonography. This shows how important sound analysis is for heart and lungs

disease detection.

Respiratory sounds may be acquired by the easy and non-invasive auscultation pro-

cedure. Auscultation is an effective technique in which physicians evaluate and diagnose

the disease after using a stethoscope for lung disease. This method is inexpensive and

easy as it does not require internal intervention into the human body. However, tradi-

tional stethoscopes may be exposed to external noise sounds and cannot filter the audio

frequencies of the body in auscultation and cannot create permanent recordings in moni-

toring of the disease course. Also, there is a possibility of untrained physicians incorrectly
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recognizing abnormalities, which can be due to not calibrating the instrument and/or due

to noisy environment, is very high using this method.

As lung and heart diseases remains the leading cause of death globally, there are many

studies about lung and heart sound identification. Since then, there are lots of improve-

ments, for processing records taken in noisy environments. Furthermore, new kinds of

methods drastically improve the domain, as machine learning and deep learning. These

approaches contribute a lot to computer vision, or audio analysis. This gives more rele-

vant information from respiratory sounds extracted and contribute to reducing the time

for diagnosis, consequently increasing treatment efficiency. Thus, an automated algo-

rithm developed to recognize abnormalities in respiratory sounds may be of great rel-

evance to clinical diagnosis. Also researchers are looking in to combining speech and

signal processing tools techniques with image analysis-based tools techniques [4, 5, 6]

can also help doctors predict or guess about the presence of respiratory diseases based

on verbal communication before they even start with the X-ray screening or other proce-

dures.

Machine learning has proven to be an effective technique in recent years and machine

learning algorithms have been successfully used in a large number of applications. The

development of computerized lung sound analysis has attracted many researchers in re-

cent years, which has led to the implementation of machine learning algorithms for the

diagnosis of lung sound. In our research we have used machine learning techniques in

computer-based lung sound analysis. A brief description of the types of lung sounds and

their characteristics is provided. We examined specific lung sounds/disorders, the num-

ber of subjects, the signal processing and classification methods and the outcome of the

analyses of lung sounds using machine learning methods that have been performed by

previous researchers. Before diagnosing disease based on their types, it is important to

first ensure that whether a person has any lung infection. True positive case can then be

pushed for further processing, such as diagnosis.

4
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Figure 1.2: Block diagram of the proposed work.

In this research, we developed an automated tool to distinguish healthy respiratory

sound from and non-healthy ones that come from respiratory infection carrying patients,

where LPCC-based features are employed. Using over 6800 clips, we obtained the highest

accuracy of 99.22%. A brief description on the previous works is also included and in

conclusion, the review provides recommendations for further improvements.

1.3 Methodology

Respiratory conditions are diagnosed through spirometry and lung auscultation. Spirom-

etry is measuring the volume of air mobilized in respiration. Even though, this method is

one of the most commonly available lung function tests and well validated for the diagno-

sis and monitoring of upper and lower airway abnormalities [1], it is limited to patient’s

cooperation and therefore, is error prone. Moreover, traditional spirometers are normally

used only in clinical settings due to their high cost and required calibration [2] along with

challenges in patient guiding. Auscultation is other technique which involves listening

to the internal human body sounds with the aid of a stethoscope and typically performed

on the anterior and posterior chest. From past few years, it has been an effective tool to

understand lung disorders and possible abnormalities. However, this process is limited

to physicians as they are well trained. For various reasons like faulty instrument or noisy

5



environment, false positives can happen. Therefore, it opens a door to develop comput-

erized lung sound analysis tools/techniques, where automation is the integral part.

1.4 Contribution Outline

Sounds heard over the chest wall are useful tools for diagnosing pulmonary diseases.

Modern lung sound analysis, which began in the last four decades, is focused on digital

sound processing and graphic representation of the signals [7]. As Computerized lung

sound analysis and diagnosis is the main goal of the researchers in this field, several dif-

ferent approaches are being continuously evaluated by researchers to help medical pro-

fessionals. However, lung sound analysis continues to attract researchers because past

researchers focused on identifying lung sounds and very few researchers concentrated

on developing lung disorder diagnostic tools. Therefore, this research area appears in-

complete and has thus attracted many researchers in recent years. Thus, an objective and

reliable diagnostic tool for the detection of pulmonary diseases is aimed.

Previous researchers used three notable databases namely, Marburg European project

CORSA [8], Respiratory Sounds (MARS) [9] and R.A.L.E. repository [10]. However,

R.A.L.E. repository used to be commercially available database. The Marburg Respiratory

Sounds (MARS) database was compiled using Lung sound CDs which are commercially

available for training doctors and nurses to understand lung sounds [9]. The European

project CORSA was developed with an intension of standardizing the recording process

of respiratory sounds [8]. However, In 2017, the largest publicly available respiratory

sound database was compiled and encouraged the development of algorithms that can

identify common abnormal breath sounds (wheezes and crackles) from clinical and non-

clinical settings.

Machine learning algorithms are currently used in many applications which possess

artificial intelligence that learns from past experiences and allow the tools to function
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Figure 1.3: Decision tree for anomaly detection

more accurately [11, 12]. In addition, the previous research on computer-based lung

sound analysis using machine learning algorithms, such as artificial neural networks

(ANNs), the hidden Markov model (HMM), k-nearest neighbor (k-NN) algorithm, Gaus-

sian mixture model (GMM), genetic algorithms (GAs).

Initially the ANN and k-NN algorithms are the machine learning techniques that are

mostly used. The use of support vector machines (SVMs) was found to be very limited in

the literature. The most commonly used machine learning methods used for lung sound

analysis are ANN and k-NN. The classification accuracy reported by Kandaswamy et

al., was 100% for training and 94.02% for testing using ANN in classification of normal,

wheeze, crackle, squawk, stridor, and rhonchus respiratory sounds [13]. This shows the

effectiveness of ANN in classifying the lung sounds. The ANN has the ability to adapt

well with complex non-linear data and classify it accurately and effectively [14]. The k-

NN classifier is another machine learning technique which has attracted researchers to

use it in lung sound classification. The advantage of using k-NN is its simplicity and ro-

bustness [15]. The work of Alsmadi and Kahya has reported a classification accuracy of
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96% in real time using k-NN classifier [16]. Their developed system can recognize normal

and abnormal lung sounds and they trained the model with a large dataset comprising of

42 subjects. In spite of its advantages, the ANN and k-NN have few disadvantages too.

The disadvantage of using ANN and k-NN in classification would be the computational

burden caused for training the model and also it is required to have a very large dataset to

train the model to effectively recognize the lung sounds accurately [14, 15]. In spite of its

disadvantage, ANN and k-NN serves as the most commonly used machine learning al-

gorithms in lung sound analysis due to its ability to achieve better classification accuracy

and detected the lung sounds accurately compared to other methods.

Machine learning algorithms allow the computer to make decisions based on its pre-

vious experiences [17, 18]. In the past decade, machine learning has been used in many

research areas and its diversity has attracted the use of these algorithms for different ap-

plications. In the past few years, researchers have used machine learning algorithms in

computer-based lung sound analysis. However, the use of machine learning techniques

in computer-based lung sound analysis is still preliminary. The work of Guler, who used

genetic algorithm-based artificial neural networks for the classification of lung sounds

[19], shows the importance of using hybrid machine learning algorithms in computer-

based lung sound analysis. Their resulting classification accuracy using GA-based ANN

algorithms was reported to be 83–93%, which shows the significant improvement that

can be achieved through the use of hybrid machine learning algorithms. The use of hy-

brid machine learning algorithms in lung sound analysis is very limited. However, the

exploration of hybrid machine learning algorithms might help researchers improve the

classification accuracy. It was observed from the literature that ANN yields good re-

sults in almost all the previous works and hence combining other methods with ANN

would most probably yield better classification accuracy. The ability of ANN to discrimi-

nate both linear and non-linear data accurately gives it an advantage over other methods

[20, 21]. Alsmadi and Kahya developed a real-time classification system with a classifica-
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tion accuracy of 96% [16], which is satisfactory. Their system provides sufficient evidence

that demonstrates the high possibility of the development of real-time computer-based

lung sound analysis systems. The advantages of using a computer-based lung sound

analysis algorithm include that this method is non-invasive, less time consuming and

more accurate than other methods. In spite of its advantages, the computer-based lung

sound analysis has not yet been developed to a level that can be used in a clinical set-

ting. The development and commercialization of real-time computer based-lung sound

analysis systems is a major area for future research approaches.

Though there has been development of disparate systems for lung sound analysis,

but the number of misclassifications has not been very low. Moreover, non-healthy cases

are composed of several conditions. Distinguishing healthy conditions from non-healthy

conditions is very challenging when the non- healthy cases consist of multiple problems.

Shallow learning based systems are preferred over deep learning-based systems where

computational resource is an issue. The Shallow learning also need to be robust enough

to be able to effectively model healthy and problematic cases considering different prob-

lematic cases. The main contribution of this work is to suggest a new approach in audio

classification. In some cases, here for lung pathologies, machine learning for audio clas-

sification based on sound content is not the best solution, or at least not alone. In this

study, a machine learning approach is presented and outperforms the previous state of

the art. Using this classification model and extrapolating the results to take a decision on

the patient level leads to better results.

Secondly, prior to deeper analysis of problematic cases, it is essential to distinguish

healthy and non-healthy cases. A hierarchical approach can aid to reduce the workload

of doctors considering the shortage of medical facilities in resource constrained areas.

After ensuring that whether a person has any lung infection or not, the true positive case

can then be pushed for further processing.

In this research, we developed an automated tool, where LPCC-based features are
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employed. LPCC-based features were chosen due to its ability of modelling different

type of audio signals [22, 23]. Using over 6800 clips, we obtained a highest accuracy of

99.22%. The block diagram of the proposed methodology is presented in Figure 1.2.

1.5 Organization Of Thesis

Next, we will review the terminology and an explanation of the physiological origin of

respiratory sounds used by medical practitioners, which are also studied by many en-

gineers in the electronic respiratory sound analysis field. These include the two main

categories of i.) normal and ii.) adventitious respiratory sounds. Respiratory sounds

are difficult to analyze and distinguish because they are non-stationary and non-linear

signals. Several techniques were implemented to recognize lung disorders and possible

abnormalities. Automated analysis was made possible with the use of electronic stetho-

scope.

The audio clips were characterized using Linear Predictive Cepstral Coefficient

(LPCC)-based features and the highest possible accuracy of 99.22% was obtained with

a Multi-Layer Perceptron (MLP)-based classifier on the publicly available ICBHI17 respi-

ratory sounds dataset [24] of size 6800+ clips.

The rest of the thesis is structured as follows:

Chapter 2: In this chapter, we present a little background about the topic of thesis and

we also briefly discuss some relevant work and discussed about Shallow learning and

deep learning that were important for this work.

Chapter 3: Description of the dataset that was used in this work to develop the clas-

sification methods along with describing the signal processing methodology. Then we

present the experimental methodology for comparing results of different methods. We

also discuss the challenges and our proposed solutions concerning the application of our

method and the search for the best classification method.

10



Chapter 4: In this chapter, we present the results of our proposed methods by compar-

ing with the other methods. We then interpret the results, comparing each method and

showing the weaknesses and strengths of the methods.

Chapter 5: We finish by summarizing the work, the challenges we faced, our solutions.

Also, we present the results we obtained along with a brief proposal for the future work.
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CHAPTER 2

RELATED WORKS

2.1 Background

As the respiratory diseases are increasing worldwide, it is extremely important of timely

diagnosis of the issue. Prevention and early detection are essential steps in managing

respiratory disease. Auscultation is an essential part of clinical examination as it is an

inexpensive, noninvasive, safe, easy-to-perform, and one of the oldest diagnostic tech-

niques used by the physician to diagnose various pulmonary diseases. The drawbacks

of this procedure are that doctors require experience and ear acuity to provide a more

accurate diagnosis to the patient. It is especially hard since some sounds are harder to

detect because of the limitations of the human ear. Automatic lung health screening us-

ing respiratory sounds meant to help physician by successfully detecting and classify the

adventitious sounds in the lung sound with the help of digital signal and using a com-

bination of signal processing techniques with shallow learning technique, deep artificial

neural networks.

2.2 Related works

In what follows, we categorized previous works into, Aykanat et al. [25] presented a con-

volutional network as well as mel frequency cepstral coefficient, support vector machine-

based approach for lung sound classification. The two feature extraction methods are mel

frequency cepstral coefficient (MFCC) feature extraction and spectrogram generation us-

ing short-time Fourier transform (STFT). They used MFCC features combined with SVM

which is a generally accepted practice for audio classification. In sound processing, the

mel frequency cepstrum (MFC) is a representation of the short-term power spectrum of

a sound, based on a linear cosine transform of a log power spectrum on a non-linear
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mel scale of frequency. MFCCs are coefficients that collectively make up an MFC. They

are derived from a type of cepstral representation of the audio clip. MFCC features are

also used in[26] where clips are first preprocessed in the form of framing and windowing

followed by extraction of MFCC features. Also to handle the uneven and large dimen-

sionality problems in the subsequent paragraphs, the second level MFCC-2 feature values

are computed. A spectrogram is a visual representation of the spectrum of frequencies in

a sound or other signal as they vary with time or some other variable. They are used

extensively in the fields of music, sonar, radar, and speech processing and seismology.

Since MFCC features are widely used in audio detection systems, the experiments they

ran using the MFCC features which enabled to find a base value for accuracy, precision,

recall, sensitivity, and specificity. Spectrogram images are also used in audio detection.

However, they were never tested in respiratory audio with CNNs. MFCC datasets were

built using SciPy library. They used support vector machines to process these datasets.

The spectrogram dataset was built using a combination of open-source graph generation

library Pylab and various open-source image processing libraries. The original spectro-

grams generated were 800 × 600 RGBA, and since it’s too large for computer’s memory

in experiment they changed the algorithm to generate them 28 × 28 grayscale to fit them

into the memory for CNN to process. They used a dataset of 17930 sounds from 1630

subjects and experimented with four different scenarios which involved both the pro-

posed approaches. They reported an accuracy of 86% using both SVM and CNN for

healthy- pathological classification. Finally, they concluded that spectrogram image clas-

sification with CNN algorithm works as well as the SVM algorithm, and given the large

amount of data, CNN and SVM machine learning algorithms can accurately classify and

pre-diagnose respiratory audio.

Pramono et al. [27] evaluated disparate features for classifying normal respiratory

sounds and wheezes. This study evaluated the discriminatory ability of different types of

feature used in previous related studies, with the dataset consisted of 38 recordings from
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disparate sources. It had 425 events out of which 223 were wheezes and the rest were

normal. They demonstrated that certain individual fea- tures (MFCC, tonality index) are

much more accurate in detection of wheezes. However, their computation requirements

are higher than those of simpler time-domain features. In addition, it has also been shown

that while the use of multiple features does increase the classification accuracy in some

cases, the gain in performance becomes very limited after a certain number of features.

They concluded by mentioning, while the classifier used in this work is very simple, the

use of other more complex classifiers such as support vector machines, artificial neural

networks, etc. may help to increase the classification performance at the added cost of

computational complexity. Thus, it is important to take all the competing requirements

into account when selecting a feature for wheeze detection in different applications. They

experimented with different features and the results are presented in [27].

Acharya et al. [28] presented a deep learning-based approach for lung sound classifi-

cation. Deep learning has gained a lot of attention in recent years due to its unparalleled

success in a variety of applications including clinical diagnostics and biomedical engi-

neering. A significant advantage of these deep learning paradigms is that there is no

need to manually craft features from the data since the network learns useful features

and abstract representations from the data through training. As the dataset is relatively

small for training a deep learning model, they used several data augmentation techniques

to increase the size of the dataset. Aside from increasing the dataset size, these data aug-

mentation methods also help the network learn useful data representations in-spite of dif-

ferent recording conditions, different equipment’s, patient age and gender, inter-patient

variability of breathing rate etc. For feature extraction they have used Mel-frequency

spectrogram with a window size of 60 ms with 50% overlap. Each breathing cycle is

then converted to a 2D image where rows correspond to frequencies in Mel scale and

columns correspond to time (window) and each value represent log amplitude value of

the signal corresponding to that frequency and time window. They proposed a hybrid
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CNN-RNN model that consists of three stages: the first stage is a deep CNN model that

extracts abstract feature representations from the input data, the second stage consists of

a bidirectional long, short term memory layer (Bi-LSTM) that learns temporal relations

and finally in the third stage they have fully connected to softmax layers that convert

the output of previous layers to class prediction. While these type of hybrid CNN-RNN

architectures have been more commonly used in sound event detection due to sporadic

nature of wheeze and crackle as well as their temporal and frequency variance, similar

hybrid architectures may prove useful for lung sound classification. Since deep learning

models require much larger amount of data for training, they faced an issue. To address

these shortcomings of existing methods, they proposed a patient specific model tuning

strategy that can take advantage of deep learning techniques even with small amount

of patient data available. In this proposed model, the deep network is first trained on

a large database to learn domain specific feature representations. Then a smaller part

of the network is re-trained on the small amount of patient specific data available. This

enabled them to transfer the learned domain specific knowledge of the deep network

to patient specific models and thus produce consistent patient specific class predictions

with high accuracy. In their proposed model they trained the 3-stage network on the

training samples. Then, for a new patient, only the last stage is re-trained with patient

specific breathing cycles while the learned CNN-RNN stage weights are frozen in their

pre-trained values. They reported their hybrid CNN-RNN model produced a score of

66.31% scores on 80–20 split for four-class respiratory cycle classification. Then they pro-

posed a patient screening and model tuning strategy to identify unhealthy patients and

then built patient specific models through patient specific re-training which provided sig-

nificantly more reliable results for the original train-test split achieving a score of 71.81%

for leave-one-out cross-validation on the ICBHI17 dataset.

Dokur [29] first used a rectangular window formed from one cycle of respiratory

sound (RS) windowed time samples are then normalized. In order to extract the fea-
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tures, the normalized RS signal is partitioned into 64 samples of long segments. The

power spectrum of each segment is computed, and synchronized summation of power

spectra components is performed. Feature vectors are formed by the averaged power

spectrum components, yielding 32-dimensional vectors. In this study, classification per-

formances of multi-layer perceptron (MLP), grow and learn (GAL) network and a novel

incremental supervised neural network (ISNN) are comparatively examined thirty-six

patients for the classification of nine different RS classes: Bronchial sounds, bronchovesic-

ular sounds, vesicular sounds, crackles sound, wheezes sound, stridor sounds, grunting

sounds, squawk sounds, and sounds of friction rub. They have performed analysis of

respiratory sounds in three stages: Normalization process, feature extraction process, and

the classification of the respiratory sounds by artificial neural networks (ANNs). In the

first stage, a rectangular window is formed so that one cycle of RS is contained in this

window. The window comprises of 8,192 samples. Then, the windowed time samples

are normalized so that the power of the respiratory signals in the window is set to 1. In

the second stage, feature vectors are formed by using the normalized data in the window.

Finally, in the last stage, classification of the RSs is realized by using artificial neural net-

works and have reported an accuracy of 92% in this study using multi-layer perceptron.

Shivakumar [30] classified respiratory sounds with a CNN-based technique and ex-

periments were performed with two kind of sounds namely crackles and wheezes. After

pre-processing the audio files they developed a Neural network in which they modified

an existing CNNs to create the base model for dataset. Later they used an Adam opti-

mizer with learning rate 0.009 and batch size of 64. For the first model, author used both

wheezes and crackles simultaneously for 10 epochs and then split the dataset and ran

the model on wheezes and crackles separately again for 10 epochs. When used both a

90-10 and 80- 20 train-test split – the results for both were the same. Author also demon-

strated that splitting the sounds up into different models is very beneficial. Two models

proposed in this study produced test accuracies of 50% and 100% respectively.
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Faustino [31] presented a CNN-based technique for detection of wheeze and crackle

on the ICBHI 2017 dataset. The study involved extraction of MFCC and power spectral

density values from the audio clips. These were fed to a CNN for classification. They

found that utilizing a Mel Spectrogram for lung sound classification utilizing a Convo-

lutional Neural Network architecture is more beneficial than utilizing MFCC features.

However, these results were not better than the results obtained in the other study that

also utilizes the same dataset but uses a RNN architecture with MFCC features. Based

on these findings, they infer that utilizing a Recurrent Neural Network architecture com-

bined with the use of MFCCs is a better approach than utilizing a convolutional based

approach, for the classification of lung sounds. The MFCC method utilizes the discrete

cosine transform to compress and decorrelate the signal features which explains why it

works better when combined with a RNN instead of a CNN. A CNN architecture takes

advantage of local patterns in data; therefore, it makes inefficient use of the MFCCs. An

RNN is built using a FNN as the interior network, which has access to all input features

without the utilization of shared parameters, combined with the temporal context of the

data, making it a much better architecture for interpreting MFCC input. Finally, using a

fivefold cross validation technique, 43% test accuracy was reported.

Ma et al. [32] presented a system that has incorporated the non-local block in the

ResNet architecture to distinguish respiratory sounds. They proposed a LungRBN model,

which uses short-time Fourier transform (STFT) and wavelet feature extraction methods

together with a product of two ResNet models through a fully connected layer to achieve

the best state-of-the-art accuracy. However, less attention has been paid to finding ways to

automatically augment existing data to achieve a significant breakthrough in detection ac-

curacy. To overcome this challenge, they proposed an improved adventitious Lung Sound

Classification, LungRN+NL, incorporate a non-local layer in ResNet neural network with

a mixup data augmentation method. Considering the key discrimination among differ-

ent categories, we choose short-time Fourier trans- form (STFT), a time-frequency analy-
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sis method, to extract fea- tures from lung sounds. Experiments were performed on the

ICBHI 2017 dataset and an accuracy of 52.26% was reported.

Emmanouilidou et al. [33] proposed a robust approach to identify respiratory sounds

in the presence of noise. The proposed framework addressed the need for improved lung

sound quality by using noise-suppression techniques suitable for auscultation applica-

tions. They developed noise-suppression scheme which eliminates ambient sounds, heart

sounds, sensor artifacts and crying contamination and tackled various noise- sources in-

cluding ambient noise, signal artifacts, patient- intrinsic maskers. The improved high-

quality signal is then mapped onto a rich spectro temporal feature space before being

classified using a trained support-vector machine classifier. Individual signal frame deci-

sions are then combined using an evaluation scheme, providing an overall patient-level

decision for unseen patient records. They composed a dataset with the aid of over 1K

volunteers and reported an accuracy of 86.7

Sen et al. [34] experimented with distinction of respiratory sounds from healthy and

non-healthy subjects. This study explored a useful methodology for the classification of

the three-class structure (healthy- obstructive-restrictive) by using 14-channel pulmonary

sounds data are modeled using a second order 250-point VAR model, and the estimated

model parameters are fed to SVM (of discriminative type) and GMM (of generative type)

classifiers designed in various classifier configurations. The adventitious sound compo-

nents (e.g., crackles and wheezes), which are indicators of pathological conditions, are

informative about the disease by their timing within the respiration cycle as well as their

other (spectral, temporal, and spatial) characteristics. To make use of their distinctive in-

formation, the six subphases of the flow cycle are considered separately, until being suit-

ably combined at the decision level. The linear kernel function is adopted for the SVM

classifier since it yields satisfactory results with low computational complexity. They

concluded that hierarchical approach to be adopted for diagnostic classification of pul-

monary conditions, i.e., first, a discrimination between healthy versus pathological con-
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ditions, second, a discrimination between obstructive versus restrictive types under the

pathological condition. Although the GMM classifier has been shown to be more suc-

cessful compared to the SVM classifier, the probabilistic variants of the SVM classifier are

still suggested for future studies, depending on the performances obtained in the aug-

mented feature space. The methodology of this study is proposed as a promising diag-

nostic framework to consider for clinical purposes. They collected data from 20 healthy

and non-healthy subjects which were fed to gaussian mixture model and support vec-

tor machine-based classifiers. Among them, the gaussian mixture model-based classifier

produced an accuracy of 85

Demir et al. [35] used a CNN-based approach for lung sound classification from the

ICBHI 2017 dataset. They proposed a new pretrained Convolutional Neural Network

(CNN) model such as VGG16 and AlexNet is proposed for the extraction of deep fea-

tures. However, sound characteristics are not fully represented since these CNN models

have not been trained on sound datasets. Hence, the proposed CNN model was trained

with spectrogram images based on lung sounds. In addition, the parallel-pooling struc-

ture was employed in order to boost classification performance in the proposed CNN

architecture. In the CNN architecture, an average-pooling layer and a max-pooling layer

are connected in parallel in order to boost classification performance. The deep features

are utilized as the input of the Linear Discriminant Analysis (LDA) classifier using the

Random Subspace Ensembles (RSE) method. They reported a highest accuracy of 83.2%

for the healthy class and an overall accuracy of 71.15%.

Chen et al. [36] used a S-transform-based approach coupled with deep residual net-

works for separating respiratory sounds. First, the raw respiratory sound is processed

by the proposed OST. Then, the spectrogram of OST is rescaled for the Resnet. After the

feature learning and classification are fulfilled by the ResNet, the classes of respiratory

sounds are recognized. In order to evaluate the effectiveness of the proposed OST and

ResNet for the triple-classification of respiratory sounds, the three rescaled feature maps
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of STFT, ST and OST are applied to the ResNet-50 with different batch sizes and iterations.

The proposed OST highlights the features of wheeze, crackle, and respiratory sounds, and

the deep residual learning generates discriminative features for better recognition. The

experimental results show that the proposed OST and ResNet is excellent for the multi-

classification of respiratory sounds like crackle, wheeze and normal sounds and reported

an accuracy of 98.79

Kok et al.[37] used several features including MFCC, DWT and time domain metrics

for distinguishing healthy and non-healthy cases. A number of features were investi-

gated, and Wilcoxon Rank Sum statistical test was used to determine the significance of

the extracted features. The significant features were then passed to a feature selection

algorithm based on mutual information, to determine the combination of features that

provided minimal redundancy and maximum relevance. The instances were classified

random under sampling and boosting method. They reported accuracy specificity and

sensitivity values of 87.1%, 93.6% and 86.8%.

Chambers et al. [38] presented a system in patient level to identify healthy/ non

healthy situation by proposing a method divided in two parts. The first part is about

the classification of the respiratory cycles depending on the adventitious sounds and the

second part is about extrapolating the classification results to consider the patient clas-

sification. These parts are respectively named the micro-level part and the macro-level

part. The micro-level part is to classify individually every respiratory cycle depending

if adventitious sounds are detected or not. For that, all records are taken one by one,

and for each record, features are extracted on the signal window containing every cycles.

The classification of each cycle is computed with a boosted decisional tree, which gives,

according to the features, the probability to belong to every class. The macro-level part

is to suggest a ”diagnostic” taking into account the totality of the predictions previously

computed. As a doctor not only listens one time the lung of his patient, but several times

at different area of the body, they computed the different kind of cycle ratio, predicted
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for all the cycles of one patient. Depending on what kind of cycles appears the most, a

decision is taken. With all these several spectral, rythm, SFX and tonal features coupled

with decision tree-based classification they reported an accuracy of 85%.

Altan et al.[39] presented a deep learning-based approach for detection of chronic ob-

structive pulmonary disease. Their study focused on analyzing multichannel lung sounds

using statistical features of frequency modulations that are extracted using the Hilbert-

Huang transform. Deep-learning algorithm was used in the classification stage of the

proposed model to separate the patients with COPD and healthy subjects. The method-

ology involved the use of Hilbert-Huang transform on multichannel respiratory sounds

and an accuracy of 93.67% was re- ported in segregation of healthy and non-healthy pa-

tients.

Rao et al.[40] acoustic techniques for pulmonary analysis. They talked about the

acoustic aspects of different lung diseases. A discussion is also provided regarding the

physic of human thorax and techniques of measuring respiratory sounds. The authors

have also discussed in detail about different signal processing techniques which are re-

quired to analyze these sounds along with disparate classifiers.

Cohen and Landsberg [41] classified 7 different type of breath sounds using linear pre-

dictive coefficient-based technique. The classification is performed in two levels, with the

first level based on linear prediction coefficients and the second level on energy envelope

features. Each type of breath sound is represented by its mean feature vector and by its co-

variance matrix. These are acquired by training set classified by a physician. The distance

measure is defined and used to compare unknown breath sounds. The unknown signal

is hypothesized to belong to that type which distance is minimal. So, in their research,

rather than trying to automatically diagnose lung diseases they quantitatively character-

ized and automatically classify breath sounds by providing physician with a diagnostic

assist device. They performed experiments with 105 instances out of which 100 were

classified correctly.
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Table 2.1: Overview of previous work on Shallow Learning

Author Method Dataset (Size)
Performance

(ACC|AUC |SEN |SPEC)

Pramono et al.[27]

Compared
performance of

different features
Multiple

repositories (38)
MFCC |–|0.8919 |83.86%|

81.19%

Dokur[29] MLP, ISNN, GAL

Individual
patient data

and RALE (180)

ISNN |98%|– |– |–
GAL |92%|– |– |–
MLP |92%|– |– |–

Emmanouilidou
et al.[33]

Biomimetic
approach with
SVM classifier

PERCH Study
(250 hours)

SVM |86.67%|– |86.82%|
86.55%

Sen et al[34]
SVM and

GMM classifiers

Individual
patient data
(40 subjects) GMM |85%|– |90% |90%

Kok et al. [37]
RUSBoost
Algorithm

ICBHI’17
dataset(920)

RUSBoost Algorithm
|87.1%|– |86.8% |93.6%

Chambers
et al [38]

Combined multiple
features like

spectral, rythm,
SFX and tonal

features coupled
with decision

tree-based
ICBHI’17

dataset(920) Macro level |85%|– |– |–

Rao et al. [40]

Review on
different
Acoustic

techniques
Multiple
sources

SVM |90.77%|– |– |–
KNN |93 - 95%|– |– |–

Cohen and
Landsberg [41]

Linear prediction
coefficients and
energy envelope

features

Individual
patient data

(105 instances) LPC |95.2%|– |– |–
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Table 2.2: Overview of previous work on Deep Learning

Author Method Dataset (Size)
Performance

(ACC|AUC |SEN |SPEC)

Aykanat et al.[25]
CNN and SVM

algorithms
Electronically

recorded (17,930)
CNN |86%|– |86% |86%
SVM |86%|– |87% |82%

Acharya et al.[28]
Deep CNN

-RNN model
ICBHI’17

dataset(920)
Deep CNN-RNN |96%|

– |48.63% |84.14%

Shivakumar[30] CNNs
ICBHI’17

dataset(920)
1st Model |50%|– |– |–

2nd Model |100%|– |– |–

Faustino[31] CNNs
ICBHI’17

dataset(920) CNN |43%|– |51% |36%

Ma et al.[32]
LungRN+NL

model
ICBHI’17

dataset(920)
LungRN+NL |–|– |

41.32% |63.2%

Demir et al.[35] CNN model
ICBHI’17

dataset(920) CNN |71.15%|– |– |–

Chen et al.[36]

Optimized S-
transform (OST)

and deep residual
networks (ResNets)

ICBHI’17
dataset(920)

ResNet with OST
|98.79%|– |96.27% |100%

Altan et al.[39]

Deep Learning
model with the
Hilbert- Huang

transform NA
Deep learning model
|93.67%|– |91% |96.33%
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2.2.1 Shallow Learning

In the last decades many machine learning (ML) approaches have been introduced to an-

alyze respiratory cycle sounds including crackles, coughs, wheezes [42, 43, 44, 45, 46, 47].

In many researches, conventional ML models solely rely on shallow learning as deep

learning may not be suitable in all the experiments. Thus, merely deep learning based

models may not be robust to external/internal noises in lung sounds and may not gen-

eralize their performance across different software’s and measuring devices. Further-

more, highly complex preprocessing steps are required to make use of designed features

[45, 46, 47].

Shallow learning is a type of machine learning where we learn from data described

by pre-defined features. Shallow learning refer to properties derived using various al-

gorithms using the information present in the image itself. The Shallow learning were

commonly used with ”traditional” machine learning approaches for object recognition

and computer vision like Support Vector Machines, for instance. However, ”newer” ap-

proaches like convolutional neural networks typically do not have to be supplied with

such shallow learning, as they are able to ”learn” the features from the image data. In

this research we developed an automated tool to classify lung sounds using our shallow

learning feature, where LPCC-based features are employed. As our dataset is audio files

and the clips are of different lengths, the clips were first framed into short sections and

then windowed as part of preprocessing. Next, standard LPCC features were extracted

from the clips. In order to tackle the problem of uneven dimensionality, we have done

grading and standard deviation. Later it is classified using an MLP(multi-layer percep-

tron) classifier.
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2.2.2 Deep Learning

The first research that modelled Artificial Neural Networks (ANN) was from Warren Mc-

Culloch and Walter Pitts in 1943, with their paper A Logical Calculus of Ideas Imma-

nent in Nervous Activity [48]. Though there were some research into ANNs through

the 1950s and 1960s, limited computing power prevented experimentation with large

ANNs. Nearly 15 years later with the invention of the Backpropagation algorithm, re-

search into ANNs became popular again. However, ANNs gave away to simpler classi-

fiers such as SVMs, which outperformed ANNs in both accuracy and training time. The

way that ANNs worked was using simple Perceptron Units in one or two hidden layers

and using weighted connections to an input and an output layer (Figure 2.1). Running

networks with more hidden layers was usually infeasible, again due to limited computa-

tional power.

In the 21st century, research into ANNs have again become popular, but in the form of

Deep (Neural) Networks and Deep Learning. Deep Learning is a technique of hierarchi-

cal machine learning using multiple layers of non-linear processing. One of the success-

ful approaches to Deep Learning have been with Deep Networks, which have become

a re-branding or buzzword for Artificial Neural Networks. Deep Neural Networks are

basically ANNs with multiple hidden layers, which presents the opportunity of creating

more complex models of non-linear structures, but also increases the time and space com-

plexity of training models in the same way ANNs were limited by in earlier research. The

reason optimization problems in Deep Neural Networks have a high time complexity is

due to its iterative nature in training.

In our research, we are using shallow learning feature as deep learning features are

automatically extracted and may not give the feature we are looking for in our research.

The ability to process large numbers of features makes deep learning very powerful when

dealing with unstructured data. Occasionally, deep learning algorithms can be overkill

for less complex problems because they require access to a vast amount of data to be
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effective. If the data is too simple or incomplete, it is very easy for a deep learning model

to become overfitted and fail to generalize well to new data. As a result, deep learning

models are not as effective as other techniques.

2.3 Discussion

Deep learning methods are becoming increasingly popular because of their impressive

classification performance. However, it is known that they typically require a large train-

ing sample to achieve that accuracy and features are automatically extracted and it may

not generate the features we exactly need to have. Meanwhile, Shallow learning have

been implemented for decades and still serve as a powerful tool when combined with

machine learning classifiers as they are expert based.
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CHAPTER 3

DATASET

3.1 Foreword

In this chapter, we discuss on ICBHI dataset used, annotations and challenges.

3.2 Dataset

The lung sounds that are heard over the chest wall are caused by the airflow in the

lungs during the inspiration and expiration phases. These sounds are non-stationary

and non-linear signals, which make it difficult for physicians to recognize any ab-

normalities [13]. The types and characteristics of lung sounds are listed in Fig. 3.1

[49, 50, 51, 52, 53, 54, 55, 56]. Abnormal breath sounds include the absence or reduced

intensity of sounds where they should be heard or, by contrast, the presence of sounds

where there should be none, as well as the presence of adventitious sounds. As opposed

to those classified as “normal”, abnormal sounds are those which may indicate a lung

problem, such as inflammation or an obstruction. Each lung disorder is associated with

one or more lung sounds [13]. The disorders that are associated with each sound are

also detailed in Fig. 3.1. The dominant frequency of heart sounds is typically below

150Hz, whereas the dominant frequency of lung sounds ranges between 150 and 2000Hz.

This difference in the frequencies makes it easier to filter the heart sounds from the lung

sounds. The durations of the different types of lung sounds are also mentioned in Fig.

3.1.

The ICBHI (International Conference on Biomedical and Health Informatics) dataset

[24] was originally compiled to support the scientific challenge on respiratory data anal-

ysis organized in conjunction with the 2017 Int. Conf. on Biomedical Health Informatics

(ICBHI). The current version of this database is made freely available for research which
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Figure 3.1: characteristic of lung sound

contains both the public and the private dataset of the ICBHI challenge. The Respira-

tory Sound Database contains audio samples that were collected independently by two

research teams in two different countries (Greece and Portugal) over several years. The

data collection required several years, and the final dataset consists of 920 labeled au-

dio tracks from 126 distinct participants. It is currently the largest annotated, publicly

available dataset.

The two independent research groups are

(1) Respiratory Research and Rehabilitation Laboratory (Lab3R), School of Health Sci-

ences, University of Aveiro, Aveiro, Portugal and

(2) Papanikolaou General Hospital and the General Hospital of Imathia, Aristotle Univer-
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Figure 3.2: Locations from which respiratory sounds were collected: right
anterior (1), left anterior (2), right posterior (3), left posterior
(4), right lateral (5) and left lateral (6).

sity of Thessaloniki and the University of Coimbra, Thessaloniki, Greece.

These audio signals were recorded using one of the following stethoscope systems:

(1) Electronic Stethoscope 3200, 3M Littmann,

(2) Classic II SE Stethoscope, 3M Littmann

(3) C417 L Professional Lavalier Microphone, AKG HARMAN, and

(4) Meditron Master Elite Electronic Stethoscope, Welch Allyn. The sounds were collected

from six different positions (left/right anterior, posterior and lateral) as illustrated in Fig-

ure 3.2.

The audios were collected in both clinical and non-clinical settings from adult partici-

pants of disparate ages. Participants encompassed patients with lower and upper respira-

tory tract infections, pneumonia, bronchiolitis, COPD, asthma, bronchiectasis, and cystic

fibrosis.

3.3 Annotations

The ICBHI sound data were provided with two types of annotation: i) for each respira-

tory cycle, whether or not crackles and/or wheezes are present, and ii) for every patient,

whether or not a specific pathology from a set of predetermined categories is present.
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The ICBHI database consists of 920 annotated audio samples from 126 subjects and so it

is used as a benchmark in the field. Each respiratory cycle in the dataset is annotated with

4 classes. The annotations basically cover 2 broad groups-normal and problematic. The

problematic section is further divided into wheeze and crackle with some cycles having

both issues. Among 6898 cycles totaling to 5.5 hours, 3642 cycles are healthy while the

remaining 3256 are problematic. Out of these problematic cycles, 1864 cycles have crack-

les while 886 have wheezes. There are 506 cycles which have both wheezes and crackles.

Overall, there were 3642 healthy breath cycles and 3256 problematic breath cycles.

A single-channel respiratory sound is composed of a certain number of cycles, which

in turn include four main components, two pauses, and two distinctive patterns. Dis-

carding fine-grain variations, mostly due to the conversion of air vibrations to electrical

signal, a respiratory cycle is conventionally described as follows: it starts from the inspi-

ratory phase, which is characterized by a lower amplitude and a regular pattern, then it

follows with an expiratory phase, which shows one or multiple peaks, a decreasing am-

plitude pattern, and is usually characterized by a higher average energy. As previously

mentioned, the respiratory cycles were annotated by domain experts to state the pres-

ence of crackles, wheezes, a combination of them, or no adventitious respiratory sounds.

More in detail, the annotation style format includes the beginning of the respiratory cy-

cle(s), as well as the end of the respiratory cycle(s), the presence or absence of crackles,

and the presence or absence of wheezes. The recordings were collected using heteroge-

neous equipment, with duration ranging from 10 s to 90 s. The average duration of a

respiratory cycle is 2.7 s, with a standard deviation of about 1.17 s; the median duration is

about 2.54 s, whereas the duration ranges from 0.2 s to above 16 s. Moreover, wheezes are

characterized by an average duration of about 600 ms, with a relatively high variance, and

a minimum and maximum duration value ranging between 26 ms and 19 s; conversely,

crackles are characterized by an average duration of about 50 ms, smaller variance, and a

minimum and maximum duration values of 3 ms and 4.88 s, respectively.

30



Table 3.1: Cycle Breakdown Of ICBHI 2017 Challenge Dataset

Number of Cycles Total

With crackles 1864

With wheezes 886

With crackles + wheezes 506

Normal cycles 3642

Total number of cycles 6898

It is important to note that the detection range for crackles and wheezes lies within 100

to 2500 Hz, therefore any other sounds that are outside this range, such as noise, can be

safely discarded or filtered without significant loss of quality of the adventitious sounds.

3.4 Challenges

While recording, the participants were seated. The acquisition of respiratory sounds was

performed on adult and elderly patients. Many patients had COPD with comorbidities

(e.g., heart failure, diabetes, hypertension). Further, there was also presence of noise like

the rubbing sound of the stethoscope with the patient’s dress, background talking etc.

Such varieties in the data made it very challenging to identify problems in the respiratory

sounds. One of the most challenging aspects of the audio clips was the presence of heart-

beat sound along with the breath sounds. No preprocessing was performed to remove

the heartbeat sounds. Pictorial representations of 200 audio clips from the healthy and

non-healthy class are shown in Figure 3.3.
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Figure 3.3: 200 audio clips (original): healthy class (left) and non-healthy
class (right).

3.5 Summary

We have discussed about the dataset used, annotations and the challenges faced while

using the annotated audio files in this chapter. In the next chapter we will examine about

the Methodology, how we have preprocessed and extracted features from our data.
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CHAPTER 4

SHALLOW LEARNING

4.1 Foreword

In this chapter, we describe about the framing and windowing technique used for pre-

processing. Then linear predictive analysis is done along with grading and standard de-

viation measurement for feature extraction. Next by using Multi layer perceptron we

classified healthy vs non healthy respiratory sounds.

4.2 Data Preprocessing

Typically, to evaluate robustness of algorithms, health professionals detect adventitious

respiratory sounds by annotating sounds with the help of Respiratory Sound Annotation

Software (SAS). As audio clip contains high deviations across its entire length, its analysis

is not trivial. Therefore, each audio clip is broken down into smaller segments called

frames to facilitate analysis. In our research, we divided the clips into frames consisting

of 256 sample points with a 100-point overlap in between them. The parameters were

chosen based on [22]. The same 200 audio clips (as in Figure 3.3) are shown in Figure 4.1

after framing. The number of Sz sized overlapping frames Of with O overlapping points

for a signal having S points is presented below:

O f =
⌈
S − S zO + 1

⌉
. (4.1)

After framing the signal into shorter segments, it was observed that in various in-

stances the starting and ending points were not aligned in a frame. These discontinuities/

jitters lead to smearing of power across the frequency spectrum. This posed a problem

in the form of spectral leakage during frequency domain analysis which produced ad-

ditional frequency components. To tackle this, the frames were subjected to a window
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function. Hamming window was chosen for this purpose due to its efficacy as demon-

strated in [22]. Post framing, jitters might be observed in them which interfere with the

Fourier Transformation of the same in the form of spectral leakage. In order to minimize

such problems, the frames are usually multiplied with a windowing function which ap-

proaches 0 towards its ends and reaches its peak in the middle. Amidst various such

windowing functions, Hamming Window function is one of the popularly used window-

ing functions. The same frames (Figure 4.1) are presented in Figure 4.2 after windowing.

The hamming window is mathematically illustrated below:

A(z) = 0.54 − 0.46 cos
(

2πz
S z − 1

)
, (4.2)

where A(z) is the hamming window function and z is a point within a frame.

4.3 Feature extraction

After frame extraction, we performed Linear Predictive Coefficient(LPC) analysis [23] on

each of them. A present sample is represented in terms of previous samples. The previous

P samples are used to present the rth sample in a signal s() as presented below:

s(r) ≈ p1s(r − 1) + p2s(r − 2) + p3s(r − 3)+, . . . ,+pPs(r − P), (4.3)

where p1, p2,. . . , pP are the LPCs or predictors. The error of this prediction E(r) bounded

by the actual and predicted samples: (s(r) and ŝ(r)) can be explained as

E(r) = s(r) − ŝ(r) = s(r) −
P∑

k=1

pks(r − k). (4.4)

The error of sum of squared differences (as shown below) is minimized to generate

the unique predictors for a x sized frame, which can be expressed as

Er =
∑

x

[
sr(x) −

P∑
k=1

pksr(x − k)
]2
. (4.5)
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Figure 4.1: The same 200 audio clips (as in Fig. 3.3) after framing: healthy
class (left) and non-healthy class (right).
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Figure 4.2: Representation of the same 200 audio clips (as in Fig. 3.3) after
windowing: healthy class (left) and non-healthy class (right).
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Figure 4.3: Representation of 30 dimensional features for the audio clips:
healthy class (left); non-healthy class (right).

Thereafter, a recursive technique is used to compute the Cepstral coefficients (C),

which is expressed as

C0 = loge P

Cr = pr +
∑r−1

q=1 qrCq pr−q, f or 1 < r ≤ P and

Cr =
∑r−1

q=r−P qrCq pr−q, f or r > P (4.6)

Since clips in the dataset were of unequal lengths and number of frames obtained var-

ied. When features were extracted in frame level, it produced different dimensions. To

handle this, we performed two operations: a) grading and b) standard deviation mea-

surement.

1. Firstly, the sum of LPCC coefficients in each of the frequency ranges (bands) across all

the frames was computed. Based on the sum of these energy values, bands were graded

in an ascending order. This sequence of band numbers was used as features that helped

in identifying dominance of different bands for the clips from various categories.

2. Secondly, standard deviation was computed for every band. These two metrics were
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stacked to form the feature, which is independent of the clip length. 10, 20, 30, 40 and

50 dimensional features were extracted for the 2 classes. The trend of the 30-dimensional

feature values (best result) for the 2 classes is shown in Fig. 4.3

4.4 Classification

4.4.1 Multi-layer perceptron(MLP)

Multilayer perceptron’s (MLPs) otherwise called as Feedforward neural networks (FNNs)

are the archetypes of deep learning models. These networks were inspired by neuro-

science and how we believe neurons work in the brain.

The purpose of these networks is to approximate some function f by mapping an input

domain to an output domain, which can be applied to solving complex problems such as

prediction or classification from high dimensional data to a set of labels.

These networks consist of multiple layers, where the first layer is the input layer and

the last is the output layer. The intermediate layers in the network are called the hidden

layers and their number can vary. The use of multiple layers is what originated the term

“Deep Learning”, with each additional layer creating an additional level of abstraction or

representation.

Each layer is comprised of a number of neurons that represent activation values, and

it determines the width of that layer. Each neuron has a number of input weights that

connect to each of the neurons of the previous layer, with the exception of the neurons in

the input layer.

The activation values of the input layer are propagated forward in the direction of the

output layer with no feedback connections where the outputs of the neurons are fed to

previously activated neurons, hence the designation of “feedforward”.

The network is associated with a directed acyclic weighted graph describing how the
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Figure 4.4: Structure of a feed-forward ANN with two hidden layers

functions are composed together. The network’s parameters consist of the weights and

biases between layers. The output activation values of a layer are represented as a vector,

with each entry of the vector representing the activation value of a single neuron. The

size of the vector corresponds to the number of neurons in that layer.

The weights between layers are represented as a 2D matrix, with each entry of the

matrix at coordinates i,j representing the weight connecting the neuron i from layer l - 1

to the neuron j in the layer l. The biases between layers are represented as a vector with

the same size as the number of neurons in the next layer.

The mathematical equation for the calculation of the output of each layer of the feed-

forward model is defined as:

• hl = gl(Wlhl - 1 + bl), the activation values of a layer. With Wlhl - 1 being the dot prod-

uct operation between the weight matrix of the current layer and the output values of the

previous layer.

• y = hL - 1 , the activation values of the final output layer of the network
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4.4.2 Layers

We employed MLP classifier, feed-forward artificial neural network – for classification

purpose [57]. Feedforward neural networks are made up of the input layer, output layer

and hidden layer. It is a supervised learning algorithm trained on a dataset using a func-

tion f() : Zn → Zo, where n and o represent the dimensions for input and output. For

a given set of features P = p1, p2, ..., pn and aim x, a non- linear function is learned for

classification. The difference between MLP and logistic regression lies in the existence of

one or more non-linear layers (hidden layers) between the input and the out- put layer.

MLP consists of three or more layers (input layer, output layer and one or more hidden

layers) of non-linear activating neurons. The number of hidden layers can be increased

according to the requirement of developing a model to accomplish certain task. The ini-

tial layer is the input layer which comprises of a set of neurons pi|p1, p2, ..., pn denoting

the features. Each neuron of the hidden layer modifies the values from the previous layer

using sum of weights as: w1 p1 + w2 p2+, ...,+w2 pn.

The activation function that represents the relationship between input and output layer in

of non-linear nature. It makes the model flexible in defining unpredictable relationships.

The activation function can be expressed as:

yi = tanh(wi) and yi = (1 + ewi)−1, (4.7)

where yi and wi denotes the outcome of the ith neuron and weighted sum of the input

features. The values from the ultimate hidden layer are provided to the output layer as

output values. Each layer of MLP contains several fully connected layers as each neuron

in a layer is attached to all the neurons of the previous layer. The parameters of each

neuron are independent of the remaining neurons of the layer ensuring possession of

unique set of weights. The initial momentum and learning rate were set to 0.2 and 0.3

respectively.
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4.5 Summary

We have discussed about the methodology we used to preprocess, extract features and

then classify the respiratory sounds. In the next chapter we will look into evaluation

where we discuss and analyze the results.

40



CHAPTER 5

RESULTS AND ANALYSIS

5.1 Evaluation Metric and Protocol

Not just Accuracy it is also very much important to analyze the disparate misclassifica-

tions. Hence, to evaluate our tool, the following performance metrics are used: Precision,

Accuracy, Sensitivity (Recall), Specificity, and Area under ROC curve (AUC). They are

computed as,

Accuracy =
TP + TN

TP + TN + FP + FN
,

(5.1)

Accuracy is the most intuitive performance measure and it is simply a ratio of correctly

predicted observation to the total observations. Accuracy is a great measure only when

datasets are symmetric where values of false positive and false negatives are almost same.

Therefore, looking at other parameters to evaluate the performance of model is important.

Precision =
TP

TP + FP
,

(5.2)

Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations.

Sensitivity (Recall) =
TP

TP + FN
,
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(5.3)

Sensitivity (Recall) is the ratio of correctly predicted positive observations to the all ob-

servations in actual class

Specificity =
TN

TN + FP
, and

(5.4)

Specificity is the metric that evaluates a model’s ability to predict true negatives of each

available category. These metrics apply to any categorical model. The equation for recall

looks exactly the same as the equation for sensitivity and when to use either term depends

on the task at hand.

F1 score = 2 ×
Precision × Recall
Precision + Recall

, (5.5)

F1 score is the weighted average of Precision and Recall. Therefore, this score takes both

false positives and false negatives into account. F1 is usually more useful than accuracy,

especially in an uneven class distribution. Accuracy works best if false positives and false

negatives have similar cost. If the cost of false positives and false negatives are very dif-

ferent, it’s better to look at both Precision and Recall.

where TP , TN , FP , and FN refer to true positive, true negative, false positive, and

false negative, respectively.
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Table 5.1: Performance of different feature dimensions using MLP.

Feature dim. Accuracy(%)

10 93.91

20 90.01

30 99.07

40 89.19

50 98.78

To avoid possible bias in evaluation, 5-fold cross validation was used. Cross validation

was used because it subjects each instance of the dataset to testing and training at least

once. This also helps to avoid biased modeling when outliers are present.

5.2 Our Results

The performance of the different features are provided in Table 5.1. It is observed that the

best result was obtained with 30 dimensional features and it’s corresponding confusion

matrix is provided in Table 5.2.

As compared to the default scenario, there were 4 more misclassifications in the case

of the healthy cases (and 9 less misclassifications for the non-healthy cases).

Next, the momentum was varied from 0.1 to 0.5 with a step of 0.1, and results are

provided in Table 5.3.

The best result was obtained for a momentum of 0.1 whose interclass confusions are

provided in Table 5.4.

Finally, the momentum was varied from 0.1-0.6 with a step of 0.1 whose results are

provided in Table 5.5. In our experiment, the highest performance was obtained when a

learning rate of 0.5 was selected. We presented a confusion matrix for this setup in Table

5.6. It is observed that the number of misclassifications for both classes was reduced as
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Table 5.2: Inter-class confusions for the 30 dimensional features (Best re-
sult) using MLP.

Healthy Non-healthy

Healthy 3611 31

Non-healthy 33 3223

Table 5.3: Performance for different momentum values on 30 dimensional
features with learning rate of 0.3.

Momentum Accuracy(%)

0.1 99.14

0.2 99.07

0.3 99.04

0.4 99.07

0.5 99.12

compared to the initial setup. The misclassified instances were analyzed, and it was found

that many of them had heartbeat sounds. Along with this, other unwanted artefacts, such

as talking, and movement of the probe helped in misclassifying.

It is observed that the misclassified instances were reduced by almost 15.63% as com-

pared to the original setup using default settings. As compared to best result, after mo-

mentum tuned, a decrease of nearly 8.47% occurred for the misclassified instances. A

deeper analysis of the misclassifications revealed that approximately 0.74% of the healthy

Table 5.4: Inter-class confusions for momentum value of 0.1 on 30 dimen-
sional features.

Healthy Non-healthy

Healthy 3607 35

Non-healthy 24 3232
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Table 5.5: Performance for different learning rates with momentum of 0.2.

Learning rate Accuracy(%)

0.1 99.03

0.2 99.13

0.3 99.07

0.4 99.06

0.5 99.22

0.6 99.13

Table 5.6: Interclass confusions for learning rate of 0.5 and momentum of
0.2 on 30 dimensional features.

Healthy non-healthy

Healthy 3615 27

non-healthy 27 3229

Table 5.7: Performance metrics for default scenario, best results after tun-
ing momentum value and best result after tuning learning rate.

Metrics Default Best momentum Best learning rate

Sensitivity 0.9915 0.9904 0.9917

Specificity 0.9899 0.9926 0.9926

Precision 0.9909 0.9834 0.9917

False positive rate 0.0101 0.0074 0.0074

False negative rate 0.0085 0.0096 0.0083

Accuracy(%) 99.07 99.14 99.22

F1 score 0.9912 0.9919 0.9917

AUC 0.9994 0.9995 0.9993
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Table 5.8: Performance of different classifiers on the 30 dimensional fea-
tures.

Classifier Accuracy(%)

BayesNet 98.26

Naı̈ve Bayes 88.98

SVM 98.59

RBF Network 95.82

LibLINEAR 98.59

Simple Logistic 98.70

Decision Table 98.62

RNN 93.82

Multilayer Perceptron 99.22

cases were misclassified as opposed to non-healthy. In the case of non-healthy instances,

approximately 0.83% of the clips were misclassified as healthy, which we call false neg-

ative. The different performance metrics were computed for the default setup, best mo-

mentum, and best learning rate (overall highest). Such results are provided in Table 5.7.

The ROC curves for these scenarios are shown in Fig. 5.1.

5.3 Comparative study

The reason why we have done a comparative study is to know how much we did and the

performance of several other classifiers was compared in order to establish the efficacy

of MLP. For comparison, the 30-dimensional feature set (best performance) was chosen.

We experimented with BayesNet, SVM, RNN, Naive Bayes, RBF network, Decision Table,

LibLINEAR, and Simple logistic. The results are provided in Table 5.8. We also compared

the performance of our system with reported works by Kok et al. [37] and Chambers et
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Table 5.9: Comparison with reported works.

Work Accuracy(%)

Kok et al. [? ] 87.10

Chambers et al. [? ] 85.00

Proposed technique 99.22

al. [38]. The average accuracies for both the systems along with the proposed system are

provided in Table 5.9.
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Figure 5.1: ROC curves: a) default settings, b) best momentum value (0.1),
and c) best learning rate (0.5, overall highest result).
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CHAPTER 6

CONCLUSION

Looking at the audio content, it is difficult to classify respiratory sounds. In our

research, a system is presented for distinction of healthy and non-healthy lung sounds

which is very important prior to further diagnosis of the type and severity of infection.

We have performed our experiments using a publicly available dataset and evaluations

indicate that the highest accuracy of 99.22% with an AUC value of 0.9993 is obtained.

Automated adventitious sounds detection or classification provides a promising solu-

tion to overcome the limitations of conventional auscultation. In future the subject area

for future investigation will be:

1. To use larger dataset and test further on robustness in presence of higher percent-

ages of noise.

2. Attempts will also be made towards isolation of breath sounds from the ambient

noises and heart- beat sounds [58] for better analysis.

3. Other acoustic techniques [59] will be applied for even better modelling of the lung

sounds along with deep learning-based approaches.

4. To have clinical use in pulmonary health screening and as a tool in differential diag-

nosis of pulmonary diseases.

5. Finally, we will be trying to identify the nature and severity of infection from the

breath sounds.
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[17] Geert Meyfroidt, Fabian Güiza, Jan Ramon, and Maurice Bruynooghe. Machine

learning techniques to examine large patient databases. Best Practice & Research Clin-

ical Anaesthesiology, 23(1):127–143, 2009.

[18] Shijun Wang and Ronald M Summers. Machine learning and radiology. Medical

image analysis, 16(5):933–951, 2012.
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